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Abstract

As a consequence of misspecification of the hemodynamic response and noise variance models, tests on general 
linear model coe cients are not valid. Robust estimation of the variance of the general linear model (GLM) 
coecients in fMRI time series is therefore essential. In this paper an alternative method to estimate the variance 
of the GLM coe cients accurately is suggested and compared to other methods. The alternative, referred to as the 
sandwich, is based primarily on the fact that the time series are obtained from multiple exchangeable stimulus 
presentations. The analytic results show that the sandwich is unbiased. Using this result, it is possible to obtain 
an exact statistic which keeps the 5% false positive rate. Extensive Monte Carlo simulations show that the 
sandwich is robust against misspeci cation of the autocorrelations and of the hemodynamic response model. The 
sandwich is seen to be in many circumstances robust, computationally efficient, and flexible with respect to 
correlation structures across the brain. In contrast, the smoothing approach can be robust to a certain extent but 
only with specific knowledge of the circumstances for the smoothing parameter. 

1. Introduction

Brain activity maps from functional magnetic resonance imaging (fMRI) time series are becoming increasingly 
important in the cognitive sciences [1]. An fMRI brain activity map contains thousands of volume elements 
(voxels) that make up the entire brain. For each of these voxels a blood-oxygenation level dependent (BOLD) 
time series is available. In order to increase the signal-to-noise ratio, exchangeable stimuli are repeated several 
times in experiments [2]. Since there are many voxels, analyses are often performed voxelwise to decrease 
computational load (mass univariate approach). In the general linear model (GLM), the time series of each voxel 
is represented by a linear combination of modeled time series corresponding to a condition or effect [3]. 
Amplitude coefficients and their variances are then computed such that hypothesis testing can be performed on 
(a function of) these coefficients to, for example, test between conditions. This paper is about estimating the 
variance of the amplitude coefficients as accurately as possible such that hypothesis testing is valid. 

Hypothesis tests on functions of parameters are greatly influenced by the estimate of the variance of the model 
parameters, which in turn is greatly influenced by the autocorrelations of the time series [1, 4, 5]. Generally, two 
approaches to estimate the variance of the coefficients can be distinguished: (i) transforming the data such that 
the time series becomes uncorrelated or “white,” and (ii) transforming the data such that the data are smoothed 
or “colored,” and then using the known, smooth structure for variance estimation [6, 7]. In prewhitening, on the 
one hand, a model for the autocorrelations of the time series is used which should render the data uncorrelated 
[8]. Often an autoregressive (AR) process is used [9], but many other strategies exist [10–13]. The advantage of 
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prewhitening is that the obtained variance estimate is the smallest compared to all other unbiased estimates 
[14]. However, this advantage holds only if the model for the correlation structure is correct [7], which is, of 
course, difficult to maintain. It has been suggested that accounting for bias due to autocorrelations is not 
required because the estimates did not improve enough [7]. However, Marchini and Smith [7] did not consider an 
incorrect correlation structure, only bias due to limited length of the time series. Precoloring, on the other hand, 
has the advantage that the assumed correlation structure need not be correct [4]. A disadvantage is that a 
smoothing parameter of, for example, a Gaussian kernel needs to be chosen (see, e.g., [15]). Such a decision can 
influence the quality of the variance estimate [7, 13]. Another disadvantage of the smoothing approach is that 
high-frequency components in the data can be attenuated [11]. 

In addition to misspecification of the autocorrelations, the model for the hemodynamic response is also likely to 
be incorrect [16]. This means that the residuals contain misspecification which is carried into the estimator of the 
variance of the GLM coefficients. It is therefore important to take such misspecification into account in any 
statistical analysis of fMRI time series. Recognizing that any model is strictly incorrect, it makes sense to consider 
the degree of misspecification; that is, the difference between the truth and its approximation is important 
instead of the actual model used. 

I agree with Friston et al. [4] that robust variance takes priority over efficient variance, regardless of whether the 
model for the correlations is correct or not. However, optimally a robust variance estimate should also be able to 
adapt to local variations of correlation structure. Variation of correlation structure exists across different locations 
of the brain [9]. A variance estimate like the smoothing approach that works well on average of brain locations 
can therefore be improved. I suggest a robust variance estimate based on the residuals but taking into account 
the individual replications or events. This variance estimate adapts to correlational changes, is computationally 
efficient, and is robust. I show that this robust variance estimate is unbiased and as a result can be used for 
hypothesis testing even with few replications. 

