

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1880-313X PRINT ISSN : 0388-6107

Biomedical Research

Vol. 28 (2007), No. 4 August pp.177-189

[PDF (1816K)] [References]

Comparison of effects of PKA catalytic subunit on I_h and calcium channel currents in rat dorsal root ganglion cells

You KOMAGIRI¹⁾²⁾ and Naoki KITAMURA¹⁾³⁾

1) Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University

2) Department of Physiology II, School of Medicine, Iwate Medical University

3) Department of Veterinary Physiology, Faculty of Agriculture, Tottori University

(Received April 2, 2007) (Accepted May 11, 2007)

ABSTRACT

We investigated whether PKA-induced phosphorylation was involved in regulation of hyperpolarization-activated current (I_h) in rat dorsal root ganglion (DRG) cells. We examined the effect of the catalytic subunit of PKA (PKAc) on I_h and confirmed an effect of PKAc on Ca²⁺ channel currents carried by Ba²⁺ (I_{Ba}) in identical neurons as a positive control of PKA activity. After the start of recording, amplitudes of I_{Ba} gradually decreased (rundown). An intracellular application of ATP reduced the rundown of I_{Ba} and induced a depolarizing shift of I_h activation. The former was partially reversed by PKI but the latter was not affected. An intracellular application of PKAc also prevented the rundown of I_{Ba} and this effect was potentiated by okadaic acid (OA). The application of PKAc and OA in combination did not change the electrophysiological properties of I_h although a potentiating effect on I_{Ba} was observed in the same neurons. The application of 2-mM ATP in addition to PKAc and OA did not result in an additional potentiation of I_{Ba} , but shifted the activation curve of I_h positively. These results suggested that PKA-induced phosphorylation was not involved in the modulatory mechanisms of I_h in rat DRG neurons.

[PDF (1816K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> <u>BibTeX</u>

To cite this article:

You KOMAGIRI and Naoki KITAMURA; "Comparison of effects of PKA catalytic subunit on I_h and calcium channel currents in rat dorsal root ganglion cells", *Biomedical Research*, Vol. **28**, pp.177-189 (2007).

doi:10.2220/biomedres.28.177 JOI JST.JSTAGE/biomedres/28.177

Copyright (c) 2007 Biomedical Research Press

