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Abstract

This paper presents a method for constructing symmetric and transitive algorithms for registration of image 
sequences from image registration algorithms that do not have these two properties. The method is applicable 
to both rigid and nonrigid registration and it can be used with linear or periodic image sequences. The symmetry 
and transitivity properties are satisfied exactly (up to the machine precision), that is, they always hold regardless 
of the image type, quality, and the registration algorithm as long as the computed transformations are invertable. 
These two properties are especially important in motion tracking applications since physically incorrect 
deformations might be obtained if the registration algorithm is not symmetric and transitive. The method was 
tested on two sequences of cardiac magnetic resonance images using two different nonrigid image registration 
algorithms. It was demonstrated that the transitivity and symmetry errors of the symmetric and transitive 
modification of the algorithms could be made arbitrary small when the computed transformations are invertable, 
whereas the corresponding errors for the nonmodified algorithms were on the order of the pixel size. 
Furthermore, the symmetric and transitive modification of the algorithms had higher registration accuracy than 
the nonmodified algorithms for both image sequences. 

1. Introduction

The process of aligning images so that the corresponding features can be related is called image registration [1]. 
Image registration methods have been discussed and classified in books [1–4] and surveys [5–10]. Most 

registration methods are ad hoc with assumptions often violated in practical applications. This results in a 
behavior that is often not predictable. A way to reduce the ad hoc nature of registration methods is to require 
them to satisfy certain properties. Researchers have realized the importance of symmetry and transitivity of 
registration methods [11–20]. In [11], Ashburner et al. proposed an approximately symmetric image registration 

method that uses symmetric priors. In [12], Christensen and Johnson proposed a registration algorithm that 
approximately satisfies the symmetry property. (Christensen and Johnson used the term “inverse consistency” 
for what we refer to as “symmetry.”) Their idea is to estimate the forward and reverse transformation 

simultaneously by minimizing an objective function composed of terms that measure the similarity between the 
two images and the consistency of the forward and reverse transformations. This approach requires maintaining 
two transformations, computing their inverses and it has a tradeoff among the terms in the objective function. In 
[13], Rogelj and Kovačič proposed a registration method that uses symmetrically designed forces that deform the 
two images. The method is approximately symmetric, it requires maintaining forward and backward 
transformation, but it does not use their inverses. In [14], Škrinjar and Tagare proposed an exactly symmetric 
registration method that is based on a symmetrically designed objective function, but it requires the computation 
of the inverse transformation. In [15], Lorenzen et al. proposed an exactly symmetric registration method that is 
based on a symmetrically designed fluid model. The method uses two transformations whose compositions define 
the forward and backward transformations in such a way that they are inverses of each other. Beg and Khan in 
[18] and Avants et al. in [19] used an exactly symmetric registration method that maintains two functions, which 
when composed appropriately give forward and backward transformations that are exact inverses of each other. 
In [16], Cachier and Rey analyzed the reasons behind the asymmetry in registration, proposed symmetrized 
similarity and smoothing energies, but their implementation of the method was not exactly symmetric. In [17], 
Tagare et al. proposed an exactly symmetric registration method that does not require to maintain both forward 
and reverse transformations and compute their inverses. Instead, the objective function, which can be based on 
intensity differences (e.g., mean squared difference, normalized cross-correlation) or distributions (e.g., mutual 
information, normalized mutual information) is modified such that the method is symmetric and only the forward 
transformation is needed. Consequently, the objective function has only one term, which avoids the problem of 
tradeoff among multiple terms. Their implementation is symmetric up to the machine precision. In [20], 
Christensen and Johnson realized the importance of transitivity of image registration but did not provide a way to 
satisfy it. 
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The above methods are either approximately or exactly symmetric but none of them is transitive. In this paper, 
we propose a method to modify any image registration algorithm such that it is provably symmetric and transitive 
on an image sequence. Symmetry and transitivity are especially important in motion tracking applications; they 
insure that a physical point is tracked in the same way regardless of the order in which the images are 
registered. If there are topological changes present in the image sequence, the two properties can hold only 
over corresponding regions. 