The paper is organized as follows. Section 2 introduces the differences between the true underlying process and 
the GLM, the working model. This section also discusses existing methods of estimating the variance of the 
coefficients and introduces the new, robust variance estimate. Subsequently, hypothesis testing is discussed for 
the different estimators. In Section 3 extensive Monte Carlo simulations are discussed to show how the different 
estimators perform in different circumstances for blocked and event-related designs. 

2. Model Specification and Misspecification

In model specification a data generating process (DGP) is assumed to exist. This DGP is in general unknown and 
is therefore approximated by a working model. Such an approximation can be misspecified in at least two ways: 
(i) the model for the mean can be incorrect, and (ii) the model for the autocorrelations noise can be incorrect. An 
example of a misspecified model for the mean is using a gamma function as a model for the hemodynamic 
response when the BOLD response is in fact generated by the balloon model; see, for example, [16]. An example 
of misspecification of the autocorrelations is using an autoregressive model for temporal correlations, when the 

correlations are actually  [1]. First, statistical assumptions of the DGP are described followed by 

misspecification of the GLM for fMRI data as a working model. 

Data of  time points or scans are available measured on  independent trials or replications. The 

data are collected in the -vector . The DGP for  is , where  is an unknown (non)linear, 

nonrandom function with fixed regressors  and unknown parameters . The noise  has joint 

distribution function  with mean zero and unknown variance  for  and zero otherwise. So, 

there is autocorrelation, but no correlations among replications. 

The working model specifies an approximation to the DGP for the mean and the variance of the data. In the GLM 

a linear function  is used as an approximation to the mean , where  is a  matrix and  a -

vector of coefficients. The noise is assumed to have temporal correlations but remains unspecified for the 

moment. Then the working model on replication  is , where the residual  contains 

both the modeling error  and noise . The variance of the residual  is again  since the modeling error 

is fixed (but see below for the estimated residual). The model  could correspond to the mean of the DGP, that 

is, , but in general they are different. It is assumed that the matrix  has full column rank, , such 

that  is nonsingular. 

The main parameters of interest in fMRI are the amplitude parameters  of the BOLD response time series. To 

model the delayed response, a hemodynamic response function (HRF) is used, convolved with the stimulus 
presentation timing of the experiment. A possible HRF used in analyses is a double gamma function [17, 18]. The 

stimulus (“on-off”) function is given by  for all time points  that the stimulus is present and zero otherwise. 

An example of the convolution of the time series is given in Figure 1, where conditions A and B are the same 
except for presentation times. The experiment can either be event related or blocked [1, 19]. In an event-related 
design each presentation in a sequence can belong to any of the conditions, whereas in a blocked design a 



sequence of presentations for a particular condition is given in blocks (see, e.g., [1, 20]). An example of each is 
given in Figure 1. The convolutions form the columns of the design matrix . The design matrix  can also include 

temporal derivatives to account for latencies in the BOLD signal [21, 22]. 

When the coefficients are estimated, a function of the estimate  is usually tested, which is called a contrast. The 

variance of a contrast  is then . A possible test of the contrast is the -test 

where  is a factor to obtain the correct null distribution for the hypothesis  [18]. This statistic is 

approximately  distributed with degrees of freedom dependent on the estimate of the contrast variance. It is 

clear from the definition that the statistic, and therefore the false positive rate, is directly influenced by the 
contrast variance. This paper is about finding a robust estimate of this contrast variance such that inference 

concerning  through hypothesis testing is valid. 

2.1. Estimation

A general way of estimating the coefficients and their variance is explained, after which four different methods of 
defining an estimator are discussed. This follows mostly the presentations of [7, 12]. The four methods are also 
summarized in Table 1. 

Let  be a nonsingular  matrix and premultiply the data, model, and residual with  such that . 

Then the variance of the residual  is . The least squares estimate is , where 

. Because the HRF model is misspecified,  is biased, that is, 

The mean  can be described as a least squares approximation to the unknown function , which is very 

different from linearization of  in terms of a first-order Taylor expansion. The main difference between the 

least squares and Taylor approximation is that the first describes the nonlinear function on the whole range of , 

whereas the latter is accurate only in a neighborhood of a specific  (see [23] for more details on this). The 

variance of  is 

Given , an estimate of the residual is given by 

where  and . The mean and variance of the estimated residual are
 

where . These results are different from other derivations in three ways (see, e.g., [6, 7]): (i) the 

 

Figure 1: Convolution of the HRF and the stimulus function for an event-related (a) and a 
blocked design (b). Stimulus presentation latencies for condition A (solid blue) are indicated 
with filled circles, and open circles for condition B (dashed red). Parameters of the HRF are 
taken from [18].

