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Abstract

Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for 
at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local 
perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large 
number of connexions in a reasonable computational time. Here, we propose an improved fast marching 
algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front 
propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this 
approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real 
data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. 

1. Introduction

For decades, dissection, lesion studies, or axonal transport of tracers have been the only available techniques for 
studying the brain's anatomical connections. It is not surprising that due to the invasiveness of these methods, 
most of the data concerning the large-scale, white matter tracts of the brain were collected on animals, for 
example, cats [1] or monkeys [2], while structural data for the human brain were largely missing [3]. Diffusion 
weighted MR imaging now offers a propitious and unique framework to explore noninvasively the organisation of 
white matter in the living human brain [4, 5]. Despite the poor spatial resolution of this technique, already 
diffusion data are beginning to inform us about human brain large-scale connections [6–8] and how they relate 

to the functional role of cortical and subcortical networks [9, 10]. 

Inferring on white matter architecture from diffusion data relies on the properties of water diffusion in the 
tissues. Water molecules diffuse more easily along the fibre tracts than across them, and this anisotropy is 
captured by the diffusion-weighted MR signal. Inferring on connexions given this local feature is challenging, since 
the observations (diffusion properties) are indirectly related to the actual structure (axonal orientations, size, and 
packing). The tractography algorithms use the information of directionality contained in diffusion data to infer 
connectivity between brain regions. Usually, information about the orientation of white matter fibres is estimated 
locally, via models (e.g., diffusion tensor imaging (DTI) [11], mixture models [12], or partial volume models [13, 
14]) or in a model-free manner (e.g., Q-ball imaging [15]). Fibre tracking consists then in inferring connexions 
between distant brain regions, given this local orientation. This can be done either in a deterministic way, by 
trusting the local orientation information and following these directions until reaching a target region (i.e., 
streamline tractography [16–19]), or in a probabilistic way, by building distributions of connexions, using local 

probabilistic models for fibre orientation distributions [13, 14, 20].  

In both cases, when tracking a fibre between two regions of the brain, these algorithms start in one seed region, 
and try to find the tracts, or distribution of tracts, that will end up in the target region. In cases where the local 
orientation information present in the diffusion data is consistent with the presence of this pathway, then these 
tractography algorithms manage in general to recover the connexion between the seed and the target. However, 
it often happens that in some parts of the trajectory, the local diffusion information no longer supports the 
presence of the pathway. This can either be due to a high level of noise compared to the actual signal, or to the 
presence of a high number of crossing fibres heterogeneous in their orientations. This issue is crucial in 
streamlining algorithms, and is also met in probabilistic algorithms when a single orientation per voxel is modelled 
[21]. The problem with those algorithms is that when tracking from a seed, the algorithm has no information 
about the region it will end up in. 

A possible solution to the problem of local perturbations in the diffusion data may be provided by global 
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tractography, that is, optimising a global criterion while seeking for connexions. A global tractography algorithm 
can potentially overcome errors in estimating local structure, because its goal is to connect two given regions. In 
other words, if we tell the algorithm which connexion we are looking at, that is, which pair of regions is to be 
connected, it is better at finding it. Geodesic tractography (GT), first proposed by Parker et al. [22], falls into this 
category. GT is based on the hypothesis that brain fibers can be interpreted as minimal distance paths 
(geodesics) for a metric derived from the water diffusion profile. This distance criterion is global by definition. 

The basic idea for constructing a geodesic in a metric space is to build a distance field from a seed region, the 
very same region one would use as a seed for streamline tractography. This is done by solving the so-called 
Eikonal equation, a partial differential equation (PDE) that describes the time of arrival at each point of the space, 
as a function of the local speed. In a constant speed field, this PDE can be easily integrated, and the geodesics 
are simply straight lines. When the speed varies across the space, the geodesics can curve, preferring high local 
speed locations to decrease the arrival time. Finally, if the speed depends on the direction of travel (e.g., along 
versus across a fibre tract), then the PDE is said to be anisotropic. 

Solving the Eikonal equation in a heterogeneous and highly anisotropic medium, as is the human brain, is a 
technically challenging problem [23]. This is especially true if one uses single-pass algorithms, which is particularly 
important when dealing with data containing hundreds of thousands of voxels. There have been a few attempts 
at solving this problem in the context of diffusion-based tractography [22, 24–27]. 

