

首页 期刊概况 编委会 期刊内容 特邀审稿 投稿指南 出版发行

376~382.MicroRNA-203在人食管鳞癌组织和细胞中的表达及其基因的甲基化状态[J].梁佳,董稚明,李宏,韩立杰,郭艳丽,沈素朋,郭炜.中国肿瘤生物治疗杂志,2014,21(4)

MicroRNA-203在人食管鳞癌组织和细胞中的表达及其基因的甲基化状态 点此下载全文

梁佳 董稚明 李宏 韩立杰 郭艳丽 沈素朋 郭炜

河北医科大学第四医院 河北省肿瘤研究所 病理研究室,河北 石家庄 050011;河北医科大学第四医院 河北省肿瘤研究所 病理研究室,河北 石家庄 050011;河北医科大学第四医院 检验科,河北 石家庄 050011;河北省沧州市中心医院 放疗科,河北 沧州 061001;河北医科大学第四医院 河北省肿瘤研究所 病理研究室,河北 石家庄 050011;河北医科大学第四医院 河北省肿瘤研究所 病理研究室,河北 石家庄 050011;河北医科大学第四医院 河北省肿瘤研究所 病理研究室,河北 石家庄 050011

基金项目: 国家自然科学基金资助项目(No. 81101854),河北省医学研究重大专项基金资助项目(No. \[2012\]2056)

DOI: 10.3872/i.issn.1007-385X.2014.4.004

摘要:

目的:检测人食管鳞状细胞癌(esophageal squamous cell carcinoma, ESCC)组织及细胞中MicroRNA-203(miR-203)的表达及其基因的甲基化状态,探讨miR-203在ESCC发生及发展中的作用。方法:选取河北医科大学第四医院2008—2011年间手术切除的83例ESCC原发灶组织及癌旁组织标本,实时定量PCR与甲基化特异性PCR(methylation specific PCR,MSP)分别检测其miR-203的表达及其编码基因的甲基化状态。用DNA甲基化转移酶抑制剂5-氦杂-2'-脱氧胞苷(5-aza-2'-deoxycitydine,5-Aza-dC)处理食管癌细胞系(TE1、TE13、YES-2、EC109、T.TN),实时定量PCR与MSP分别检测5-Aza-dC处理对食管癌细胞中miR-203的表达及其基因甲基化状态的影响。结果:五种食管癌细胞中miR-203的表达均相对较低,且呈高甲基化状态。5-Aza-dC处理后,miR-203的表达均显著升高(P<0.05或 P<0.01);YES-2细胞中miR-203编码基因的甲基化程度显著降低,其余4种细胞均转变为非甲基化状态。miR-203在ESCC组织中的表达显著低于癌旁组织(0.54±0.11 vs 1.00±0 01,P<0.01),启动子区甲基化率显著高于癌旁组织\[62.65%(52/83) vs 7.23%(6/83),P<0.01\],并且两者均与TNM分期和组织分化程度有关(P<0.05)。发生miR-203编码基因甲基化的ESCC组织中miR-203的表达显著低于未发生甲基化的ESCC组织(P<0 05)。结论:miR-203在ESCC组织与细胞中呈低表达,与食管鳞癌的发生、发展有关,且其启动子区甲基化可能是导致其表达沉默的机制之一。

关键词: 食管鳞癌 微小RNA-203 DNA甲基化 表达

Expression and methylation status of microRNA-203 gene in tissues and cells of esophageal squamous cell carcinoma Download Fulltext

Liang Jia Dong Zhiming Li Hong Han Lijie Guo Yanli Shen Supeng Guo Wei

Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Clinical Laboratory, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Department of Radiation Oncology, Central Hospital of Cangzhou City, Cangzhou 061001, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical University-Affiliated Fourth Hospital, Shijiazhuang 050011, Heibei, China; Pathology Laboratory, Cancer Institute of Hebei Province, Hebei Medical

Fund Project: Project supported by the National Natural Science Foundation (No. 81101854), and the Major Projects of Medical Research Foundation of Hebei Province (No. \[2012\]2056)

Abstract:

Objective: To investigate the expression, methylation status and functional role of miR-203 in pathogenesis of ESCC. ethods: Eighty-three patients diagnosed with ESCC in Hebei Medical University-Affiliated Fourth Hospital between 2008 and 2011 were recruited. Biopsy specimens were collected from primary tumors and the corresponding adjacent tissues. Quantitative real-time RT-PCR (qRT-PCP) and methylation specific PCR (MSP) were used to respectively detect the mRNA abundance and methylation status of miR-203 gene in the collected specimens. Five esophageal cancer cell lines (TE1, TE13, T.TN, Yes-2, and EC109) were treated with DNA methyltransferase inhibitor 5-Aza-2¹ -detoxycytidine (5-Aza-dC) Levels of CpG methylation of the miR-203 gene and miR-203 were assessed by qRT-PCR and MSP, respectively, 72 h after 5-Aza-dC treatment. Results: Relatively low levels of miR-203 mRNA and hypermethylation were detected in all the five untreated esophageal cancer cell lines. After 5-Aza-dC treatment, miR-203 mRNA was increased in all five cell lines studied and the methylation level of miR-203 was decreased in YES-2 cells and complete miR-203 unmethylation occurred in TE1, TE13, T.TN, and EC109 cells. The abundance of miR-203 mRNA was significantly lower (0.54±0.11 vs 1.00±0.01, P<0.05) and the methylation frequency of miR-203 promoter was significantly higher (62.65%vs 7.23%,P<0.05) in ESCC tissues than in corresponding tissues. Both miR-203 mRNA abundance and methylation frequency were all correlated with TNM stage and pathological differentiation (P<0.05). The expression of miR-203 in ESCC without miR-203 methylation (P<0.05). Conclusion: Aberrantly low expression of miR-203 is closely related to the development and progression of ESCC and promoter DNA methylation is one of the possible mechanisms underlying miR-203 inactivationin ESCC.

Keywords: esophageal squamous cell carcinoma (ESCC) microRNA-203 DNA methylation expression

查看全文 查看/发表评论 下载PDF阅读器

Copyright © Biother.Org™ All Rights Reserved; ISSN: 1007-385X CN 31-1725 主管单位:中国科学技术协会 主办单位:中国免疫学会、中国抗癌学会地址:上海市杨浦区翔殷路800号 邮政编码: 200433 京ICP备06011393号-2本系统由北京勤云科技发展有限公司设计