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Male factor infertility is a significant problem in humans and domestic animals (Lunenfeld and 

Insler, 1993). In humans, it is estimated that 20% of couples are infertile and that, in 50% of 

these cases, the infertility can be attributed, at least in part, to the male partner (World Health 

Organization, 1990). Similarly, in animals, it is likely that infertility in the male is at least as 

common as in the female. Economic losses due to reproductive inefficiency in male animals can be 

substantial, particularly when infertility affects a genetically superior individual (Roberts, 

1986). Although some instances of male factor infertility can be explained by readily identifiable 

pathologies of the reproductive tract or deficiencies in reproductive hormones, many others remain 

idiopathic. Common problems in subfertile and infertile human and animal patients include low sperm 

numbers, low numbers of morphologically normal sperm, and low numbers of motile sperm (Linford et 

al, 1976; Boyle et al, 1992; Pickett, 1992; Wallace, 1992). Although the correlations between sperm 

numbers and fertility as well as sperm morphology and fertility are not always strong, it is 

generally accepted that immotile or poorly motile sperm are incapable of fertilization without 

extensive laboratory assistance. 

Yet in spite of the importance of sperm motility to reproduction, reduced sperm motility remains 

only a clinical sign of infertility, and we actually understand very little about the signaling 

pathways and molecular mechanisms that control the assembly and function of the normal mammalian 

sperm flagellum. Modern assisted reproductive techniques such as intracytoplasmic sperm injection 

(ICSI) now allow us to minimize and even bypass the requirement for sperm motility in male 

fertility. However, the success of these techniques only increases our need to better understand the 

genes and proteins that are not functioning normally in these subfertile populations of sperm. 

Without this knowledge, we may inadvertently pass on genetic defects to future generations. A more 

complete understanding of the molecular processes that go into the creation of a motile sperm will 

enable us to address the issue of reduced motility and associated subfertility more effectively in 

the clinic. Eventually, poor sperm motility might be able to be treated or even cured through 
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genetic therapy rather than simply being bypassed by ICSI. Viewed from a different angle, knowledge 

of the molecules that are required to assemble a functional flagellum may allow us to eventually 

intentionally disrupt the normal function of crucial, sperm-specific proteins, which could result in 

the development of a safe, effective male contraceptive. The purpose of the present article is to 

review the current understanding of the molecular mechanisms that contribute to normal mammalian 

flagellar function and sperm motility. Much of the information summarized here was gained through 

the study of model systems, including mice, rats, hamsters, and other species. However, the 

ultrastructure of mammalian sperm is highly conserved, and it is likely that many of the genes, 

proteins, and protein functions identified in laboratory animal species also are conserved in humans 

and domestic animals. Nonetheless, this may not always be the case, and I have attempted to point 

out those incidences in which functionally relevant species differences have been identified.  

Activated and Hyperactivated Sperm Motility

Most mammalian sperm display two types of physiological motility: activated motility, as is seen in 

freshly ejaculated sperm, and hyperactivated motility, as is seen in most sperm recovered from the 

site of fertilization (Katz and Yanagimachi, 1980; Suarez and Osman, 1987). The flagellum of an 

activated sperm generates a symmetrical, lower amplitude waveform that drives the sperm in a 

relatively straight line. In contrast, once sperm from most species become hyperactivated, the 

flagellar beat becomes asymmetrical and higher amplitude, which results in circular or figure-eight 

trajectories (Yanagimachi, 1970, 1994; Ishijima et al, 2002). Current evidence suggests that the 

role of activated motility is to aid in propelling the sperm through the female reproductive tract 

to the oviduct, whereas the role of hyperactivated motility is to help sperm detach from the 

oviductal epithelium, reach the site of fertilization, and penetrate the cumulus and zona pellucida 

of the oocyte (Suarez et al, 1991; Stauss et al, 1995; Ho and Suarez, 2001).  

There is good evidence that both activated and hyperactivated motility are important for normal 

fertility. In the case of activated motility, immotile sperm generally are unable to reach the 

uterotubal junction. This has been clearly demonstrated in rats (Gaddum-Rosse, 1981). Additionally, 

in a number of species, including humans, there is strong clinical evidence suggesting that 

decreases in activated sperm motility decrease male fertility. Hyperactivated motility has been 

shown to enhance the ability of a sperm to reach the site of fertilization and to penetrate the egg 

vestments. In rodents, and probably in other species as well, hyperactivated motility is also 

correlated with the ability of a sperm to fertilize an oocyte in vitro (Fraser and Quinn, 1981; 

Boatman and Robbins, 1991). The majority of the present review will discuss the molecular mechanisms 

involved with the regulation of activated sperm motility (also referred to as "sperm motility" or 

"motility"). Items that are specifically relevant to hyperactivated sperm motility will be pointed 

out throughout the text.  

Ultrastructure of the Sperm Flagellum

One of the earlier approaches to studying the mechanisms involved in sperm motility was to study the 

ultrastructure of the sperm tail. As a result, although our understanding of the molecular 

components of the sperm flagellum is incomplete, the flagellar ultrastructure has been well 

characterized and provides a starting point from which to study the function of the individual 

protein components of the tail.  

The ultrastructure of the mammalian flagellum is highly conserved and is composed of a number of 

cytoskeletal elements whose proper assembly is critical for sperm motility. The flagellum is 

structurally divided into four major parts: the connecting piece, the midpiece, the principal piece, 

and the end piece (Figure 1; Fawcett, 1975). The connecting piece is the portion of the flagellum 



that attaches to the implantation fossa of the nucleus in the sperm head. From the remnant of the 

centriole at this point, the axoneme extends throughout the length of the flagellum. The axoneme is 

a cytoskeletal structure composed of a ring of 9 microtubule doublets surrounding a central pair. 