We describe a method for constructing geodesics in an anisotropic medium, and apply it to the problem of DTI-
based tractography. This method relies on works in optimal path planning [28] and, more recently, vessel 
extraction in 3D angiography images [29]. It has been shown to be very accurate in anisotropic media [29], and 
requires less computation than the exact method proposed in Sethian and Vladimirsky [30] in a general 
framework for anisotropic optimal path planning. The main contribution of this work is to show how this method 
applies to the case of an elliptic medium, where the algorithm performs extremely well both in terms of accuracy 
and efficiency, as shown in the simulations. We also show the feasibility of applying such method to the 
extraction of structural connectivity in an extended brain network using diffusion data from a healthy subject. 

2. Methods

In this section, we will give some theoretical background on geodesics and the Eikonal equation, and describe a 
single-pass algorithm for building geodesics. 

2.1. Geodesics and the Eikonal Equation

A geodesic is a pathway minimising an integral of the form 

where  describes an infinitesimal distance along a pathway , relative to a metric 

tensor . 

Now, let  be the arrival time function starting from a location , that is,  is equal to the minimum value of 

the integral  along a geodesic connecting  to . Then, the arrival time function and the geodesics satisfy 

these two fundamental equations: 

where  is the spatial gradient of . Equation (2a) is the anisotropic version of the so-called Eikonal equation. In 

the isotropic case, this equation is usually written , where  is the local speed. Hence, this equation 

tells us two things: (i) it is a generalisation of the speed equation, stating that the time of arrival is inversely 
proportional to the speed, and (ii) changing the local metric tensor can be seen as changing the local speed. 
Equation (2b) shows that the tangent of the geodesic lines is parallel to the gradient of the time of arrival 
function with respect to the inverse metric. This is very important because it gives us a convenient way to 
reconstruct geodesics from any point in space, given the solution to the Eikonal equation. Figure 1 shows 
example geodesics in an isotropic space composed of two subsets with different local speeds.  

Proof. Recall that the function  is the minimum value of  along the geodesic from point  to an arbitrary point 

: 

A general variation of (3) is given (see, e.g., [31]) as

Since we have integrated along a geodesic, the second term on the right-hand side of (4) equals zero (Euler 
condition). We obtain

Equation (2b) directly follows. Finally, and using the symmetry of the metric tensor , we get the Eikonal 

equation: 

 

Figure 1: Example geodesics in a double isotropic space. Black arrows show the local 
orientations of the geodesics. The speed in the dark grey region is twice as high as that in 
the light grey one. Notice that in each separate space, the geodesics are straight lines. Also, 
notice how one of the geodesics (bold dashed lines) travels backward to the high speed 
part before getting back to the low speed one. 

(1)

(2a)

(2b)

(3)

(4)

(5)



 

Equations (2a) and (2b) summarise the two steps for building geodesics: (i) solve the Eikonal equation for , 

given a metric tensor  and a starting point ; (ii) construct geodesics between any given point and the starting 

point  by following the gradient of  with respect to the inverse metric . 

2.2. Fast-Marching Algorithm 

A few algorithms have been proposed in the literature for computing the function  on a discrete grid. The most 

popular are Tsitsiklis's method [28] and Sethian's method [32], which are based on the construction of the time 

of arrival function  using front propagation. These methods are also referred to as fast marching methods 

because they construct the function  in a single-pass through the grid nodes. Tsitsiklis's method relies on (1) 

while Sethian's method uses the Eikonal equation (2a). Both methods are suitable in the case of isotropic media, 
that is, where the metric  is proportional to the identity matrix, but they fail in anisotropic media [23]. An exact 

scheme to deal with anisotropy has been proposed by Sethian and Vladimirsky [30], but while remaining a single-
pass algorithm, it still requires a computational effort that is growing with the amount of anisotropy. A variant of 
the initial fast-marching algorithm of Tsitsiklis [28] has been proposed to deal with anisotropic media [29], which 
is more computationally efficient than the exact scheme of Sethian [30]. Yet, it relies on a generic optimisation 
procedure that was undocumented for the special case of the elliptical media we face with DTI tractography. We 
extended this method by deriving a solution to the optimisation procedure in this case. 

