

Journal of Andrology, Vol. 24, No. 6, November/December 2003 Copyright © American Society of Andrology

A Transgenic Analysis of Mouse *Lactate* Dehydrogenase c Promoter Activity in the Testis

TIM L. KROFT*, T, SIMING LI*, LYNN DOGLIO AND ERWIN GOLDBERG*

From the * Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, and † Northwestern University Medical School and the Children's Memorial Institute for Education and Research, Chicago, Illinois. [‡] Present address: Department of Biology, Emory University, 1510 Clifton Rd, Atlanta, GA 30322. § Present address: Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115.

Correspondence to: Erwin Goldberg, Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208 (fax: 847-467-1380; e-mail: erv{at}northwestern.edu).

This Article

- ▶ Full Text
- Full Text (PDF)
- Alert me when this article is cited
- Alert me if a correction is posted

Services

- Similar articles in this journal
- Similar articles in PubMed
- Alert me to new issues of the journal
- Download to citation manager

Citing Articles

- Citing Articles via HighWire
- Citing Articles via Google Scholar

Google Scholar

- Articles by Kroft, T. L.
- Articles by Goldberg, E.
- Search for Related Content

PubMed

- ▶ PubMed Citation
- Articles by Kroft, T. L.
- Articles by Goldberg, E.

Transcription of the mouse testis-specific lactate dehydrogenase c (mldhc) gene is limited to cells of the germinal epithelium. Cloning and analysis of the *mldhc* promoter revealed that a 100-bp core promoter was able to regulate testis-specific transcription in vitro and in transgenic mice. Surprisingly, expression of the reporter in transgenic testes was limited to pachytene spermatocytes, whereas native LDH-C $_4$ was detected in pachytene and all later germ cells. To locate additional regulatory sequence that could recapitulate the native LDH-C₄ distribution pattern, we investigated the contribution of 5' and 3' flanking sequences to the regulation of LDH-C₄ expression. We found that transcription factor YY1 binds to the *mldhc* promoter, that the *mldhc* 3' untranslated sequence does not permit a postmeiotic expression of a ß-galactosidase reporter in transgenic mice, and that native *mldhc* mRNA is predominately meiotic, with only a low level of postmeiotic distribution. Our results suggest that the high level of LDH-C₄ in postmeiotic cells results from mRNA and protein stability.

Key words: Transcription, mRNA stability, protein stability

This article has been cited by other articles:

BIOLOGY of REPRODUCTION

HOME

H. Tang, A. Kung, and E. Goldberg Regulation of Murine Lactate Dehydrogenase C (Ldhc) Gene Expression

Biol Reprod, March 1, 2008; 78(3): 455 - 461.

[Abstract] [Full Text] [PDF]

PNAS Proceedings of the National Academy of Sciences

▶HOME

J. Yang, S. Medvedev, P. P. Reddi, R. M. Schultz, and N. B. Hecht The DNA/RNA-binding protein MSY2 marks specific transcripts for cytoplasmic storage in mouse male germ cells PNAS, February 1, 2005; 102(5): 1513 - 1518. [Abstract] [Full Text] [PDF]

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

Copyright © 2003 by The American Society of Andrology.