

The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved Carefree, AZ • February 3-6, 2009

				_
м	andward.	Donalling	e: Novem	L 47
•1	OSHERICAL	Deanline	. Movem	Der I/
•		Deadim		

<i>JUICK</i>	(SEARCH:	[advanced]			
	Author:	Keyword(s):			
Go					
/ear:	Vol:	Page:			

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

American Journal of Clinical Nutrition, Vol. 85, No. 2, 405-410, February 2007 © 2007 American Society for Nutrition

ORIGINAL RESEARCH COMMUNICATION

Effects of birth cohort and age on body composition in a sample of community-based elderly 1,2,3

Jingzhong Ding, Stephen B Kritchevsky, Anne B Newman, Dennis R Taaffe, Barbara J Nicklas, Marjolein Visser, Jung Sun Lee, Michael Nevitt, Frances A Tylavsky, Susan M Rubin, Marco Pahor, Tamara B Harris for the Health ABC Study

¹ From the Sticht Center on Aging, Wake Forest University School of Medicine, Winston-Salem, NC (JD, SBK, and BJN); the Departments of Epidemiology and Medicine, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA (ABN); the School of Human Movement Studies, University of Queensland, Brisbane, Australia (DRT); the Institute of Health Sciences, Faculty of Earth and Life Sciences, Vrije University, Amsterdam, Netherlands (MV); the Institute for Research on Extramural Medicine, Vrije University Medical Center, Amsterdam, Netherlands (MV); the Department of Biostatistics, University of North Carolina, Chapel Hill, NC (JSL); the Department of Epidemiology and Biostatistics, University of California, San Francisco, CA (MN and SMR); the Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN (FAT); the Department of Aging and Geriatric Research, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL (MP); the Geriatric Research, Education and Clinical Center, Malcom Randall Veterans' Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL (MP); and the Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD (TBR)

Background: The effect of the recent obesity epidemic on body composition remains unknown. Furthermore, age-related changes in body composition are still unclear.

Ι.	h	is	Λ	r	t i	\sim	10

- ▶ Full Text
- Full Text (PDF)
- Purchase Article
- View Shopping Cart
- Alert me when this article is cited
- Alert me if a correction is posted
- ▶ Citation Map

- Similar articles in this journal
- ▶ Similar articles in PubMed
- Alert me to new issues of the journal
- Download to citation manager
- © Get Permissions

- Liting Articles via HighWire
- Liting Articles via Google Scholar

Google Scholar

- Articles by Ding, J.
- Search for Related Content

- ▶ <u>PubMed Citation</u>
- Articles by Ding, J.

Agricola

Articles by Ding, J.

Objective: The objective was to simultaneously examine the effects of birth cohort and age on body composition.

Design: A total of 1786 well-functioning, community-based whites and blacks (52% women and 35% blacks) aged 70-79 y from the Health, Aging, and Body Composition Study underwent dual-energy X-ray absorptiometry annually from 1997 to 2003.

Results: At baseline, mean \pm SD percentage body fat, fat mass, and Lean mass (bone-free) were 28 \pm 5%, 24 \pm 7 kg, and 56 \pm 7 kg, respectively, for men and 39 \pm 6%, 28 \pm 9 kg, and 40 \pm 6 kg for women. Mixed models were used to assess the effects of cohort and age-related changes on body composition. Later cohorts in men had a greater percentage body fat (0.32% per birth year, P < 0.0001) than did earlier cohorts. This cohort effect was due to a greater increase in fat mass than in lean mass (0.45 kg and 0.17 kg/birth year, respectively). With increasing age, percentage body fat in men initially increased and then leveled off. This age-related change was due to an accelerated decrease in lean mass and an initial increase and a later decrease in fat mass. Similar but less extreme effects of cohort and age were observed in women.

Conclusions: The combination of effects of both birth cohort and age leads to bigger body size and less lean mass in the elderly.

Key Words: Birth cohort • age • body composition • elderly • fat • lean

This article has been cited by other articles:

gerontology

gerontology the Journals of gerontology biological sciences and medical sciences

▶HOM

D. E. Alley, L. Ferrucci, M. Barbagallo, S. A. Studenski, and T. B. Harris A Research Agenda: The Changing Relationship Between Body Weight and Health in Aging

J. Gerontol. A Biol. Sci. Med. Sci., November 1, 2008; 63(11): 1257 - 1259.

[Full Text] [PDF]

Journal of Nutrition

►HOME

A. H. Lichtenstein, H. Rasmussen, W. W. Yu, S. R. Epstein, and R. M. Russell

Modified MyPyramid for Older Adults

J. Nutr., January 1, 2008; 138(1): 5 - 11.

[Abstract] [Full Text] [PDF]

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

Copyright © 2007 by The American Society for Nutrition