The general idea of the fast-marching algorithm was borrowed from the graph theory. It is a direct extension of 
Dijkstra's algorithm for finding minimal paths in a graph [33]. The algorithm relies on a very simple observation: 
suppose that the time of arrival is known inside a close set of grid nodes (a set we will refer to as the known 
set). Then, the first nodes that will be encountered by the propagating front are the nodes on the edge of the 
known set (this narrow band of grid nodes will be called the trial set). Secondly, the first node that will be 
encountered by the propagating front is the closest one to known (in terms of geodesic distance), and crucially, 
there will be no other way to make this distance smaller after propagating the front further. This means that the 
arrival time at this voxel will not change, and can be frozen. In other words, the value of the time of arrival  can 
be calculated, starting from , in a single-pass through the voxels, only by considering, at each iteration, the 

neighbouring voxels of the propagating front. The other voxels (the far set) are not examined. Figure 2(a) 
schematises this front propagation scheme. The fast-marching algorithm is summarised in the appendices. 

The crucial step in this front propagation is the computation of the distance between the front and the 
neighbouring voxels in the trial set. In our case, this distance is anisotropic, and we cannot use the standard 
methods, because they rely on the assumption that the gradients of  are parallel to its geodesic lines (see [23] 

for further details). To account for the anisotropy, we consider a set of simplexes (triangles) that cover the whole 
neighbourhood around a voxel of the narrow band [29], and minimise the distance function between the 
simplexes and that voxel (see Figures 2(b) and 2(c)). The introduction of these simplexes allows to describe the 
trajectories on a continuous rather than a discrete grid. The definition of a simplex neighbouring a point  is 

simply a set of three points  that are 26 neighbours of , defining a triangle that we denote . 

There are 48 such triangles around  for the 26 connexities (Figure 2(c)). The procedure for computing the 

anisotropic distance between the propagating front and the voxels in the trial set is given in the appendices. 

During the updating procedure, the time of arrival at a voxel  of the trial set is calculated from its neighbours 

on a simplex using an approximation (strictly speaking, two approximations!). Normally, if the geodesic passing 
by  comes from simplex , then the time of arrival is given by 

We use a parametric approximation to this formula, given by the minimisation of the following function: 

where  is the quadratic norm with respect to the metric  and . Equation (8) follows the 

approximations of Tsitsiklis [28]. Term (I) approximates the distance from the starting point  to the simplex 

centre of mass  as a weighted sum of the distances to the nodes of the simplex. Term (II) approximates the 

remaining distance by considering the local metric as being constant, equal to its value at . 

Minimising  in the simplex can be written as a constrained optimisation problem that can be solved explicitly, 

since  and the simplex are convex. The analytical solution is detailed in the appendices. 

2.3. How to Choose the Metric?

In the GT framework, we make the hypothesis that white matter fibres are geodesics with respect to a metric 

tensor. But so far, we have not specified which metric tensor we mean. In DTI, the inverse tensor ( ) 

seems to be the natural choice. Intuitively, water molecules diffusion is faster along the tract than across them. 
When inverting the diffusion tensor, the highest eigenvalues become the lowest, and the shortest distance is 
parallel to the fibres. One can also notice that the inverse tensor defines a metric in a Riemannian space that 
induces a Laplace-Beltrami operator (generalisation of the Laplace operator) which is encountered in the diffusion 
equation [25, 34]. 

However, the inverse tensor is not suitable in all circumstances. Consider the situation described in Figure 3 were 

 

Figure 2: (a) Grid representation of the different sets involved during the fast-marching 
algorithm. (b) Position of the optimal point on a simplex such as to minimise the geodesic 
distance to . (c) Geometry of the 48 simplexes surrounding a voxel (central grey dot). The 
little red dots represent the centres of the 26 neighbouring voxels.