Registration of image sequences has a wide applicability in medical imaging problems. Motion within the body is 
present at the system level, organ level, tissue level, cellular level, subcellular level, and molecular level. In 
addition to the normal motion, pathology-induced motion or changes can occur (e.g., osteoporosis, multiple 
sclerosis, and tumor growth). In both normal and pathology-induced motion or changes, it is often useful to 
compute the motion, that is, to register image sequences. Such information can improve our understanding of the 
normal function and diseases as well as help develop better treatments. The presented approach is illustrated on 
sequences of cardiac MR images, which if accurately registered can provide clinically useful myocardial 
displacement and strain information. However, the same or similar approach can be used for the registration of 
any other image sequence. 

2. Methods

2.1. Notation

Let  denote a set of real numbers and  an -dimensional metric space [21]. An -dimensional intensity image is 

a function . Intensity images will be referred to as just images. Without loss of generality, it is assumed 

that all the images have the same domain. The set of all images is denoted as . An -dimensional geometric 

transformation is a function . Geometric transformations will be referred to as just transformations. The 

set of all transformations is denoted as . Let  denote the identity transformation, that is, . Let 

 denote the composition of transformations. 

2.2. Image Registration Operator and Its Properties

An image registration operator is a function . Ideally, any image registration operator should have the 

following three properties . 

2.3. Reference-Based Registration 

The proposed approach is simple; select a reference image and then perform the registration of any two images 
from the sequence of images through the reference. The reference can be an image from the sequence of images 
or an image similar to the images in the sequence. Let the reference be denoted as  and let  represent an 

image registration operator that does not necessarily have any of the properties from Section 2.2. A new image 
registration operator  is defined as

where  and  are any two images from the sequence. It is assumed that the transformations generated by  

from images in the sequence to the reference image are invertable, that is, that  always exists.
 

Theorem 1.  satisfies Identity, Symmetry, and Transitivity. 

 

Proof. Identity holds since

Symmetry holds since

 

Figure 1: If two points (  and ) in two images (  and ) correspond, as sketched in (a), 
then the registration algorithm should associate the two points regardless of the order of 
images. This is the symmetry property. Let , and  represent images of the same 
deforming object taken at three-time points, and let , and  represent the location of 
the same physical point in the three images, as sketched in (b). If the registration algorithm, 
when applied to images  and , associates points  and , and, when applied to images 

 and , associates points  and , then it should, when applied to images  and , 
associate points  and . This is the transitivity property.

 

 
 

  
 

  

(i)

(ii)

(iii)

Identity. An image registration operator, when applied to two identical images should generate the 

identity transformation. Formally,

(1)

Symmetry. The result of the registration should not depend on the order of images, that is, when an 

image registration operator is applied to two images, the obtained transformation should be the inverse of 
the transformation obtained when the order of images is reversed. Formally,

This is illustrated in Figure 1(a).

(2)

Transitivity. For any three images, the generated transformation from the second to the third image 

composed with the generated transformation from the first to the second image should be equal to the 
generated transformation from the first to the third image. Formally,

This is illustrated in Figure 1(b).

(3)

(4)

(5)



Transitivity holds since

 

It should be noted that the only requirement for the above result to hold is that  exists. This means that 

the obtained transformations and their inverses do not need to be differentiable. However, a number of 
registration methods involve regularization terms that use transformation derivatives, in which case the 
registration operator needs to generate diffeomorphic transformations. 

If the Jacobian of the transformation  is positive then the inverse transformation  exists. If the 

Jacobian of the transformation  is zero or negative, the inverse transformation does not exist and the 

reference-based registration operator given by (4) cannot be used or it can be used only over the part of the 
domain where the Jacobian is positive. Many registration methods control the Jacobian either directly [22–26] or 
indirectly [12, 27–30] by using a smoothness term that penalizes extreme warps to prevent singularities (zero 

Jacobian) or folding of the space (negative Jacobian), in which case the inverse transformation exists and the 
reference-based registration can be used. 

3. Results

While the result of the previous section holds for any registration operator that generates invertable 
transformations, here we illustrate the approach on two sequences of cardiac magnetic resonance images using 
two nonrigid image registration algorithms. 

