

Home Policies Editorial Team Information Submissions

JHS

- °Cu Iss
- [°]Ba
- ° Mc rea art
- ° Inc
- Ad sea

ARTICLE TOOLS

Print

<u>this</u>

article

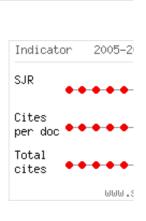
i

Indexing

<u>metadata</u>

How

to cite


<u>item</u>

Finding

- ° Co
- °Sit Ma
- ° Ab
- Lir

GOOGL TRANS

References

Review

policy

this

article

(Login

required)

the

author

(Login

required)

FONT SIZE

Browse

CURRE ISSUE

ATOM 1.0

RSS 2.0

<u>OPEN</u> JOURN SYSTEI • <u>Ву</u>

<u>Issue</u>

• <u>Ву</u>

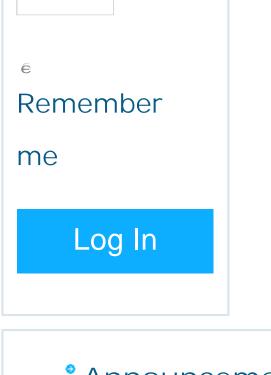
<u>Author</u>

• <u>Ву</u>

Title

Search

AII -


Search

USER

Username

Password

* <u>Announcements</u>

Home > Vol 7, No 3 (2012) > Santos

Cryotherapy posttraining reduces muscle damage markers in jiu-jitsu fighters

Wagner Oliveira Costa Santos, Ciro José Brito, Elson Andrade Pinho Júnior, Charles Nardelli Valido, Edmar Lacerda Mendes, Marco Antonio Prado Nunes,

Abstract

Although widely used in sports, the efficiency of cryotherapy in reducing muscle damage has been questioned. The present study investigated the acute effects of post-exercise cryotherapy on the expression of creatine phosphokinase (CPK) and lactate dehydrogenase (LDH), perceived pain, and muscle strength of the upper limbs in Brazilian jiu-jitsu competitors. Nine highly trained fighters were subjected to two 90-minute training sessions. After the first session, five random subjects were immersed in a pool with ice $(5\pm1^{\circ} \text{ C})$ for nineteen minutes, and the remaining participants were allocated to the control group.

The treatments were reversed in the second session (cross-over design). Analysis of covariance with repeated measures was used to compare outcomes between the groups, and pre-test measures were used as covariates. Pearson's correlation was adopted to check the strength of the associations between variables. The results showed lower serum CPK concentrations (P<0.05) in the cryotherapy group (504.0 ± 138.7 IU/L) compared to the preexercise (532.6 \pm 67.9 IU/L) group, and a similar result was observed for LDH (517.4 ± 190.3 vs. $601.8 \pm 75.7 \text{ IU/L}$). Cryotherapy resulted in lower (P<0.05) perceived pain $(2.2 \pm$ 1.6 vs. 4.2 ± 1.9) and body temperature (34.2±1.3° C vs. $36.3\pm0.7^{\circ}$ C), and an attenuated loss of isometric strength (53.1±

18.1 s vs. 42.9±14.5 s).

Perceived pain was directly

associated (P<0.05) with CPK

(r=0.59) and LDH (r=0.475)

levels. The results show that

post-exercise cryotherapy

resulted in lower serum CPK and

LDH, hypoalgesia, and greater

preservation of isometric

strength endurance when

compared to the control

condition.

Key words: COLD WATER

IMMERSION; MARTIAL ARTS;

CREATINE KINASE; L-LACTATE

DEHYDROGENASE; MUSCLE

STRENGTH

doi: 10.4100/jhse.2012.73.03

References

Ascensao, A., Leite, M., Rebelo,

A. N., Magalhaes, S., &

Magalhaes, J. (2011). Effects of

cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci, 29(3), 217-225. doi: 10.1080/02640414.2010.526132

Brozek, J., Grande, F., Anderson, J. T., & Keys, A. (1963).

Densitometric Analysis of Body Composition: Revision of Some Quantitative Assumptions. Ann N Y Acad Sci, 110, 113-140.

Carvalho, D. S., & Kowacs, P. A. (2006). Avaliação da intensidade de dor. Migrâneas cefaléias, 9 (4), 164-168.

Cohen, J. (1992). A power primer. Psychol Bull, 112(1), 155-159.