 
Table 1: The four methods of estimation and their corresponding variance.
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estimator  is biased because the incorrect model is used for the mean, (ii) the expectation of the estimated 

residual is not zero because  is biased, and (iii) the variance of the estimated residual  contains two terms, 

one with the design matrix  and one without , because the number of replications is taken into account. 

Especially this last point will be used to our advantage, as described below. 

The objective is to obtain an unbiased estimate of  without any additional modeling of the 

autocorrelations. So, we set  and obtain the so-called ordinary least squares estimate . If we plug in (5) 

into (3), we see that only the second part containing  will remain because . So, we need an estimate of 

 to make this work. Suppose that we use 

From the variance of the residual in (5) it can be seen that for the expectation of  we have 

Then we have for the variance of  

as required. It works because of the two-part variance in (5), and there are two parts in the variance because 
we took into account the number of replications obtained in the experiment. This estimator is for obvious reasons 
sometimes referred to as the sandwich estimator [24]. In general the sandwich can be shown to be consistent; 
that is, the estimator will be correct for large  [23]. In this particular case where the design matrix is fixed, the 

sandwich estimator is even unbiased, which is usually not the case. As a consequence, the sandwich is accurate 
for few number of replications . The fact that the sandwich is unbiased without any specification of smoothing or 

a model for the noise correlation structure is especially appealing. Another advantage is that because the 
residuals are used, the sandwich estimator adapts itself according to the correlation structure of each voxel. So, 
it is flexible, computationally efficient, and robust. These facts of the sandwich can be used to create an exact 
test, shown in the next section. 

Three other common estimators of  will be discussed briefly for comparison. The simplest one is ordinary 

least squares (OLS). It is obtained by assuming that the noise variance is  and setting . Then the 

variance of the OLS estimate  is obtained by estimating the scalar noise variance , which is estimated by the 

sum of the squared residuals [1]. The OLS estimator of the variance of  is then . This estimator is 

biased because the estimator  is biased because from (4) we have . It is well 

known that if there are autocorrelations, then OLS will lead to variance estimates that are too small (see also 
simulation section below); see for example, [4, 25, 26]. 

The second estimator is called (feasible) generalized least squares (GLS). It is obtained by assuming that there 

are autocorrelations and these are estimated. Then set  such that the estimate of the noise variance is  

[8]. The variance of the GLS coefficient  is often written as a product of a scalar variance and a correlation 

matrix, . Then the estimate of  using  in the residuals is obtained similarly to OLS and is referred to as 

. The correlation matrix  can be estimated by any number of suggested algorithms. Often an AR( ) process is 

assumed for  with  [9, 18], or sometimes higher [27]. Other GLS methods include transforming the time 

series to the frequency domain [10–12] and transforming the time series to the wavelet domain, retaining the 

correlation structure to obtain an estimator for  [13]. The variance of the coefficient  estimated by GLS is 

. It is known that if the model for the variance is correct, then GLS is most efficient; that is, the 

estimator attains the Cramér-Rao lower bound of the variance of all unbiased estimates [14]. The problem is that 
it is very difficult to find an unbiased estimate of , even for large time series (large , note the difference in 

asymptotics with the sandwich), not in the least because the model used for the temporal correlations is incorrect 
[4, 28, 29]. If no correct model is known, then GLS could lead to very inaccurate variance estimates for the 
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coefficients . Friston et al. [4] show clearly that assuming an incorrect model for the noise correlations can lead 

to variance estimates that are too high or too low (see also the section Monte Carlo Simulations). 