(6)

(7)

(8)



a circular tract of radius  connects points A and B, with diffusion tensors tangent to the tract having the same 

shape. Suppose the rest of the space is isotropic, with the same mean diffusion as along the tract. If one 

considers the inverse tensor metric , the distance between A and B through the circular path is

where  is the largest eigenvalue of the tensors along the circular pathway. On the other hand, the straight line 

distance between A and B is equal to . Hence, a necessary condition for the circular tract to be a 

geodesic is that its length is smaller than a straight line, that is, 

which leads to , that is, a condition on the tensor shape to be peaky enough. Of course, one 

can imagine that even if this condition is satisfied, a geodesic path might certainly lie somewhere in between a 
straight line and the circular line, as shown in Figure 4. Which metric to choose is hence still debatable. 
Nonetheless, in our simulations and real data applications, we will use the inverse diffusion tensor as a metric for 
defining geodesics. 

3. Applications

3.1. Simulations

We have evaluated the GT method on simulated data. The purpose of these simulations is twofold. First, they 
show how the anisotropic fast-marching algorithm performs on elliptic media, in both homogeneous field (where 
the analytical solution is available) and a heterogeneous field. Second, they allow to compare GT with 
streamlining in cases where the data present local perturbations (crossing fibres). 

In a homogeneous medium, where the data support the same diffusion tensor  in every voxel, the analytic 

solution to the Eikonal equation is given by 

It is easy to check that in this case,  and . We generated a tensor where the two smaller 

eigenvalues are equal, and gradually increased the anisotropy. Figure 5 shows the level curves of the analytic 
versus the numerical solution to the Eikonal equation. The two solutions are very close even for a large 
anisotropy, corresponding to a ratio of 50 between the largest and the lowest tensor eigenvalues. Table 1 
summarises the mean and standard deviations of the relative error for different values of the anisotropy, which is 
expressed both in terms of the ratio between the largest and the lowest tensor eigenvalue, or in terms of the 
more widely used fractional anisotropy (FA, see, e.g., [35]). 

In a heterogeneous medium, such an analytical solution does not exist. However, we can verify that the Eikonal 

equation is satisfied, that is,  is equal to one. We used the same circular tensor field as shown in Figure 

4. In Table 1, we show the mean and standard deviations of  for different anisotropies. Notice that these 

are close to one, but with a higher deviation from one with increasing anisotropy. 

Finally, we show results of GT in the case of local perturbations. We generated a tensor field simulating a 
crossing fibre situation. The zone where the two fibres cross has a diffusion tensor that is the average of the two 
crossing fibres' tensors. We increased the crossing fibre area and compared the behaviour of GT to streamlining 
tractography (Figure 6). As expected, because the streamlining simply follows the direction of highest diffusion 
given by the tensor, the fibre trajectory was deviated. In the case of GT, there was little, if any, deviation from 
the straight line. 

 

Figure 3: Comparison between a straight line and a geodesic.

 

Figure 4: (a) Simulated circular tensor field. (b)–(f) Increasing the anisotropy of the circular 

tensor makes the geodesic path (red line) closer to a circle.

 

Table 1: Summary of the simulation results with an increasing ratio between the largest and 
the lowest tensor eigenvalue (the corresponding FA value is shown on the second row). 
Top: mean and standard deviations of the relative error between numerical and analytic 
solutions for the Eikonal equation in a homogeneous medium. Bottom: mean and standard 
deviations of the value of  in a circular tensor field. 

 

Figure 5: Contour plots of the numerical solution (top) and the analytic solution (bottom) to 
the Eikonal equation in a homogeneous medium. Anisotropy levels are increasing from left 
(isotropic) to right (ratio of 50 between the extreme tensor eigenvalues). 

(9)

(10)
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3.2. Real Data

Acquisition  
 
Data from a single healthy subject were acquired at Service de Neuroradiologie (CHNO des Quinze-Vingts, Paris). Six 
gradient weighted and one T2-weighted images were acquired on a 1.5 Tesla MR Scanner (GE Signa) using the 

following scan parameters:  image matrix,  in-plane pixel size;  slice thickness; ; 

 milliseconds; Number of averages = 8. Thirty-six contiguous slices covering the whole 

brain were acquired. The total scanning time was approximately 14 minutes.  

