

** Biomedical Research	BIOMEDICAL RESEARCH PRESS
<u>Available Issues</u> <u>Instructions to Authors</u> <u>Japanese</u>	>> Publisher Site
Author: Keyword:	Search <u>ADVANCED</u>
Add to Favorite / Citation Favorite Publication	ons Register My J-STAGE

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN: 1880-313X PRINT ISSN: 0388-6107

Biomedical Research

Vol. 27 (2006), No. 5 October pp.233-241

[PDF (1334K)] [References]

Effect of heat on synthesis of gelatinases and pro-inflammatory cytokines in equine tendinocytes

Yoshinao HOSAKA¹⁾, Sachiko OZOE¹⁾, Rikio KIRISAWA²⁾, Hiromi UEDA¹⁾, Kazushige TAKEHANA¹⁾ and Mamoru YAMAGUCHI³⁾

- 1) Laboratory of Veterinary Anatomy, Department of Biosciences, Rakuno Gakuen University
- 2) Laboratory of Veterinary Microbiology, Department of Pathobiology, Rakuno Gakuen University
- 3) Department of Biosciences, School of Veterinary Medicine, Ohio State University

(Received July 21, 2006) (Accepted August 30, 2006)

ABSTRACT

The aim of this study was to clarify whether matrix metalloproteinases (MMP-2 and -9: gelatinases) and pro-inflammatory cytokines [tumor necrosis factor (TNF) α and interleukin (IL)-1β] are induced by heat in tendon tissue *in vitro* and to test the hypothesis that heat exposure causes tendinocytes to synthesize pro-inflammatory cytokines and that synthesis of these cytokines, in turn, leads to up-regulation of synthesis of gelatinases. Isolated tendinocytes from equine superficial digital flexor tendons were cultured and all experiments were performed on cells passaged 3 or 4 times. In the cells exposed to heat (37 to 45°C, 0 to 60 min), the survival rate decreased sharply in a temperature- and time-dependent manner, especially at 42 and 45°C. Cells exposed at 40°C, however, showed little change in survival rate and morphology. Gelatin zymograms revealed that proMMP-2 and -9 were the only two MMPs remaining in the supernatant of the cultured tendinocytes, including that of untreated cells. Addition of TNF α and IL-1 β to the culture medium of tendinocytes accelerated proMMP-9 synthesis considerably. Heating the tendinocytes (40°C) led to a three-fold increase in proMMP-9 synthesis in a short time. Only TNFα was detected in tendinocytes after heat exposure for 30 and 60 min. In contrast, IL-1β was under the detectable level in ELISA. Cooling of heat-exposed cells from 40°C to 37°C considerably down-regulated cellular proMMP-9 synthesis. Furthermore, proMMP-9 level was greatly reduced in cells treated at lower temperatures, 20°C and 5°C. These findings support our

hypothesis that hyperthermia in the horse tendon induces tendinocytes to synthesize proinflammatory cytokines and that the synthesis of these cytokines results in the up-regulation of gelatinases.

[PDF (1334K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

To cite this article:

Yoshinao HOSAKA, Sachiko OZOE, Rikio KIRISAWA, Hiromi UEDA, Kazushige TAKEHANA and Mamoru YAMAGUCHI; "Effect of heat on synthesis of gelatinases and pro-inflammatory cytokines in equine tendinocytes", *Biomedical Research*, Vol. **27**, pp.233-241 (2006).

doi:10.2220/biomedres.27.233

JOI JST.JSTAGE/biomedres/27.233

Copyright (c) 2006 Biomedical Research Press

Japan Science and Technology Information Aggregator, Electronic