Inner and outer dynein arms project from each of the outer 9 doublets, and these arms are 

responsible for generating the motive force of the flagellum. Additionally, 9 radial spokes, each of 

which originates from 1 of the 9 outer microtubular doublet pairs, project inward toward the central 

pair in a helical fashion. The midpiece also begins at the connecting piece and is characterized by 

the presence of 9 outer dense fibers (ODFs) that lie outside each of the 9 outer axonemal 

microtubule doublets and by a sheath of mitochondria that encloses the ODFs and the axoneme. The 

midpiece terminates about one-fourth of the way down the sperm flagellum at the annulus, which marks 

the beginning of the principal piece.  

 

At this point, the mitochondrial sheath (MS) ends and the ODFs associated with outer axonemal 

doublets 3 and 8 are replaced by the 2 longitudinal columns of the fibrous sheath (FS). The columns 

of the FS run the length of the principal piece and are stabilized by circumferential ribs. The 

presence of the FS and of only 7 (rather than 9) ODFs surrounding the axoneme define the principal 

piece. The principal piece makes up approximately two-thirds of the length of the flagellum. Near 

the distal end of the principal piece, the FS and the ODFs taper and then terminate. The short 

remaining region of the flagellum, which contains only the axoneme surrounded by the plasma 

membrane, is the end piece.  

The presence and structure of the axoneme are highly conserved in all ciliated and flagellated 

eukaryotic cells. However, only mammalian sperm flagella contain all three additional accessory 

structures: the MS, ODFs, and FS.  

The Axoneme is the Flagellar Motor

Eukaryotic axonemal assembly and function has been studied most extensively in the unicellular green 

algae Chlamydomonas reinhardtii. In this species, more than 200 axonemal and axoneme-associated 

proteins have been identified. Out of these 200 proteins, more than 25 loci have been identified by 
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Figure 1. Schematic representation of a mammalian sperm and the 
ultrastructure of the flagellum. (A) Mammalian sperm flagella are structurally 
divided into 4 areas: the connecting piece, midpiece, principal piece, and 
end piece. The end of the midpiece and start of the principal piece are 
demarcated by the annulus. (B) Schematic cross-section through a 
representative segment of the midpiece showing the plasma membrane 
(PM) and mitochondrial sheath (MS) surrounding the 9 outer dense fibers 
(ODFs). Within the ODFs are the components of the axoneme: the 9 outer 
microtubule doublets of the axoneme (OMDA) with associated dynein arms 
(DA) and radial spokes (RS) and the central pair of microtubule doublets 
(CP). In an actual sperm, several projections are present on the CP. These 
are not shown in this figure. (C) Schematic cross-section through a 
representative segment of the principal piece showing the PM surrounding 
7 ODFs. ODFs 3 and 8 have been replaced by the two longitudinal columns 
of the fibrous sheath (LC). The two columns are connected by transverse 
ribs (TR). The axonemal components are unchanged. (D) Schematic cross-
section through a representative segment of the end piece. The ODFs and 
FS tapered at the termination of the principal piece and are no longer 
present in the end piece, thus leaving only the PM to surround the axoneme.



mutations that affect the assembly of the axoneme, and more than 52 loci have been identified by 

mutations that result in altered motility (Luck et al, 1977; Dutcher, 1995). These mutations involve 

structural, motor, targeting, and stabilizing proteins, to name a few (Luck et al, 1977; Dutcher, 

1995; Yagi and Kamiya, 1995; Piperno et al, 1996; Smith and Lefebvre, 1996).  

In mammals, as in Chlamydomonas, the axoneme extends throughout the flagellum and generates the 

flagellar motive force. The axoneme is a complex structure that is composed of a highly stable, 

characteristic 9 + 2 array of microtubules and associated proteins (Fawcett, 1975; Clermont et al, 

1990). Although the  and ß tubulins are by far the most prominent proteins in the axoneme, it is 

likely that mammals possess at least as many axonemal and axoneme-associated proteins as does 

Chlamydomonas (Luck et al, 1977). In spite of their relevance to sperm motility, few of these 

mammalian proteins have been well characterized.  

Dyneins are the "motor" proteins located in the arms of the outer microtubular doublets and are 

members of a multigene family of proteins (Porter and Johnson, 1989; Holzbaur and Vallee, 1994; 

Milisav, 1998). Activation of the axonemal dynein ATPase causes the sliding of adjacent outer 

doublet microtubules, which results in flagellar bending (Gibbons and Rowe, 1965; Tash and Means, 

1982). In Chlamydomonas, the central pair of microtubules, together with radial spokes emanating 

from the outer 9 microtubule doublets, transmit regulatory signals to the dynein arms (Porter and 

Sale, 2000). Additionally, the central pair and radial spokes regulate the size and shape of 

axonemal bending in a calcium-dependent fashion (Wargo and Smith, 2003). The high degree of 

structural conservation between Chlamydomonas and mammalian axonemes makes it likely that a very 

similar regulatory mechanism is also present in mammals.  

Axonemes are not unique to sperm cells; rather, they are found in all flagellated and ciliated 

cells, from Chlamydomonas flagella to the inner-ear hair cells of mammals. Thus, disorders of the 

axoneme in mammals can result in such varied phenotypes as infertility, deafness, blindness, chronic 

respiratory disease, or some combination of these problems.  