Regions of Interest  
 
Five hundred and sixty-seven ( ) regions covering the whole cortex were manually selected in the DTI 

space. Each region was represented by a single voxel. The anatomical localization of these regions is shown in 

Figure 7. We performed a front propagation from each region, which provided the distance functions . Then 

back propagation allowed us to construct the  geodesics connecting the whole set of voxel 

pairs. We computed a heuristic connectivity index consisting of the mean diffusivity along each geodesic, 
multiplied by the mean FA along the pathways. 
 
In order to better visualize this anatomical connectivity index in a matrix form, the set of brain regions were 
grouped with respect to their localization. The regions were divided into five groups, including the frontal lobe 
(left: 99 voxels, right: 101 voxels), the limbic cortex (left: 31, right: 30), the occipital lobe (left: 56; right: 54), the 
parietal lobe (left: 64; right: 62), and the temporal lobe (left: 34; right: 36). This classification was based on an 
automatic labelling of the voxels locations given by the Talairach Daemon (http://ric.uthscsa.edu/projects/tdc), 
after registering the DTI data into the MNI standard space, and subsequent correction from MNI to Talairach 
space (see, e.g., [36]). Figure 8 shows the distribution of the connectivity index, in the matrix form, between any 
two regions, arranged by group and by hemisphere. 
 
The matrix shown in Figure 8 reveals an organization of the connectivity index that follows the anatomical 
organization of the brain regions regarding their locations. Since the connectivity index encompasses the 
anisotropy factor, its value highly depends on which regions we are connecting, which means which global 
pathways the geodesics are close to. 
 
First, the diagonal blocks of the matrix show clearly a lower level of connectivity than the extradiagonal blocks. 
This seems to indicate that the connectivity index penalises short fibers, and inversely favors long fibers, 
especially interhemispheric fibers. Secondly, the blocks that show the highest connectivity index are the blocks 
that connect the right and left occipital lobes. 
 
This result is not surprising since the fiber tracts that connect right and left occipital lobes follow a trajectory 
through the splenium of the corpus callosum (forceps major), which is a highly anisotropic area.  

Geodesics  
 
We further investigated which of the constructed geodesics may represent actual fiber trajectories. To approach 
this question, we thresholded the connectivity matrix in order to emphasize the geodesics with the largest 
connectivity indices. Specifically, we considered the  geodesics with the highest connectivity indices for each 

interhemispheric block connecting symmetrical groups, taken independently. Figure 9 represents each group of 
geodesics in different colors. The most probable geodesics paths follow the principal long association fasciculi. 
The frontal lobe is connected to the occipital lobe via the fronto-occipital fasciculus. The temporal lobe is 
connected to the occipital via the inferior longitudinal fasciculus, and to the frontal lobe via the uncinate 
fasciculus. All major long association tracts are represented by these geodesics.  

Geodesics versus Streamlining  
 
Finally, in order to compare the results of our method to a conventional fiber tracking method, we performed a 
streamline tractography from the  seed voxels, with four tracts per voxel. As a stopping criterion, we chose a 

maximum step angle of , and an anisotropy threshold of  [19]. To compare the results to GT, we selected 

the four geodesics, having the highest probability index, for each voxel in the set of seed voxels. This way, we 
have the same number of tracts using both methods (  tracts). Figure 10 shows the results of these two 

procedures. The streamline method produces many incomplete tracts, especially association tracts, while the 

 

Figure 6: Comparison between streamline (top) and geodesic (bottom) tractography in the 
presence of a crossing fibre bundle, the width of which increases from zero (left) to twice the 
width of the principal bundle (right). Note how streamlining gets deviated from the straight 
line because of partial volume effect. 

 

Figure 7: Localisation of the regions of interest on the cortex. 3D fronto-sagittal view. 

 

Figure 8: Anatomical connectivity matrix rearranged into anatomical groups: F (frontal lobe), 
L (limbic), O (Occipital), P (parietal), T (temporal). In each group, the left and right 
hemispheres are also separated.