3.1. MR Protocols

We acquired a 3D anatomical cine MRI scan together with a 3D tagged cine MRI scan of a healthy volunteer and 
then repeated the acquisitions four months later. The volunteer was a 27-year-old male subject with no history 
of heart disease. The purpose of the tagged scan was to validate the myocardial deformation recovered from the 
anatomical scan. The scans were acquired using steady-state free-precession short axis cine imaging (flip angle 

 =  65°, TR  =  3.4 ms, TE  =  1.7 ms) covering the entire heart on a 1.5 T clinical MRI scanner 
(Intera, Philips Medical Systems, Best, The Netherlands). All the scans had contiguous short-axis slices with 
similar field of view and phases covering the entire cardiac cycle and their parameters are given in Table 1. The 
tags were applied immediately after the detection of the R-wave from the EKG signal and the first frame was 
acquired at a delay of 15 milliseconds after the R-wave. Two orthogonal sets of parallel planar tags with about 9 
mm plane separation were oriented orthogonal to the image planes. 

For both scans, for each acquired slice the scanner recorded the rigid body transformation from the scanner 
coordinate system to the slice. This allowed us to map all the slices to a common coordinate system, that is, to 
spatially align the anatomical and tagged scans. Similarly, the scanner recorded the start time for each phase 
(frame) relative to the peak of the R wave, which allowed us to temporally align the anatomical and tagged 
scans. Since the heart rate, that is, the duration of the cardiac cycle, was not the same for the anatomical and 
tagged scans, we used relative time (as a percentage of the cardiac cycle) for the temporal alignment. 

3.2. Myocardial Deformation Recovery

To recover the myocardial deformation, we use thin plate splines (TPS) [31] to represent the transformation 
between any two frames and then maximize the normalized mutual information [32] to determine the 
transformation parameters (TPS node positions). We use normalized mutual information since it was shown to 
outperform several other images similarity measures [33]. Since myocardium is nearly incompressible and its 
volume does not change by more than 4% over the cardiac cycle [26], we constrain the optimization of the TPS 
node positions such that the Jacobian of the transformation never deviates from 1 (which corresponds to exact 
incompressibility) by more than 4%. The details of the method are given in [26]. (The purpose of this section is to 
illustrate the approach of Section 2.3 (construction of symmetric and transitive registration algorithms from 
nonsymmetric and nontransitive registration algorithms), and instead of the method given in [26] we could have 
used any other registration method. For this reason we did not present here all the details of the used 
registration method and the interested reader is referred to [26].) This registration algorithm we denote as , 

while  represents its unconstrained version. Given that near incompressibility is a physical property of the 

myocardium,  is expected to be more accurate than . Each of the two operators was used to recover 

myocardial deformation from the two cardiac MR image sequences in two ways: sequential and reference-based. 
In the sequential approach, the deformation was recovered from the first to the second frame, then from the 
second to the third frame, and so on. In the reference-based approach, the deformation was recovered directly 
from the reference frame to any given frame. Figure 2 shows a short-axis section through the 3D image and 3D 
LV wall model surface for the sequential and referenced-based recoveries using the two registration operators.  

 
Table 1: Parameters of the anatomical and tagged MR scans.

(6)

(7)



To quantitatively evaluate the deformation recovery accuracy we compared the cardiac deformation recovered 
from the anatomical cine MRI against the corresponding information from the tagged cine MRI. We developed a 
tool for interactive positioning of virtual tag planes in tagged MRI scans. The tag planes are modeled as splines 
that the user can position and deform by moving control points. This allows the user to fit the virtual tag planes 
to the tagged image as well as to compute tag plane intersections. Once the cardiac deformation is recovered 
from the anatomical cine MRI using the proposed method, it is applied to the virtual tag planes at ED and then 
compared to the interactively positioned tag planes in other frames. In each image slice, we compute the 
distances between the corresponding intersections of orthogonal virtual tag lines (in-slice cross-sections of the 
virtual tag planes) generated interactively and by the model. This allows for in-plane (short-axis) deformation 
recovery validation. The out-of-plane (long-axis) deformation is not evaluated with this procedure since the tag 
planes, being perpendicular to the short-axis image slices, do not contain information about the out-of-plane 
motion. Virtual tag lines for the sequential and referenced-based recoveries for the two operators are shown in 
Figure 3. Table 2 contains the distances between corresponding intersections of virtual and real tag lines at end 
systole, which is the most deformed state relative to end diastole.  