The Mitochondrial Sheath—A Source of Adenosine Triphosphate for the Sperm 

Sperm mitochondria are located only in the MS of the midpiece and produce adenosine triphosphate 

(ATP) for the cell through aerobic respiration. Although these functions are similar to those of 

somatic mitochondria, sperm mitochondria have been associated with several unique proteins or 

protein isoforms that are not found in the mitochondria of somatic cells. In mice, these include 

sperm-specific isoforms of lactate dehydrogenase and hexokinase (Burgos et al, 1995; Travis et al, 

1998).  

The sperm axonemal dyneins have a high requirement for ATP as an energy source for flagellar 

motility. Because sperm mitochondria are restricted to the midpiece of the flagellum, the ATP 

generated by these mitochondria would need to travel some distance to supply the needs of the 

axonemal dyneins located in the more distal segments of the flagellum. It has long been suspected 

that this distance is too great and that ATP originating in the midpiece could not diffuse 

adequately to meet these needs in a timely fashion (Storey and Kayne, 1975). On the basis of these 

observations, it has been suggested that either other regions of the sperm flagellum must be able to 

produce ATP to supply the more distal parts of the tail or that there must be some mechanism by 

which ATP can be shuttled from the MS to the rest of the flagellum.  

Also of interest, it has been shown that species-specific differences in the metabolic capabilities 

of mitochondria exist. This results in variations in the ability of sperm from different species to 

metabolize different substrates (Storey and Kayne, 1980). It is possible that this variation has 



evolved as a result of species-specific differences in the substrate composition of oviductal fluids 

of the female.  

The ODFs Provide Structural Support

Historically, it has been suggested that the role of the ODFs is to provide passive elasticity to 

the motile flagellum (Fawcett, 1975). More recently, several ODF proteins have been isolated and 

characterized in a variety of species, including humans (Gastmann et al, 1993; Morales et al, 1994; 

Hoyer-Fender et al, 1995; Kim et al, 1995; Burmester and Hoyt-Fender, 1996, 1998; Kierszenbaum et 

al, 1996; Tres and Kierszenbaum, 1996; Brohmann et al, 1997; Shao et al, 1997; Schalles et al, 1998; 

Zarsky et al, 2003). Some of these have proved to be keratin-like intermediate filament proteins 

(eg, Sak57), which thus supports the idea that the ODFs provide structural support to the flagellum. 

Currently, there are no reports on targeted mutations in any of the ODF-specific genes. In part 

because of this, the functions of ODFs in sperm motility (other than the putative structural role) 

remain largely speculative.  

The FS—Structural Support and More 

The FS is another sperm cytoskeletal structure that traditionally was thought to play a mechanical 

role in sperm motility by providing a rigid support for the flagellum and determining its planar 

beat (Fawcett, 1975; Lindemann et al, 1992). Outer microtubule doublets 3 and 8 are the only 

doublets in direct proximity to the FS (the other doublets are separated from the FS by the 

persistence of the ODFs in the principal piece). It has been suggested that, by supporting outer 

doublets 3 and 8 and the central pair of microtubules, the FS creates an "I-beam"-like structure 

along which the other microtubules can slide. In support of this hypothesis, and in support of the 

hypothesis that doublets 3 and 8 directly participate in FS sliding, it has been shown in mice that, 

in demembranated sperm in which axonemal sliding is activated with ATP, the FS slides proximally 

toward the connecting piece while doublets 1, 2, 4-7, and 9 (but not 3 and 8) are asynchronously 

extruded distally. Also of note, this FS sliding is cyclic adenosine monophosphate (cAMP)-dependent, 

which suggests that cAMP-dependent kinase, protein kinase A (PK-A), is involved (Si and Okuno, 1993, 

1995).  

The role of the FS as a supporting structure for the flagellum is likely to be real; however, more 

recent evidence demonstrates an additional, more active role for the FS in sperm motility. In a wide 

variety of mammalian species, including humans, a growing number of proteins involved in motility 

signaling pathways and metabolism have been localized to the FS (Carrera et al, 1994; Bradley et al, 

1996; Westhoff and Kamp, 1997; Bunch et al, 1998; Miki and Eddy, 1998; Mori et al, 1998; Travis et 

al, 1998; Turner et al, 1998, 1999; Nakamura et al, 1999; Fujita et al, 2000; Carr et al, 2001). On 

the basis of increasing evidence that multiple members of both motility and metabolism-related 

pathways localize to the FS, it is likely that this accessory structure serves as a scaffold and 

organizing center for multiple signaling and metabolic cascades that are critical for normal 

flagellar function (Turner et al, 1999; Miki et al, 2002; Eddy et al, 2003).  

Other FS proteins, including, for example, a mu-class glutathione-s-transferase, have also been 

identified and raise the possibility that another function of the FS is to protect sperm from 

oxidative stress that could interfere with sperm motility or cause DNA damage (Fulcher et al, 1995). 

Assembly of the Flagellum

Early microscopic studies have provided extensive information on the morphological development of 

mammalian flagellar components. The flagellum can first be seen projecting from the surface of a 

round spermatid during early spermiogenesis. The axoneme is the first flagellar structure to appear; 



it originates from the distal centriole located at the caudal pole of the nucleus and elongates in a 

proximal to distal direction (Fawcett and Phillips, 1969).  

During midspermiogenesis, the ODFs develop in close association with the 9 outer doublets of the 

axoneme (Fawcett and Phillips, 1969). They originate as thin, electron-dense filaments in the most 

proximal portion of the future midpiece and then elongate in a distal to proximal direction and 

increase in thickness (Irons and Clermont, 1982; Oko and Clermont, 1989; Clermont et al, 1990). They 

persist throughout the midpiece and the principal piece, tapering gradually and eventually 

terminating distally at the end piece (Fawcett, 1965).  