 

Figure 9: (a)  most probable intrahemispheric geodesics shown in the left hemisphere. 
Blue paths connect the occipital lobe to the temporal lobe. Purple paths connect the frontal 
to the occipital lobe. Green paths connect the frontal lobe to the temporal lobe. (b)  
most probable interhemispheric geodesics connecting symmetrical regions. Green: frontal 
lobe, red: limbic lobe, brown: occipital lobe, blue: parietal lobe, yellow: temporal lobe. 



proposed GT method succeeded in reconstructing the major association and commissural tracts, including the 
uncinate, the inferior fronto-temporal, and the callosal fibers. Note that the fronto-occipital tract is not present at 
this level of threshold (we only considered four geodesics per voxel).  

4. Discussion

Global optimisation is a valuable strategy in the context of path planning. When one has the information of where 
to start and where to go, this information is used to overcome local poor optimality. In the context of white 
matter diffusion-based tractography, where we often have strong hypotheses about the localisation of the 
regions in the brain, global optimisation can overcome some serious weaknesses of the process. Mainly, 
uncertainty about local fibre orientation, reflecting partial volume effects caused by crossing fibres, or local low 
signal to noise, can be handled efficiently using GT. 

We have presented here a method to perform such global-based path planning in an anisotropic medium. The 
method is very robust to high anisotropy, and provides an extremely accurate numerical solution to the Eikonal 
equation. 

On real-data experiments, the reconstructed geodesics that have a high connectivity index correspond to known 
fiber tract fasciculi connecting the cortex. These fasciculi can all be retrieved by other tractography methods that 
use DTI data, providing priors on their location using one or more regions of interest [37, 38], especially 
intermediate regions located in white matter. GT automatically depicted these fasciculi with no prior. 

However, the U-shaped fibers, that is, the short association tracts, are not favored by our connectivity index. This 
can be easily seen by looking at the diagonal blocks of the matrix in Figure 8. The long association tracts, as well 
as the commissural fibers, are more present with a higher connectivity index. 

GT also allows one to construct interhemispheric tracts between each pair of regions located in different 
hemispheres. These tracts include homotopic and heterotopic connexions, that is, tracts connecting, respectively, 
symmetrical and asymmetrical regions lying in different hemispheres. It is worth noting that standard 
tractography methods usually fail to recover most callosal connexions, apart from the medial ones. This is a good 
illustration of the problem of crossing fibres, as those connexions cross the superior longitudinal fasciculus. 
However, recent probabilistic tractography with more complex local models has successfully traced those types of 
connexions [14, 20, 21]. 

There is an intuitive relationship between geodesic, for the inverse tensor metric, and probabilistic 
tractographies. Probabilistic tractography consists of constructing a distribution of connexions, by sampling tracts 
using local orientation distributions. In the basic case where this local probability model for fibre orientations is 
defined using the tensor model (i.e., a Gaussian local model with a covariance matrix proportional to the diffusion 

tensor ), the probability of a tract following an orientation given by  at a location  writes

then, for some pathway  connecting  to , and for some discretisation of this pathway, the probability of 

moving along  is the product of the infinitesimal step probabilities:

Maximising this probability could then be related to minimising the geodesic distance, relative to the inverse 
tensor metric. While the probabilistic method gives a distribution of connexions, GT gives the mode of this 
distribution, that is, the path with highest probability. Note also that the probabilistic model given by (12) can be 
improved to fit the data more accurately (e.g., multiple tensors, etc.), which can be seen as a change in the 
metric tensor in GT. 

Using GT, it is possible to study the organisation of large brain networks in terms of their anatomical connexions. 
Such networks have been studied in terms of structural invariants in a graph theoretical framework by several 
authors [39–41]. These works have been conducted for studying the structural organisation of the cat or 

primate brain, as well as for the human functional brain organisation, but have never been applied to large 
human anatomical networks, because no method has been proposed to construct such networks. GT could 
provide this structural information, via a graph that has been thresholded or not, since the connectivity index in 
itself contains information about the connectional structure. 

There are two major issues when using geodesics for the tractography. First, choosing a metric for which 
geodesics represent fibre pathway trajectories is not straightforward. The correct metric might show more 
anisotropy than the diffusion tensor, as discussed earlier. Also, the choice of the metric might depend on the 
white matter fibres under investigation. The second issue is that, for any pair of regions in the brain, there exists 
a geodesic between those regions. However, this is not true for white matter fibres. One then has to decide 
when a geodesic is a fibre trajectory, for example, by defining indices and performing statistical thresholding 
under some null hypothesis. This problem of thresholding tractography results is not specific to GT, but is met by 
any other tractography method. It is though a bigger problem in the case of GT because every pair of regions is 
potentially connected. Another problem with GT is that, in the presence of two separate connexions between two 
regions, we are only able to detect one of them (the shortest one in terms of geodesic distance). 

