

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

Journal of Andrology, Vol 7, Issue 1 32-41, Copyright © 1986 by The American Society of Andrology

JOURNAL ARTICLE

Dose and time relationships in the endocrine response of the irradiated adult rat testis

J. I. Delic, J. H. Hendry, I. D. Morris and S. M. Shalet

The dose- and time-dependent responses for the interstitial and tubular compartments in irradiated adult rat testes are described. Leydig cell dysfunction, as indicated by increased serum LH (to a maximum of 385% of control after 5 Gy) and decreased serum T (to a minimum of 30% of control after 10 Gy), was observed at 8 weeks postirradiation. Subsequent recovery of Leydig cell function was then observed, so that after 9 months serum T was normal but LH was still marginally elevated. The dysfunction, with a threshold of about 4 to 5

This Article

- Full Text (PDF)
- Alert me when this article is cited
- Alert me if a correction is posted

Services

- ▶ Similar articles in this journal
- ▶ Similar articles in PubMed
- Alert me to new issues of the journal
- Download to citation manager

Citing Articles

- ▶ Citing Articles via HighWire
- Liting Articles via Google Scholar

Google Scholar

- Articles by Delic, J. I.
- Articles by Shalet, S. M.
- Search for Related Content

PubMed

- PubMed Citation
- Articles by Delic, J. I.
- Articles by Shalet, S. M.

Gy, was associated with a loss of Leydig cells from the testis. Spermatogenic damage was observed; after doses of 3 Gy and above a marked dose-response was recorded as assessed by counts of tubule cross sections exhibiting spermatogenesis. Reduced serum levels of androgen binding protein indicated Sertoli cell dysfunction at 8 weeks after 3 Gy and above, with values of less than one half of those seen in the controls. Serum FSH also was elevated to between 150% and 200% of control, and after 9 months closely reflected androgen binding protein changes. Unlike the Leydig cell, no recovery with time was observed for this aspect of Sertoli cell function.

This article has been cited by other articles:

TOXICOLOGICAL SCIENCES

▶HOME

R. Sivakumar, P. B. Sivaraman, N. Mohan-Babu, I. M. Jainul-Abideen, P. Kalliyappan, and K. Balasubramanian

Radiation Exposure I mpairs Luteinizing Hormone Signal Transduction and Steroidogenesis in Cultured Human Leydig Cells Toxicol. Sci., June 1, 2006; 91(2): 550 - 556.

[Abstract] [Full Text] [PDF]

Radiation Protection Dosimetry

▶HOME

G. Grafstrom, B.-A. Jonsson, A. M. El Hassan, J. Tennvall, and S.-E. Strand

Rat testis as a radiobiological in vivo model for radionuclides Radiat Prot Dosimetry, April 1, 2006; 118(1): 32 - 42.

[Abstract] [Full Text] [PDF]

Endocrinology

▶HOME

K. L. Porter, G. Shetty, and M. L. Meistrich Testicular Edema Is Associated with Spermatogonial Arrest in Irradiated Rats Endocrinology, March 1, 2006; 147(3): 1297 - 1305.

[Abstract] [Full Text] [PDF]

Endocrinology

HOME

G. Shetty, C. C. Y. Weng, S. J. Meachem, O. U. Bolden-Tiller, Z. Zhang, P. Pakarinen, I. Huhtaniemi, and M. L. Meistrich
Both Testosterone and Follicle-Stimulating Hormone Independently Inhibit Spermatogonial Differentiation in Irradiated Rats
Endocrinology, January 1, 2006; 147(1): 472 - 482.

[Abstract] [Full Text] [PDF]

Endocrinology

▶HOME

G. Shetty, C. C. Y. Weng, O. U. Bolden-Tiller, I. Huhtaniemi, D. J. Handelsman, and M. L. Meistrich Effects of Medroxyprogesterone and Estradiol on the Recovery of Spermatogenesis in Irradiated Rats Endocrinology, October 1, 2004; 145(10): 4461 - 4469.

[Abstract] [Full Text] [PDF]

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

Copyright © 1986 by The American Society of Andrology.