The formation of the FS occurs throughout most of spermiogenesis, but, unlike the axoneme and the 

ODFs, the FS is assembled distally to proximally along the length of the flagellum (Irons and 

Clermont, 1982; Oko and Clermont, 1989; Clermont et al, 1990). Thin longitudinal columns, connected 

to outer doublets 3 and 8 of the axoneme, appear at the distal end of the flagellum. The columns 

increase in diameter, elongate proximally along the axoneme, and only later become connected by 

circumferential transverse ribs. This unusual distal to proximal assembly of the FS implies that 

there must be some mechanism by which FS proteins are shuttled down the length of the developing 

flagellum in an assembly-incompetent form before they are be pieced together distally to proximally 

into the FS (Johnson et al, 1997).  

The midpiece also develops during spermiogenesis, originating when the annulus, a ring-shaped 

structure that forms at the connecting piece, migrates distally to meet the most proximal extent of 

the FS. The MS forms in the midpiece when mitochondria assemble in a helical arrangement around the 

proximal flagellum, behind the migrating annulus. The mitochondria divide and elongate, eventually 

assembling end-to-end to form two helices that wind around the outside of the ODFs (Woolley, 1971).  

Generation of the Flagellar Beat

The flagellar waveform is created by the motor activities of the axonemal dynein arms working 

against the stable microtubule doublets. Phosphorylation of the axonemal dynein appears to be a 

critical regulatory point in the initiation of flagellar motility (Tash, 1989). After 

phosphorylation, the dynein ATPase is activated. This results in the generation of the flagellar 

beat as the hydrolysis of ATP is converted into force, thus causing the microtubules to slide past 

one another. Dephosphorylation of dynein by the calmodulin-dependent protein phosphatase calcineurin 

then reverses this process.  

Recall that the dynein arms are attached to each of the outer 9 microtubule doublet pairs. These 

arms project outward in the direction of the adjacent outer microtubule doublet. Microtubule sliding 

occurs as the result of a transient, ATP-dependent interaction of a dynein arm with its adjacent 

microtubular doublet. During this interaction, the dynein arms generate force between doublets, 

resulting in the adjacent microtubules sliding past one another (Satir, 1968; Summers and Gibbons, 

1971; Brokaw, 1972, 1989; Shingyoji et al, 1977). Because the axoneme is anchored to the base of the 

sperm head, this sliding force is translated into a bend in the flagellum (Figure 2). Because dynein 

produces force in only a single direction (Sale and Satir, 1977), the generation of a normal 

flagellar waveform requires that phosphorylation/dephosphorylation and the associated activation and 

inactivation of the dynein arms occur in an asynchronous manner around the circumference and along 

the length of the axoneme. In Chlamydomonas, it has been shown that this asynchronous activation 

occurs through the interactions of the central pair microtubules and the radial spokes (Wargo and 

Smith, 2003).  



 

Compartmentalization of Signaling Pathways

Sperm are highly polarized cells in which specialized functions are compartmentalized within 

specific subcellular regions. Of relevance to the present review, sperm motility is 

compartmentalized to the flagellum. Therefore, many of the proteins directly involved in the 

regulation and maintenance of mammalian sperm motility must localize to the sperm tail. One example 

of how compartmentalization is achieved in sperm is the use of A-kinase anchor proteins (AKAPs) to 

tether PK-A to the FS of the flagellum, thus restricting the scope of action of the kinase to within 

close proximity of motility-related targets in the axoneme (Carrera et al, 1994; Mei et al, 1997; 

Miki and Eddy, 1998; Mandal et al, 1999; Vijayaraghavan et al, 1999). In addition to tethering PK-A 

to the FS, anchoring proteins also may target other signaling and metabolic proteins to the sperm 

tail. In this regard, the major protein of the mouse sperm FS is an AKAP called AKAP4 (Carrera et 

al, 1994). It has been shown that sperm from mice lacking the AKAP4 protein have severely reduced 

sperm motility and are infertile. In addition, the absence of this anchoring protein results in a 

reduction or loss of other proteins (ie, those proteins that normally are anchored or targeted to 

the FS by AKAP4) from the FS, thus further adversely affecting sperm function and adding evidence to 
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Figure 2. Simplified schematic representation of the mechanism by which 
axonemal dynein arms generate the flagellar beat. The parallel lines in the 
region of the flagellum represent adjacent outer microtubule doublets of the 
axoneme (OMDA). To simplify the figure, only 2 outer microtubule doublets 
are represented (rather than the actual 9). The central pair of microtubule 
doublets is not shown, nor are the any of the accessory structures. Dynein 
arms between the pair of OMDAs are numbered. Each symbol represents a 
pair of inner and outer dynein arms originating from the microtubule on the 
right and extending toward the microtubule on the left. (A) None of the dynein 
arms are active; as such, the adjacent microtubule doublets are straight and 
there is no flagellar bend. (B) The first dynein arm has engaged the adjacent 
microtubule doublet. (C) The first dynein arm has generated a downward 
stroke, resulting in the adjacent microtubules sliding past one another (large 
arrows). Because both microtubule doublets are anchored to the sperm 
head, this sliding force is translated into a bend in the axoneme—the start of 
a flagellar beat. Also, the second dynein arm has engaged the adjacent 
microtubule doublet. (D) The first dynein arm has released the adjacent 
microtubule doublet, whereas the second dynein arm has generated a 
downward stroke. This results in the propagation of the flagellar bend down 
the length of the microtubules. The third dynein arm has engaged the 
adjacent microtubule. (E) The flagellar beat is being propagated by the 
downward stroke of the third dynein arm, whereas the second dynein arm 
has released the adjacent microtubule. The first dynein arm has returned to 
its original position in preparation for another stroke. This sequence will be 
repeated by the fourth dynein arm, and so on along the length of the 
microtubules. One must imagine a similar sequence occurring for all 9 
dynein arm pairs and their associated 9 outer microtubule doublets. 
Additionally, one must imagine this sequence occurring in an asynchronous 
but coordinated fashion around the circumference and along the entire 
length of the flagellum (ie, in 3 dimensions). It is this coordinated use of 
dynein arms and the associated bending of the outer microtubule doublets 
that result in a normal flagellar beat. The ODFs and the FS add structural 
support. In Chlamydomonas, it has been shown that the central pair of 
microtubules, together with the radial spokes emanating from the 9 outer 
microtubule doublets, coordinate and regulate the actions of the dynein 
arms and so control the size and shape of the axonemal bend.