One way to validate GT results would be by comparison with another measure of connectivity. For example, 

 

Figure 10: (a) Results of the streamline tractography algorithm applied to the set of brain 
voxels. Four streams per voxel are computed. The stopping criteria are  for the maximal 
angle step, and  for the minimal anisotropy value. (b) Geodesics computed by the GT 
method. For each brain voxel of the set, four geodesics with the highest probability index 
are shown. 

(12)

(13)



measures of functional connectivity using functional magnetic resonance imaging (fMRI) by means of correlations 
[42] or partial correlations [43] are thought to be closely linked to the anatomical structure sustaining the brain 
regions, seen as graph nodes. The GT technique provides a unique tool for performing a comparison between 
anatomical and functional connectivity, since it can apply to large networks, and provide a measure of anatomical 
connectivity between each pair of nodes of the brain network. It can readily be used to compare the 
architectures of brain networks that have been studied in humans from the functional perspective (e.g., Salvador 
et al. [44] used partial correlations of fMRI data on a set of 100 regions), or using voxel-based morphometry to 
correlate cortical thickness between different cortical areas (e.g., He et al. [45] used this technique to study 100 
cortical areas in humans). Such investigations have considerable possible applications, both cognitive and clinical. 
On the one hand, this method could serve as a basis for comparing anatomical and functional connectivities, as 
said earlier, and could help to understand how the brain works as an evolving network. On the other hand, the 
structure of restricted networks has already helped to distinguish between healthy subjects and patients, for 
example, Alzheimer disease in the case of functional connectivity [46], and Schizophrenia in the case of white 
matter morphology [47]. The GT method could serve for the characterisation of the structural organisation of 
those brain networks in terms of their connectional fingerprints. 

Appendices

A. Algorithms

Algorithm 1. Fast marching algorithm  

Definition 1s. Let Known be the set of points whose -value has been computed and will not change. Let Trial be 

the set of voxels that are being examined (26-neighbourhood of Known), and let Far be the set of voxels that 
have not been examined yet. Finally, if  is a set of voxels, let  denote the number of voxels that belong to . 

 

 
 

Algorithm 2. Updating procedure for the distance function  at voxel  : 

 

 

B. Explicit Solution for the Updating Procedure 

Here we provide an explicit solution for the minimisation problem formulated in (8). Recall that the problem was to 
find the minimum, inside a simplex, for the following expression:

In order to simplify the notations, and considering that , we will use the following: 

The function  depends simply on  and : 

 is differentiable and convex, it is then minimal when . When constraining the minimum to lie inside the 

simplex , the solution is either that for which the gradient is zero, if it lies inside , or it is on the edges of  if the 

gradient is zero outside the simplex. In the latter case, the minimisation problem is 1D, and the solution simplifies 
greatly. 

First, let us write the unconstrained solution:  implies

This equation means that the minimum of  lies on the straight line defined by the equation . This 

simplifies the problem, as the problem is again 1D if we replace  by the function  which expression 

depends on the values of  and . 

(i) Initialization: 

(a)

(b)

(c)

move  to Known and set , 

move to Far every  such that  and set , 

update  in the neighbourhood of  using Algorithm 2, 

(ii) While : 

(a)

(b)

(c)

search for the voxel  in Trial with the smallest value of , 

move  to Known, 

update  in the neighbourhood of  using Algorithm 2.  

   (i) for all  in the 26-neighborhood of  and ,

(B.1)

(B.2)

(B.3)

(B.4)

 (i) If , 



In the last case, the problem reduces to minimising a 1D function of the form , in which 

case the solution writes

where  and . 

Finally, if the solution given by the above lies outside the simplex (i.e., ), then we minimise  on the edges 

of the simplex, which is again a 1D problem. This is equivalent to setting one of the  to zero, and keeping 

the results which minimises : 
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