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Ligands in the transforming growth factor ß (TGF ß) superfamily play diverse roles throughout the 

body in both developing and mature animals. In mammalian reproductive systems, ligands from the 

subfamilies of activin, inhibin, TGFß, growth differentiation factor (GDF), and bone morphogenetic 

protein (BMP) have all been shown to have effects at some, if not all, levels of the hypothalamo-

pituitary-gonadal axis. The activins and inhibins were, in fact, identified on the basis of their 

ability to stimulate and suppress pituitary follicle-stimulating hormone (FSH) synthesis and 

secretion. In adult animals, inhibins are produced by testicular Sertoli cells and granulosa cells 

of developing ovarian follicles (as well as by luteal cells in primates). These proteins act in an 

endocrine fashion to suppress FSH from the pituitary. Although it had been believed that activins 

stimulated FSH through an endocrine mechanism, it is now clear that most circulating activins are of 

nongonadal origin and are biologically inactive because they are bound to bioneutralizing 

follistatins (reviewed in Risbridger and Cancilla, 2000). It now appears that activins synthesized 

in the pituitary (activin B in particular) stimulate FSH through a paracrine or autocrine mechanism. 

In addition to their pituitary actions, activins (and other TGFß superfamily members) have potent 

autocrine/paracrine actions within the gonads. For example, the adult testis produces the 

activin/inhibin  and ßB subunit proteins, and therefore can produce both activin B and inhibin B. 

There is some controversy regarding the production the inhibin/activin ßA subunit in the adult 

testis, but circulating inhibin A is not detectable in males suggesting that the ßA subunit is not 

produced at significant levels (or at least not in cells that also synthesize the inhibin  

subunit). Activins have several effects within the testis. For example, exogenous activin A inhibits 

LH- or hCGstimulated testosterone production by Leydig cells (Hsueh et al, 1987; Lin et al, 1989). 

The TGFß ligands, which use similar intracellular signaling proteins as the activins (see below), 

produce similar effects (Lin et al, 1987; Gautier et al, 1997). It is unclear whether or not 

inhibins directly affect LH-stimulated testosterone production by Leydig cells, but they do appear 

to antagonize activin's effects (Hsueh et al, 1987; Lin et al, 1989).  
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It is interesting that activins can stimulate and inhibit cell proliferation in different testicular 

cell types, but these effects appear to be age-dependent. For example, in testis fragments from 9-

day old rats, activin A in combination with FSH stimulated Sertoli cell proliferation. The same 

treatment was without effect in testicular fragments from rats at 18 days of age (Boitani et al, 

1995). There is some suggestion that age-related changes in activin receptor expression may mediate 

this change in sensitivity to activin (Fragale et al, 2001), but the results reported by Xu et al in 

this issue of the Journal of Andrology may shed some additional light on this and other age-related 

changes in activin action in the rat testis.  

Like other members of the TGFß superfamily, activins affect target cells by binding to a receptor 

serine/threonine kinase receptor (RSK) complex. The complex consists of a ligand binding subunit, 

the type II receptor, which recruits and phosphorylates a second RSK (the type I receptor), which 

propagates intracellular signals. Activins bind to one of two type II receptors, ActRIIA or ActRIIB. 

As many as five variants of the latter receptor have been described, although one form, ActRIIB2, 

appears to be most abundant. After activin binds the type II receptor, the type I receptor, ALK4, is 

recruited into the complex and is phosphorylated by the constitutively active kinase domain of the 

type II receptor. This phosphorylation event activates the catalytic subunit of ALK4, which, like 

the type II receptor, has serine/threonine kinase activity. Although all the downstream targets of 

ALK4 have not been identified (Attisano and Wrana, 2002), it is clear that much of activin signaling 

is dependent on activation of proteins in the SMAD family, specifically SMAD2 and SMAD3. Both SMAD2 

and SMAD3 are rapidly phosphorylated on conserved C-terminal serine residues by the activated ALK4. 

This phosphorylation causes the SMADs to dissociate from the receptor complex and bind to a cofactor 

protein, SMAD4, in the cytoplasm. The activated SMAD complex then translocates to the nucleus, where 

it affects target gene transcription in concert with coactivator and corepressor proteins (Attisano 

and Wrana, 2002). The TGFß ligands use different type I and type II receptors than the activins, but 

they also stimulate SMAD2 and SMAD3 phosphorylation. Other TGFß superfamily members, like the BMPs, 

signal through different receptor-regulated SMADs (SMADs 1, 5, and 8).  

Several studies have described the expression of activin type II receptors in adult and developing 

testes (Woodruff et al, 1992; Feng et al, 1993; Cameron et al, 1994). At least one report has also 

indicated the expression of ALK4 in spermatids (De Jong, 1997). Surprisingly few papers have 

described SMAD expression in mammalian testes (Wang and Zhao, 1999; Goddard et al, 2000; Kano et al, 

2001; Luukko et al, 2001). In this issue, Xu et al make an important contribution in this regard by 

describing postnatal expression profiles for both SMAD2 and SMAD3 in the rat testis. Their results 

show that both the abundance and cellular localization of these SMADs change from postnatal Day 10 

to adulthood. Specifically, testicular SMAD2 protein levels are higher during juvenile development 

than in adulthood. SMAD3 levels show a similar yet less pronounced developmental profile. Protein 

localization studies further characterized developmental changes in SMAD expression. For example, 

both SMAD2 and SMAD3 were detected in Sertoli and Leydig cells of 10-day old animals. Whereas both 

SMADs continued to be expressed in adult Sertoli cells, they were virtually absent in adult Leydig 

cells. Surprisingly, neither SMAD was detected in spermatogonia at any age. Activin receptors are 

expressed in spermatogonia and activins affect spermatogonial proliferation (Mather et al, 1990; 

Woodruff et al, 1992; Kaipia et al, 1993; Boitani et al, 1995). These results raise the interesting 

possibility that activins may signal in a SMAD-independent manner in this cell type.  

Although SMAD2 and SMAD3 appear to play redundant functions in various biological systems, it is 

clear that the two proteins also mediate distinct cellular responses. For example, the phenotypes of 

SMAD2- and SMAD3-deficient mice differ dramatically (Weinstein et al, 2000). The two SMADs have 

different DNA-binding properties, and this accounts for some of the differences in their mechanisms 



and modes of action (Labbe et al, 1998; Yagi et al, 1999). However, it is possible that temporal or 

spatial differences in their expression may also contribute. In the testis, Xu et al show that SMAD2 

and SMAD3 are often but not always expressed in the same cell types or cellular compartments at the 

same times. Thus, variability in patterns of SMAD expression may contribute to differences in 

responsiveness of testicular cell types to activins at various stages of life.  

The data presented by Xu et al will no doubt provide a framework for future, hypothesis-driven 

research. For example, the pronounced age-related decline in Leydig cell SMAD2 and SMAD3 levels 

predicts that the inhibitory effects of activins (and TGFßs) on LH-stimulated testosterone 

production will be less pronounced (if not completely absent) in Leydig cells derived from adult 

animals than from younger animals. Moreover, the overall, age-related reduction in SMAD2 and SMAD3 

protein levels in rat testis predicts that activins (and TGFßs) may play more important roles in 

testicular development than in adult testicular function.  
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