the hypothesis that the FS functions as more than simply a structural support for the tail (Miki et 

al, 2002). Recently, AKAP4 has been shown to interact with a second FS AKAP, AKAP3. This finding 

suggests that anchoring proteins like AKAP4 have both functional and structural roles in the FS 

(Brown et al, 2003). AKAPs now have been shown to be major components of the FS in a variety of 

species, including rodents, bulls, and humans (Turner et al, 1998; Mandal et al, 1999; Moss et al, 

1999; Jha and Shivaji, 2002). In all cases, they are believed to function in anchoring PK-A to the 

flagellum.  

Regulation of Flagellar Motility

Two signaling pathways have emerged as central to normal mammalian motility: the cAMP/PK-A pathway 

and calcium signaling (Suarez et al, 1987; Tash and Means, 1987; Lindemann and Goltz, 1988; White 

and Aitken, 1989; Brokaw, 1991; Yanagimachi, 1994; Ho et al, 2002). Other signaling cascades also 

are likely to play roles. For example, both heterotrimeric and small G-protein-mediated pathways 

recently have been implicated in sperm motility (Hinsch et al, 1993; Nakamura et al, 1999; Fujita et 

al 2000; Carr et al 2001). Similar to PK-A, there is evidence that some of these proteins are 

compartmentalized to the flagellum, and specifically to the FS, via the actions of anchoring 

proteins (Carr et al, 2001). Changes in pH also affect sperm motility (Yanagimachi, 1994). However, 

there have been relatively few studies on these signaling pathways.  

Protein Phosphorylation

In mammals, activated sperm motility is, at least in part, initiated and maintained by the cAMP-

dependent phosphorylation of flagellar proteins (Tash and Means, 1982, 1983; San Augustin and 

Witman, 1994). A major downstream target of cAMP in sperm is the serine/threonine kinase PK-A, thus 

making it likely that this enzyme plays a central role in these phosphorylation events (Visconti et 

al, 1997). PK-A activity may work through multiple pathways to control flagellar function. One 

likely mechanism of action of PK-A is that the resulting protein serine/threonine phosphorylation 

activates a downstream, as yet unidentified, tyrosine kinase or kinases whose targets are primarily 

located in the flagellum (Leclerc et al, 1996; Si and Olds-Clarke, 2000).  

Direct evidence supporting a role for the catalytic activity of PK-A and its associated 

serine/threonine phosphorylation in sperm motility has come from gene "knockout" studies in mice. 

Although most mice with a targeted deletion of the gene encoding the alpha isoform of the catalytic 

subunit of PK-A die during the postnatal period, a few survive to adulthood. These adults have 

stunted growth and lack progressively motile sperm (Skalhegg et al, 2002). To date, only a few of 

the protein targets for PK-A phosphorylation in sperm have been identified (Tash and Bracho, 1998). 

One known target is axonemal dynein, and phosphorylation of this protein appears to be a critical 

regulatory point in the initiation of flagellar motility, as was discussed above (Tash, 1989).  

It is likely that anchoring PK-A to the fibrous sheath of the flagellum via AKAPs is important in 

directing the activity of the kinase to motility-related targets in the tail. Inhibition of the 

anchoring of the type-II regulatory subunit of PK-A in sperm resulted in an arrest of bovine sperm 

motility in one study (Vijayaraghavan et al, 1997). However, targeted deletion of the type II 

regulatory subunit of PK-A, and the associated loss of anchoring of the catalytic subunit of PK-A, 

had no obvious effect on murine sperm motility or fertility (Burton et al, 1999). It is likely that, 

in the absence of proper targeting of the type II regulatory subunit, the type I regulatory subunit 

of PK-A is able to compensate.  

Serine/threonine phosphatases appear to provide a balance for serine/threonine kinases, and the 

resulting net phosphorylation of the relevant target proteins is one factor that influences the 



status of sperm motility (Tash, 1989; Tash and Bracho, 1994). Specifically, immotile primate sperm 

contain higher levels of the protein phosphatase PP1 gamma 2 than do motile sperm, and motility can 

be initiated in bovine caput epididymal sperm by the inhibition of phosphatase activity (Smith et 

al, 1996; Vijayaraghavan et al, 1996). In this regard, in somatic cells, members of the AKAP family 

scaffold both kinases and phosphatases to a single place within the cell (Coghlan et al, 1995; 

Klauck et al, 1996). If these anchoring proteins play similar roles in sperm, then they may serve as 

master organizers of the phosphorylation/dephosphorylation pathways that are so critical for the 

regulation of motility.  