Cooke, M. B., Rybalka, E., Stathis, C. G., Cribb, P. J., & Hayes, A. (2010). Whey protein isolate attenuates strength

decline after eccentricallyinduced muscle damage in
healthy individuals. J Int Soc
Sports Nutr, 7, 30. doi:

10.1186/1550-2783-7-30

De Nardi, M., La Torre, A.,
Barassi, A., Ricci, C., & Banfi, G.
(2011). Effects of cold-water
immersion and contrast-water
therapy after training in young
soccer players. J Sports Med
Phys Fitness, 51(4), 609-615.

Madigan, K., Cesarski, B.,
Costiera, R., & Lu, M. (2003).
Recovery of maximal isometric
grip strength following cold
immersion. J Strength Cond Res,
17(3), 509-513.

Douris, P., McKenna, R.,

Franchini, E., de Moraes

Bertuzzi, R. C., Takito, M. Y., & Kiss, M. A. (2009). Effects of recovery type after a judo match on blood lactate and

performance in specific and non-

specific judo tasks. Eur J Appl

Physiol, 107(4), 377-383. doi:

10.1007/s00421-009-1134-2

Franchini, E., Del Vecchio, F. B.,

Matsushigue, K. A., & Artioli, G.

G. (2011). Physiological profiles

of elite judo athletes. Sports

Med, 41(2), 147-166. doi:

10.2165/11538580-000000000-

00000

Franchini, E., Miarka, B.,

Matheus, L., & Del Vecchio, F.

(2011). Endurance in judogi grip

strength tests: Comparison

between elite and non-elite judo

players. Arch Budo, 7.

Franchini, E., Yuri Takito, M.,

Yuzo Nakamura, F., Ayumi

Matsushigue, K., & Peduti

Dal'Molin Kiss, M. A. (2003).

Effects of recovery type after a

judo combat on blood lactate

removal and on performance in

an intermittent anaerobic task. J Sports Med Phys Fitness, 43(4), 424-431.

Green, C. M., Petrou, M. J., Fogarty-Hover, M. L. S., & Rolf, C. G. (2007). Injuries among judokas during competition.
ScandJ Med Sci Sports, 17(3), 205-210.

Gregson, W., Black, M. A.,

Jones, H., Milson, J., Morton, J., Dawson, B., . . . Green, D. J. (2011). Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med, 39(6), 1316-1323. doi:

Hubbard, T. J., & Denegar, C. R. (2004). Does Cryotherapy
Improve Outcomes With Soft
Tissue Injury? J Athl Train, 39
(3), 278-279.

10.1177/0363546510395497

K. (2007). Biomarkers of muscle and cartilage damage and inflammation during a 200 km run. Eur J Appl Physiol, 99(4), 443-447. doi: 10.1007/s00421-006-0362-y

Kim, H. J., Lee, Y. H., & Kim, C.

Kim, H. J., Lee, Y. H., & Kim, C.

K. (2009). Changes in serum cartilage oligomeric matrix protein (COMP), plasma CPK and plasma hs-CRP in relation to running distance in a marathon (42.195 km) and an ultramarathon (200 km) race. Eur J Appl Physiol, 105(5), 765-770. doi: 10.1007/s00421-008-0961-x

Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med, 46(4),

Leeder, J., Gissane, C., van

233-240. doi: 10.1136/bjsports-

2011-090061

Lippi, G., Schena, F.,

Montagnana, M., Salvagno, G. L.,

Banfi, G., & Guidi, G. C. (2011).

Significant variation of

traditional markers of liver injury

after a half-marathon run. Eur J

Intern Med, 22(5), e36-38. doi:

10.1016/j.ejim.2011.02.007

Neubauer, O., Konig, D., &

Wagner, K. H. (2008). Recovery

after an Ironman triathlon:

sustained inflammatory

responses and muscular stress.

Eur J Appl Physiol, 104(3), 417-

426. doi: 10.1007/s00421-008-

0787-6

Nieman, D. C., Dumke, C. L.,

Henson, D. A., McAnulty, S. R.,

Gross, S. J., & Lind, R. H.

(2005). Muscle damage is linked

to cytokine changes following a

160-km race. Brain Behav

Immun, 19(5), 398-403. doi: 10.1016/j.bbi.2005.03.008

Silva, B., Junior, M. M., Simim, M., Rezende, F., Franchini, E., & Mota, G. (2012). Reliability in kimono grip strength tests and comparison between elite and non-elite Brazilian Jiu-Jitsu players. Arch Budo, 8(2), 103-107.