3.3. Identity, Symmetry, and Transitivity Errors

Let  and  represent the symmetric and transitive modifications of  and , respectively. Operators  and  

are defined by (4) (the end diastole frame is used for ), which involves transformation inversion. Since we use 

TPS for transformation representation and the inverse of a TPS transformation cannot be obtained analytically, 
we invert the transformation numerically using the Newton-Raphson method for solving nonlinear systems of 
equations [34]. The numerical error of the computation of the inverse transform is denoted as . If the Jacobian of 
the transformation is positive then the inverse transformation exists and  can be specified to be an arbitrary 
small positive number, that is, the inverse transformation can be computed with an arbitrary small error. While  
can be set to an arbitrary small positive value, in practical applications little is gained if  is set to a value smaller 

than two orders of magnitude smaller than the pixel size. The reason for that is that the registration error is on 
the order of the pixel size, and by setting  to one hundredth the pixel size the error of the computation of the 
inverse transformation is already negligible compared to the registration error, and further reducing  does not 

improve the registration accuracy. 

For a given image registration operator , we define the following three errors.

 

 

Figure 2: The recovered myocardial deformation for a normal subject over the cardiac cycle 
(first row: end diastole; third row: end systole) is shown by means of the endocardial and 
endocardial surface model contours overlaid over a midventricular short-axis MRI slice. The 
myocardium was segmented in the first frame (shown in the first row), a surface model was 
generated around the segmented myocardium and the recovered deformation for the rest of 
the sequence was applied to the surface model. The two red contours represent a cross-
section through the surface model. The four columns correspond to (a) sequential recovery 
by , (b) sequential recovery by , (c) reference-based recovery by , and (d) reference-
based recovery by . The registration algorithms  and  and the difference between 
sequential and reference-based recovery are explained in Section 3.2. Note that the best 
deformation recovery, that is, the best agreement of the red contours and the edges of the 
left ventricular wall, was achieved for the reference-based recovery by , shown in column 
(c).

 Table 2: The mean (± std) distance [mm]  between corresponding intersections of virtual 

and real tag lines at end systole for the four algorithms for both scans.

 

Figure 3: The virtual tag lines and the corresponding short-axis slices of the tagged MRI 
scan are shown over the cardiac cycle (first row: end diastole; third row: end systole) for (a) 
sequential recovery by , (b) sequential recovery by , (c) reference-based recovery by , 
and (d) reference-based recovery by . The registration algorithms  and  and the 
difference between sequential and reference-based recovery are explained in Section 3.2. 
The virtual tag lines were manually positioned over the tagged MR image in the first frame 
(shown in the first row), and then the deformation recovered from the anatomical image 
sequence was applied to the virtual tag lines and they were overlaid over the tagged MR 
images in the corresponding frames.

 (i) Identity error of image  is

(8)



Identity, symmetry and transitivity errors for , and  are given in Tables 3, 4, and 5, respectively. The 

errors for  and  in the three tables were computed using   =  0.001 mm. The dependence of 

, and  on  is depicted in Figure 4 for . 

4. Discussion

Theorem 1 says that reference-based modification of any registration operator satisfies identity, symmetry, and 
transitivity on an image sequence. While the theorem always holds and the modified registration operator 
satisfies the three properties exactly, Section 3 demonstrates a practical application of the reference-based 
registration using a relatively accurate registration algorithm ( ) and its less accurate version ( ). The method 

was applied to two cardiac cine MRI scans, which are periodic image sequences, but the same conclusions hold in 
the case of linear image sequences. 

As expected, the constrained registration ( ) outperformed its unconstrained version ( ), which can be seen in 

Figures 2 and 3 and in Table 2 for both sequential and reference-based approaches. The two figures and the 
table also show that in this case the reference-based registration was more accurate than the sequential 
registration. The advantage of the sequential registration is that the difference between any two consecutive 
frames is relatively small, while the reference-based registration deals with larger deformations (e.g., from end 
diastole to end systole). However, the disadvantage of the sequential registration is that there is accumulation of 
error from frame to frame, which seems to overweigh the advantage of small frame-to-frame difference. There is 
no accumulation of error for reference-based registration. The reference-based constrained registration (column 
(c) in Figures 2 and 3) was more accurate than the other three algorithms (Table 2). The difference in accuracy of 
the four algorithms is most pronounced at end systole, and it can be seen as the different level of agreement 
between the model contours and the underlying image in Figure 2 and between the virtual tag lines and the 
underlying image in Figure 3.  