Cyclic AMP also may work through pathways independent of PK-A. It was hypothesized that a cyclic 

nucleotide-gated ion channel in sperm and/or cAMP-mediated guanine nucleotide exchange factors in 

testes also might be activated by cAMP and thus may provide alternative pathways for the PK-A-

mediated regulation of flagellar motility (Burton et al, 1999).  

In addition to serine/threonine phosphorylation, protein tyrosine phosphorylation is also associated 

with the onset of sperm motility (Tash and Bracho, 1998). In this regard, tyrosine phosphorylation 

of glycogen synthase kinase-3 alpha has been closely linked to the onset of motility in bovine sperm 

(Vijayaraghavan et al, 1997, 2000), making it likely that phosphorylation of this protein is 

involved in the control of the onset of sperm motility.  

Several investigators have identified an association between the onset and end of hyperactivated 

sperm motility in primates and rodents and the tyrosine phosphorylation and dephosphorylation 

(respectively) of flagellar proteins (Chan et al, 1998; Mahony and Gwathmey, 1999; Si and Okuno, 

1999), and it has been suggested that one of these phosphotyrosine-containing proteins is an AKAP, 

AKAP4 (Si, 1999). This implies that changes in some aspect of AKAP4 activity are linked to the onset 

of hyperactivation.  

Calcium Signaling

Calcium has long been implicated as a regulator of activated sperm motility (Tash and Means, 1987), 

and it may be the primary mechanism by which the onset of hyperactivated motility is achieved 

(Suarez et al, 1987; Lindemann and Goltz, 1988; White and Aitken, 1989; Brokaw, 1991; Yanagimachi, 

1994; Ho et al, 2002). In mammals, the majority of work on sperm calcium channels has been conducted 

in rodents and, to a lesser extent, in humans. Indirect evidence for a role of calcium in mammalian 

sperm motility is found in the fact that several calcium channel alpha-1 (ie, pore-forming) subunits 

have been identified in sperm (Lievano et al, 1996; Westenbroek and Babcock, 1999; Wennemuth et al, 

2000). Arnoult et al (1996, 1998, 1999) identified only a T-type channel activity in mature sperm. 

However, the results of other studies have suggested that a wide range of voltage-gated calcium 

channels—including L-, N-, and R-type channels—may be present (Benoff, 1998; Wennemuth et al, 

2000). Some calcium-channel subunits have been localized to the flagellar principal piece, which is 

consistent with these channels having roles in the regulation of sperm motility (Westenbroek and 

Babcock, 1999; Ren et al, 2001). Additionally, cyclic nucleotide gated (CNG) channels are present on 

the sperm flagellum and developing spermatogenic cells. Different subunits of these channels are 

present in different temporal and spatial patterns in sperm (Wiesner et al, 1998). These CNG 

channels are ports of calcium entry in sperm and may give rise to different patterns of calcium 

influx in different microdomains of the flagellum. Current evidence suggests that sperm CNG channels 

are sensitive to both cGMP and cAMP, although they seem to be most sensitive to cyclic guanosine 

monophosphate (cGMP) (Wiesner et al, 1998).  

The results of several studies have provided more direct evidence for a role for calcium in 

mammalian sperm motility. Calcium increases flagellar wave asymmetry in permeabilized sperm and, 



eventually, if calcium levels increase sufficiently, results in the inhibition of sperm motility 

(Tash and Means, 1982). This inhibition of motility is associated with a decline in protein 

phosphorylation mediated by CaM and by the calcium/calmodulin dependent phosphatase, calcineurin 

(Tash and Means, 1987; Tash et al, 1988). In this regard, exposing sperm to a CaM inhibitor reduced 

the percentages of activated and hyperactivated sperm (Si and Olds-Clarke, 2000). In addition to 

other functions in sperm (Carrera et al, 1996), calcium/calmodulin may act at the membrane to pump 

calcium out of the flagellum, and/or it may regulate dynein ATPase and myosin light-chain kinase 

activities and thus be directly involved in the control of axoneme function (Tash and Means, 1982). 

The effects of cAMP (resulting in phosphorylation of target proteins) and calcium signaling 

(resulting in dephosphorylation of target proteins) oppose one another in sperm and so serve to 

regulate flagellar function (Tash and Means, 1983; Tash and Bracho, 1994).  

Of particular interest, CatSper1, a gated cation channel that localizes specifically to the 

principal piece of mature sperm, is required for cAMP-induced calcium influx into sperm. The cAMP-

stimulated rise in intracellular sperm calcium is abolished in mice with a targeted deletion of the 

gene that encodes the CatSper1 protein. Sperm from these mice are poorly motile and are unable to 

fertilize zona-intact eggs, which thus suggests that calcium influx via CatSper1 is critical for 

normal sperm motility (Ren et al, 2001). A related, voltage-gated putative calcium channel 

(CatSper2) also has been described in the sperm flagellum, and the messenger RNA for this protein 

has been identified in rodents and humans (Quill et al, 2001). Additionally, mice with a targeted 

deletion of an unrelated voltage-dependent calcium channel, Cav2.3 (alpha1E), although fertile, 

demonstrated abnormalities in intracellular calcium transients in sperm. Sperm from these animals 

demonstrated increased linearity compared with wild-type sperm, which thus suggests that the Cav2.3 

channel also may play a role in the control of flagellar movement (Sakata et al, 2002).  

