

The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved Carefree, AZ • February 3-6, 2009

Abstract Deadline: November 17

QUICK SEARCH:		[advanced]
	Author:	Keyword(s):
Go		
Year:	Vol:	Page:

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

American Journal of Clinical Nutrition, Vol. 85, No. 1, 26-34, January 2007 $^{\circ}$ 2007 <u>American Society for Nutrition</u>

ORIGINAL RESEARCH COMMUNICATION

Adiponectin and adiponectin receptor gene variants in relation to resting metabolic rate, respiratory quotient, and adiposity-related phenotypes in the Québec Family Study^{1,2,3}

Ruth JF Loos, Stéphanie Ruchat, Tuomo Rankinen, Angelo Tremblay, Louis Pérusse and Claude Bouchard

¹ From the Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA (RJFL, TR, and CB), and the Department of Social and Preventive Medicine, Division of Kinesiology, Laval University, Ste-Foy, Canada (SR, AT, and LP)

Background: Despite adiponectin's presumed role in fatty acid oxidation and energy homeostasis, little is known about the effect of gene variants on substrate oxidation, energy expenditure, and adiposity-related phenotypes.

Objective: We examined the effects of genetic variation in adiponectin (*ADIPOQ*) and adiponectin receptors 1 and 2 (*ADIPOR1* and *ADIPOR2*) on resting metabolic rate, respiratory quotient (RQ), and adiposity-related phenotypes.

Design: We studied the associations of *ADIPOQ*, *ADIPOR1*, and *ADIPOR2* polymorphisms with resting metabolic rate, RQ, and body mass index, percentage body fat, sum of 6 skinfold thicknesses, waist circumference, and total, subcutaneous, and visceral fat in 759 participants in the Québec Family Study.

This Article

- ▶ Full Text
- Full Text (PDF)
- Purchase Article
- View Shopping Cart
- Alert me when this article is cited
- Alert me if a correction is posted
- ▶ <u>Citation Map</u>

Service

- ▶ Related articles in AJCN
- Similar articles in this journal
- Similar articles in PubMed
- Alert me to new issues of the journal
- Download to citation manager
- ► © Get Permissions

Citing Articles

- Liting Articles via HighWire
- Citing Articles via Google Scholar

Google Scholar

- Articles by Loos, R. J.
- Articles by Bouchard, C.
- Search for Related Content

PubMed

- ▶ PubMed Citation
- Articles by Loos, R. J.
- Articles by Bouchard, C.

Agricola

- Articles by Loos, R. J.
- Articles by Bouchard, C.

Results: The ADIPOQ 45T \rightarrow G single-nucleotide polymorphism (SNP) was significantly (P = 0.0002 to 0.04) associated with overall adiposity and abdominal adiposity; the rare homozygotes (G/G) had a leaner phenotype than did the carriers of the common allele. One SNP each in the putative promoter of ADIPOR1 (ie, $-3882T\rightarrow$ C) and ADIPOR2 (ie, IVS1 $-1352G\rightarrow$ A) was associated with RQ (P = 0.03 and 0.04, respectively), and the association was even stronger in nonobese persons (P = 0.02 and 0.003). Carriers of the common alleles (ADIPOR1 T and ADIPOR2 G alleles) had a lower RQ than did the rare homozygotes. A significant genotype-by-genotype interaction (P = 0.0002 to 0.02) was found between SNPs in the promoters of ADIPOQ ($-3971A\rightarrow$ G) and ADIPOR1 ($-3882T\rightarrow$ C). Subjects carrying the minor ADIPOQ allele (G allele) who were rare homozygotes (G/G) for the ADIPOR1 SNP had a higher RQ (P = 0.003) and greater overall (P < 0.03) and abdominal (P < 0.05) adiposity than did persons with other genotype combinations.

Conclusions: Previous findings that the *ADIPOQ* 45T—G variant contributes to overall fatness and abdominal obesity are confirmed. Moreover, variants in the promoter region of both *ADIPOR* genes contribute to substrate oxidation.

Key Words: Adiponectin • adiponectin receptor • resting metabolic rate • respiratory quotient • obesity • abdominal obesity • adiposity

Related articles in AJCN:

This article has been cited by other articles:

Cancer Research

HOME

V. G. Kaklamani, M. Sadim, A. Hsi, K. Offit, C. Oddoux, H. Ostrer, H. Ahsan, B. Pasche, and C. Mantzoros

Variants of the Adiponectin and Adiponectin Receptor 1 Genes and Breast Cancer Risk

Cancer Res., May 1, 2008; 68(9): 3178 - 3184.

[Abstract] [Full Text] [PDF]

R. Do, S. D. Bailey, K. Desbiens, A. Belisle, A. Montpetit, C. Bouchard, L. Perusse, M.-C. Vohl, and J. C. Engert

Genetic Variants of FTO Influence Adiposity, Insulin Sensitivity, Leptin Levels, and Resting Metabolic Rate in the Quebec Family

Diabetes, April 1, 2008; 57(4): 1147 - 1150.

[Abstract] [Full Text] [PDF]

The American Journal of CLINICAL NUTRITION

HOME

J. S Fisler and C. H Warden The current and future search for obesity genes Am. J. Clinical Nutrition, January 1, 2007; 85(1): 1 - 2.

[Full Text] [PDF]

HOME HELP FEEDBACK SUBSCRIPTIONS ARCHIVE SEARCH TABLE OF CONTENTS

Copyright © 2007 by The American Society for Nutrition