Since  and  use  as the initial transformation in searching for the transformation that maximizes the 

normalized mutual information, both operators satisfy (1) exactly and consequently have  for any image, 

as it can be seen in Table 3. Operators  and  involve transformation inversion as defined in (4), which is done 

numerically with an accuracy of . This is why the identity errors for  and  in Table 3 are approximately equal 

to . 

The symmetry errors (Table 4) for  and  are approximately 1 mm, while for  and  they are approximately 

. The reason for this is that the evaluation of (9) involves a composition of the operators, each contributing 

approximately  to  due to the numerical inversion of transformation in (4). 

Similarly, the transitivity errors (Table 5) for  and  are approximately 2 mm, while for  and  they are 

approximately . The reason for this is that the evaluation of (10) involves a composition of the operators, each 

contributing approximately  to  due to the numerical inversion of transformation in (4). 

It should be noted that  and  have similar values for , and . The reason for this is that the 

three errors depend only on the accuracy of the computation of the inverse transformation, and not on the 
registration accuracy (  is more accurate than ). In fact, if the inverse transformation could be computed 

exactly, the three errors would be zero regardless of the registration operator. The three errors scale with , as 

shown in Figure 4, and they can be made as small as the machine precision. Figure 4 also shows that 

, and . Thus, the reference-based registration slightly worsens the identity error and it 

significantly improves the symmetry and transitivity errors over the sequential registration. 

For the two tested image sequences, the symmetric and transitive registration methods  and  had smaller 

registration errors than their nonsymmetric and nontransitive counterparts  and , respectively (Table 2). While 

all four registration methods had either zero or nearly zero identity errors (Table 3),  and  had very small 

(nearly zero) symmetry and transitivity errors and  and  had these errors on the order of the pixel size or even 

larger (Tables 4 and 5). Thus, in this limited study, very small (nearly zero) symmetry and transitivity errors were 
accompanied by reduced registration errors. However, to determine if this is always the case one would need to 

 
Table 3: Identity errors [mm]  for , and  are given for random frames ( ) of the 
two cardiac cine MRI scans.

 
Table 4: Symmetry errors [mm]  for , and  are given for random frames (  and 

) of the two cardiac cine MRI scans.

 
Table 5: Transitivity errors [mm]  for , and  are given for random frames (

, and ) of the two cardiac cine MRI scans.

 

Figure 4: The dependence of  (dotted),  (solid), and  (dashed) on  for  is 

shown in the log-log axes for a representative image, image pair, and image triple, 
respectively. The three curves represent interpolations of the errors corresponding to  of 
0.000001 mm, 0.00001 mm, 0.0001 mm, 0.001 mm, 0.01 mm, 0.1 mm, and 1.0 mm. 
The squared correlation coefficient between  and  is .9998, between  and  
is .99997, and between  and  is .9998, indicating a strong dependence of the three 
errors on .

 
 

 
 

(ii)

(iii)

Symmetry error of images  and  is

(9)

Transitivity error of images , and  is

(10)



prove it mathematically or at least repeat the experiment on a large number of image sequences. 

To simplify the notation, it was assumed that all the images had the same domain, but the same conclusions hold 
when the domains are different. Furthermore, the method involves the transformation inversion, which is done 
only once (after both images are registered to the reference), as opposed to the methods proposed in [12, 14–

16] that require computing the inverse transformation in each iteration of the optimization. 

We used the normalized mutual information as the image similarity measure for the registration algorithms  and 

. We repeated all the experiments by using the mutual information, mean square difference, and normalized 

cross-correlation as alternative image similarity measures and the obtained results were nearly identical to those 
reported in Section 3 and for this reason they are not included in the paper. These repeated experiments confirm 
that the conclusions of the paper are not specific to the normalized mutual information. 

5. Conclusion

The reference-based registration of image sequences is provably symmetric and transitive. This conclusion is 
independent of the images and registration algorithm used. Furthermore, a limited study showed that the 
reference-based registration was more accurate than the sequential registration, although this cannot be 
guaranteed to always hold. 
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