Because of the fundamental importance of calcium to sperm function, it is necessary that we 

understand its downstream targets. In Chlamydomonas, calcium regulates flagellar motility through 

the regulation of dynein-driven microtubule sliding. This regulation may be mediated by calmodulin 

(CaM) and calmodulin-dependent kinase II (CaMKII), two classical downstream elements of calcium 

signaling pathways (Smith, 2002). CaM (Weinman et al, 1986; Bendahmane et al, 2001) and at least one 

form of CaMK (author's unpublished data) are present in mammalian sperm as well. There is convincing 

evidence that calcium works through calmodulin to influence capacitation, the acrosome reaction, and 

activated and hyperactivated motility in mammalian sperm (Si and Olds-Clarke, 2000; Bendahmane et 

al, 2001). Other studies have identified a link between calmodulin and the regulation of T-type 

calcium currents in sperm (Lopez-Gonzalez et al, 2001). Further down the pathway lies calcineurin, a 

calcium/calmodulin-dependent serine/threonine phosphatase that has been implicated in the regulation 

of flagellar motility in rodents and humans (Tash et al, 1988; Carrera et al, 1996).  

Fuel for the Tail

Because mitochondria are found only in the midpiece, oxidative phosphorylation also is restricted to 

this region of the cell. However, large amounts of ATP are required along the full length of the 

motile flagellum. Specifically, flagellar kinases need ATP to phosphorylate motility-related 

downstream targets. Additionally, the dynein ATPases, the motors of the axoneme, require ATP as an 

energy source. Mathematical models based on the diffusion constant of ATP and a morphometric 

estimate of the volume of the mouse sperm flagellum (Du et al, 1994) have predicted that ATP 

produced by the midpiece mitochondria would not be able to diffuse sufficiently along the length of 

the FS to supply the entire flagellum with enough energy to support the axonemal dynein ATPase (B. 

T. Storey, personal communication). Additionally, it has been shown in mice that, if mitochondrial 

oxidative phosphorylation is defective, fertilization can still occur, sperm still produce ATP (at 



lower levels than in wild-type sperm), and sperm motility is still present although reduced 

(Narisawa et al, 2002). These data support the idea that sperm have evolved alternative methods of 

energy production that are independent of mitochondrial oxidative phosphorylation.  

In this regard, several glycolytic enzymes (some in spermatogenic cell-specific forms) have been 

identified in the FS/principal piece of a growing number of mammalian species. These include 

hexokinase, lactate dehydrogenase, and glyceraldehyde 3-phosphate dehydrogenase (GAPD-S) (Bradley et 

al, 1996; Westhoff and Kamp, 1997; Bunch et al, 1998; Mori et al, 1998; Travis et al, 1998). 

Additionally, all of the glycolytic enzymes downstream of GAPD-S remain attached to the cytoskeleton 

even after membrane removal, which thus suggests that they are components either of the FS or the 

ODFs (Storey and Kayne, 1975). This strongly supports the possibility that mammals may have solved 

the problem of ATP diffusion in the flagellum by developing a system in which ATP is produced by 

glycolysis compartmentalized within the FS. Consistent with this hypothesis, mammalian sperm produce 

lactate from glucose under aerobic conditions (Storey and Kayne, 1975). Additionally, ATP production 

through glycolysis is required for hyperactivated sperm motility (Hoshi et al, 1991; Urner and 

Sakkas, 1996), and the inhibition of oxidative phosphorylation does not block fertilization (Fraser 

and Quinn, 1981). Thus, glycolysis in the principal piece, but not necessarily oxidative 

phosphorylation in the midpiece, seems to be critical for normal mammalian sperm function.  

There are several known differences in the ability of sperm from different species to carry out 

glycolysis and oxidative phosphorylation. These differences are of profound importance when handling 

gametes in vitro. For example, glucose will inhibit capacitation in bull sperm but is required for 

this process in mouse sperm. The role of glucose in human sperm metabolism and fertilization remains 

somewhat controversial (Quinn et al, 1995; Mahadevan et al, 1997; Barak et al, 1998; Williams and 

Ford, 2001).  

Genetic Defects and Sperm Motility in Humans

Many genetic mutations are known to cause male infertility in mice (Matzuk and Lamb, 2002), and it 

is likely that many cases of male infertility in humans and other species also will prove to have 

genetic components. In the mouse, infertility has been associated with mutations in genes coding for 

such varied products as flagellar transport proteins, structural proteins, motor proteins, 

transcription factors, and signaling proteins, just to name a few. Unfortunately, our knowledge of 

the genetic basis for human and domestic animal infertility lags far behind. On a positive note, the 

high degree of conservation of many of these genes among mice, humans, and domestic animal species 

will allow for the efficient application of the broad body of information on mouse genetic 

infertility to an understanding of male infertility in other mammalian species. In a few instances, 

single gene defects already have been proved to be responsible or are suspected of being responsible 

for some cases of infertility associated with poor sperm motility in men. These will be briefly 

reviewed here.  

Primary ciliary dyskinesia (PCD; also called immotile cilia syndrome or Kartagener syndrome) is a 

genetically heterogeneous, autosomal recessive disease that is characterized by a generalized 

paralysis of ciliated cells, including sperm and respiratory cilia (Blouin et al, 2000). Clinical 

signs include bronchiectasis, chronic sinusitis, and male infertility. In approximately 50% of 

patients with PCD, embryonic cilia also are apparently affected, which results in situs inversus 

(Kartagener syndrome) (Afzelius, 1976; Eliasson et al, 1977; Narayan et al, 1994). In most cases, 

the results of electron microscopic analysis of sperm and ciliated cells reveal that the outer 

microtubule doublets of the axoneme lack inner and/or outer dynein arms (Waite et al, 1978; Afzelius 

and Eliasson, 1979; Rossman et al, 1980; Aitken et al, 1983). As such, mutations in a component or 

components of axonemal dynein have been suspected as the cause. To date, mutations in three human 



genes have been implicated in a minority of patients with PCD/Kartagener syndrome. Each of these 

genes codes for a different component of the axonemal dynein arms (Pennarun et al, 1999; Guichard et 

al, 2001; Zariwala et al, 2001; Bartoloni et al, 2002; Olbrich et al, 2002). However, it is likely 

that several additional genes remain to be discovered as causes of this heterogeneous disorder.  

