

首页 期刊概况 编委会 期刊内容 特邀审稿 投稿指南 出版发行

58~62. 慢病毒介导的 HO-1基因沉默对人白血病K562细胞增殖与凋亡的影响[J]. 马微,冯玉宽,杨玉,郭艳芹,张鹏霞,中国肿瘤生物治疗杂志,2013,20(1)

慢病毒介导的 HO-1基因沉默对人白血病K562细胞增殖与凋亡的影响 点此下载全文

马微 冯玉宽 杨玉 郭艳芹 张鹏霞

牡丹江医学院 申硕办,黑龙江 牡丹江 157011;牡丹江医学院 申硕办,黑龙江 牡丹江 157011;住木斯大学 基础医学院 药理学教研室,黑龙江 住木斯 154000;牡丹江医学院 附属红旗医院 神经内科,黑龙江 牡丹江 157011;住木斯大学 基础医学院 生物化学实验室,黑龙江 住木斯 154000

基金项目: 黑龙江省研究生创新科研项目基金资助(No. YJSCX2011-294HLJ); 黑龙江省卫生厅科研项目资助(No. 2010-484); 佳木斯大学创新自然科学研究项目资助(No. Dz2011-075)

DOI: 10.3872/j.issn.1007-385X.2013.1.010

摘要:

目的: 研究沉默血红素加氧酶1 (heme oxygenase-1, HO-1) 基因对人慢性粒细胞性白血病(chronic myelogenous leukemia,CML)K562细胞增殖与调亡的影响。 方法: 构建靶向 HO-1基因 的重组慢病毒Lv-siRNA-HO-1,将其感染K562细胞,荧光显微镜检测其最适感染复数(multipliciy of infection,MO l)。Western blotting检测Lv-siRNA-HO-1感染组、空载体Lv-Ctrl感染组及未感染组K562细胞中HO-1蛋白的表达,CCK-8法、流式细胞术分别检测各感染组K562细胞的增殖与调亡。 结果: 成功构建靶向 HO-1基因的 干扰表达载体PSIH1-HO-1-siRNA,包装后形成重组慢病毒Lv-siRNA-HO-1,其有效感染K562细胞 MOI 值为6。与未感染组相比,Lv-siRNA-HO-1感染组K562细胞中HO-1蛋白的表达显著降低\[(0.16±0.02) vs(0.70±0 02),P<0.01\],K562细胞增殖活性也明显下降\[(1.36±0.12) vs(2.02±0.17),P<0.01〉\],而K562细胞调定率则显著增加\[(62 77±4.39)% vs(14.19±1.6)%,P<0.01\]。结论:慢病毒介导的 HO-1基因 沉默能抑制人白血病K562细胞增殖和诱导其调亡。

关键词: 血红素加氧酶1 (HO-1) 白血病 K562细胞 RNA干扰 增殖活性 凋亡 慢病毒

Download Fulltext

Ma Wei Feng Yukuan Yang Yu Guo Yanqin Zhang Pengxia

Office of Applying for Master Degree Granting Authority, Mudanjiang Medical College, Mudanjiang 157011, Heilongjiang, China; Office of Applying for Master Degree Granting Authority, Mudanjiang Medical College, Mudanjiang 157011, Heilongjiang, China; Department of Pharmacology, Institute of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China; Department of Internal Neurology, Red Flag Hospital Affiliated to Mudanjiang Medical College, Mudanjiang 157011, Heilongjiang, China; Laboratory of Biochemistry, Institute of Basic Medicine, Jiamusi University, Jiamusi 154000, Heilongjiang, China

Fund Project: Project supported by the Innovation Scientific Research Foundation for Graduate Students of Heilongjiang Province (No. YJSCX2011-294HLJ), the Scientific Research Foundation of Health Bureau of Heilongjiang Province (No. 2010-484), and the Natural Science Innovation Foundation of Jiamusi University (No.Dz2011-075)

Abstract:

Objective: To explore the effect of silencing heme oxygenase-1 (HO-1) gene expression on proliferation and apoptosis of chronic myelogenous leukemia (CML) K562 cells. Methods: The recombinant lentivirus Lv-siRNA-HO-1 targeting HO-1 gene was constructed and then was infected into K562 cells, and multipliciy of infection (MOI) was detected by fluorescence microscopy. The expression level of HO-1 protein in K562 cells was examined by Western blotting in Lv-siRNA-HO-1 infection group, Lv-Ctrl infection group and uninfection group. The proliferation and apoptosis of K562 cells was detected by CCK-8 and flow cytometry, respectively. Results: The interference expression vector PSIH1-HO-1-siRNA targeting HO-1 gene was constructed successfully, and packaged to form recombinant lentiviral vector Lv-siRNA-HO-1, which was infected into K562 cells with MOI being 6. Compared with the uninfection group, the expression of HO-1 protein in K562 cells decreased significantly after Lv-siRNA-HO-1 infection (\[0.16\pm0.02\]\) vs \ $[0.70\pm0~02\]$, P<0.01), and the proliferation activity of K562 cells was also decreased significantly (\[1.36\pm0.12\]\] vs \ $[2.02\pm0.17\]$, P<0.01). However, the apoptotic rate of K562 cells was significantly increased (\[62.77\pm4.39\]% vs \ $[14.19\pm1.6\]$ %, P<0.01\]. Conclusion: Silencing HO-1 gene through lentvirus can inhibit the proliferation and induce the apoptosis of human leukemia K562 cells.

Keywords:heme oxygenase-1 (HO-1) leukemia K562 cell RNA interference proliferation apoptosis lentivirus

查看全文 查看/发表评论 下载PDF阅读器

Copyright © Biother.Org™ All Rights Reserved; ISSN: 1007-385X CN 31-1725 主管单位: 中国科学技术协会 主办单位: 中国免疫学会、中国抗癌学会 地址: 上海市杨浦区翔殷路800号 邮政编码: 200433 京ICP备06011393号-2 本系统由北京勤云科技发展有限公司设计