The Online
 ANGLE ORTHODONTIST
 An International Journal of Orthodontics and Dentofacial Orthopedics 79th Anniversary 1930-2009

Long-term orthodontic tooth movement response to short-term force in the rat

Jerome M. Gibson, DDS; Gregory J. King, DMD, DMSc; ${ }^{\text {a }}$ Stephen D. Keeling, DDS, MS

aBOX 100444, JHMHC, Gainesvik FL 32610

Abstract

Both the amount of force applied and the duration of the application affect tooth movement. To study the effect of duration, adult male Sprague-Dawley rats were fitted with orthodontic appliances delivering a $40-\mathrm{gm}$ initial mesial tipping force to the maxillary molars. The animals were divided into two longitudinal groups (I: 1 hour and II: 24 hours; $\mathrm{N}=15$). Sham-treated control (III) and 14 day (IV) continuous cross-sectional force tooth movement data were also included for comparison (72 rats per group). Extraoral cephalometric radiographs were obtained at appliance placement and at 1, 3, 5, 7, 10, \&14 days. Tooth movement was determined with respect to palatal implants. ANOVA indicated significant differences existed over time in each group ($\mathrm{p}=0.0001$). Continuous force applied for 14 days generated a classic three-part tooth movement curve. Shortterm forces were characterized by initial mesial movement, a distal relapse period (d3-d5), and a late mesial movement period (d7-d14). The results suggest short-term forces of 1 and 24 hours initiate remodeling events, which result in tooth movement 7 to 14 days later and that the minimum effective duration of a $40-\mathrm{gm}$ activation is less than 1 hour in this animal model.

J.M. Gibson is in private practice in Sun Antonio, Texas
G.J. King is a Professor and Chairman of the Department of Orthodontics, University of Florida, Gainesville, FL
S.D. Keeling is an Associate Professor in the Department of Orthodontics University of Florida

KEY WORDS: Tooth movement, Force duration, Bone remodeling.