Dysplasia of the fibrous sheath (DFS) in humans is characterized by male sterility associated with 

severe or complete asthenozoospermia (Chemes et al, 1987). Under light microscopy, the majority of 

sperm from affected individuals possess short, thick, irregular flagella with no clear distinctions 

among the midpiece, principal piece, and end piece. The results of electron microscopic examination 

of sperm from patients with DFS reveals that the most striking feature of the sperm is a 

disorganized, thickened FS that fails to form its trademark longitudinal columns and transverse 

ribs. In many cases, DFS is familial, which strongly suggests a genetic component. Because of the 

abundance and likely structural roles of AKAPs in the sperm FS, mutations in one or both of the two 

most abundant FS AKAPs, AKAP3 and AKAP4, are suspected to be the possible causes of the DFS 

phenotype. However, studies to date have failed to identify problems with either of these genes or 

proteins in affected men (Turner et al, 2001).  

Retinitis pigmentosa (RP) is a heritable, heterogeneous group of human disorders characterized by 

the progressive degeneration of the modified ciliated cells (photoreceptor cells) of the retina. 

Although blindness is the most significant clinical sign in patients with RP, the axonemal 

abnormalities in RP also appear to affect ciliated cells of the respiratory tract as well as sperm 

flagella (Arden and Fox, 1979). In sperm cells from patients with RP, the predominant abnormalities 

include the presence of extra microtubules and the absence of a subset of outer microtubule doublets 

(Hunter et al, 1986, 1988). Usher syndrome is an autosomally inherited subtype of RP that is 

characterized by infertility, retinal degeneration, a congenital hearing impairment, and a 

vestibular deficit. It is the most common cause of congenital deafness and blindness in humans, and 

it is likely that several different genetic loci are involved (Boughman et al, 1983; Smith et al, 

1994). Researchers have begun to identify and map some of the genes involved in RP, but many more 

have not yet been identified (Humphries et al, 1992). An unconventional myosin molecule (VIIa) has 

been shown to play a role in Usher syndrome type IB (Gibson et al, 1995; Hasson et al, 1995; Weil et 

al, 1995). The role of this gene in male fertility and sperm motility has not been well 

characterized.  

Conclusions and Perspectives

Our improved understanding of the molecular basis for sperm motility allows us to begin to imagine 

the number of genes and resulting proteins that must function normally to generate a "fertile" 

sperm. Proteins involved in sperm structure, protein assembly, calcium signaling, protein 

phosphorylation, metabolism, and protein targeting all are crucial to proper sperm function, so 

mutations in any of these genes could theoretically adversely affect fertility. Additionally, these 

considerations do not even begin to address the genes involved in spermatogenesis (eg, DAZ) or in 

the development of a normal reproductive tract (eg, the cystic fibrosis transmembrane conductance 

regulator gene).  

Our current technology and understanding limits most of our work in humans and domestic animals to 

the study of single-gene defects, like those described above. These single-gene defects typically 

result in severe but rare phenotypes. Thus, in the short term, studies focusing on these isolated 

genes result in potential benefits to a limited number of individuals. The full value of 

understanding these genes is realized when one uses the new information to refine and redefine our 

current understanding of basic physiology. The information also serves as a well-defined starting 

point from which to examine and identify other genes linked to multifactorial or multigenic 



diseases. The majority of cases of clinical male subfertility and infertility present with wide 

variations in clinical signs and severity, thus making it very likely that many or most of these 

cases are multifactorial and/or multigenic in origin. This greatly complicates the problem of 

identifying their genetic origins. Nonetheless, recent progress in molecular biology, as well as the 

establishment of detailed genetic databases, will greatly facilitate the study of multigenic 

diseases.  

An understanding of the genetics of sperm motility has become even more critical with the advent of 

assisted reproductive technologies such as ICSI. In the past, oligospermic men or those with 

severely impaired sperm motility have been largely unable to reproduce, thus naturally limiting the 

propagation of any underlying genetic mutations. However techniques such as gamete intrafallopian 

transfer, in vitro fertilization, and ICSI now allow us to minimize or even bypass the requirement 

for sperm motility. The very real likelihood that genetic defects may be the underlying causes of 

some cases of severe aberrations of sperm numbers or sperm function raises the concern that these 

defects now will be passed on to future generations through the use of these techniques. 

Additionally, disorders such as PCD, Kartagener syndrome, RP, and Usher syndrome illustrate that the 

effects of genetic mutations that result in male infertility are not necessarily limited to the 

reproductive tract. Studies on the molecular composition of normal sperm will provide new 

information on the underlying causes of the genetic disorders of germ cells. This information will 

allow clinicians to be more informed about potential genetic defects and may eventually result in 

improved diagnostics and even genetic therapy for patients seeking treatment for infertility.  

Footnotes

Many thanks to Drs George Gerton and Stuart Moss for their support and for critical reading of this 

manuscript. Thanks to the CONRAD Mellon Foundation and the NIH for financial support of the author.  
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