The third estimator is called the smoothing approach, sometimes called precoloring. It is obtained by assuming 

that , with  a correlation matrix, and setting  such that  [30]. So, the temporal correlations in 

the time series are dominated by a smoothing matrix  such that the true temporal correlations become 

irrelevant to estimating the variance of the coefficient . Then  is estimated by , which is the average 

squared residuals divided by the degrees of freedom [30]. The estimator  is biased if  is biased. The 

correlation matrix  can be estimated, which can be done in the same manner as described above for GLS, for 

example with an AR( ) model [18]. The variance estimator for the coefficient  using a smoothing matrix  is (3) 

with , which is referred to as . The smoothing matrix is often generated by the Gaussian function 

, where  is the row,  is the column of , and  is the variance [31]. Suggested values for  

are 4 to 8 s . An advantage of  is that it is robust against using an incorrect model for , which is likely to be the 

case. However, it is in general difficult to set  such that  for each correlation structure [7]. Friston et 

al. [4] suggest a bandpass filter for  which minimizes the the squared difference for a contrast between the true 

and estimated variance over all possible (autoregressive) correlations in the time series. This will result on 
average in a reasonable estimate for all voxels with different correlation strengths which is computationally 
efficient. Optimally, however, one would like to use the same estimator for each voxel that somehow adapts to 
the particular correlation strengths of that voxel. 

2.2. Hypothesis Testing

Contrasts are used to create a function of the coefficient that will allow to test for differences between 

conditions. For example, a single contrast could be , to test between the amplitudes of different 

conditions. An -test can be used to test the null hypothesis  against the alternative . 

Depending on which estimator for  and which variance estimate is used, a specific -test will result. For the 

simple contrast like  and  the -test is the square of the -test. In general, for a set of  

independent contrasts, collected in the  matrix , the -test is [32] 

which under  is distributed approximately as  with degrees of freedom dependent on the statistic for the 

variance  (see Table 1). If OLS or GLS is used, then the statistics  and  are approximately  

distributed. If the smoothing approach is used, then usually the so-called Satterthwaite approximation  to the 

degrees of freedom is used, which depends on both the autocorrelation and the design [7, 30]. So, for the 

smoothing approach, the statistic  is approximately  distributed. Finally, if the sandwich estimator is 

used, an exact test  exists which is  distributed, provided that the data are multivariate normal, that 

is, if  (see appendix for details on this). The degrees of freedom do not contain the length of the 

time series ( ) because the correlation structure of the time series is entirely estimated from the information of 

the replications. The fact that it is an exact test means that even for very small number of replications  the  

statistic is very accurate, that is, has a false positive rate of 5%, say. The assumption of multivariate normal noise 
in fMRI is important, of course, and has been investigated. It appears that the assumption of Gaussian noise is 
valid in general for low and high signal-to-noise ratios and is very accurate when considering difference images, 
as is often the case in fMRI analyses [33]. 

3. Monte Carlo Simulations

In this section Monte Carlo simulations are used to show in which circumstances each of the four variance 
estimates works best. This is done by considering four variables: (i) the autocorrelation of the time series, (ii) 
misspecification of the correlation structure, (iii) misspecification of the mean model, and (iv) the type of design. 
The focus of these simulations is on model misspecification instead of specific models for the HRF and 
autocorrelations. In so doing the results of these simulations apply to many different situations with different 
models but similar misspecification. 

3.1. Data Generation

A time series is created of fMRI data of length  seconds. The data generating process is linear in the 

parameters, . The columns of the design matrix  are generated according to the double 

gamma function and represent time series corresponding to two different experimental conditions A and B of 
either an event-related or a blocked design [3]. The event-related design was generated using random stimulus 
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presentations with 8 presentations per condition in the 100 second interval with the constraint that the 
interstimulus interval was at least 2 seconds. In the blocked design there was one block for each of the two 
conditions with 10 stimulus presentations in each block. The exact designs used are shown in Figure 1. The 

parameter  represents the amplitude of the BOLD response corresponding to a condition. Noise  is added to 

the signal  which is  for  with . The correlation matrix  is induced by either an AR(

) or AR( ) process, which are, respectively,  and , where  is 

white noise [35]. The coefficients of the AR( ) process have been sampled from the upper right quadrant of the 

stationary area:  [35]. A single parameter is created to indicate strength of dependence in the time 

series , which is varied from  to , with  at most 0.1 larger than . This also reflects the possible 

differences in correlation structure as found between voxels. The variance of the time series at  is taken as 

. Then the data are  for . The variance of the noise is set such that the signal-to-noise 

ratio (SNR) for the time series is approximately one for the average over replications. This is achieved by 
multiplying the variance of the noise by the number of replications. As a consequence the number of replications 
is irrelevant; only the SNR is important which is set at an appropriate low level (see [36]). 

3.2. Estimation

Estimation with the working model  is performed using a different HRF, , which is a single gamma 

function [1]. The resulting time series form the columns of  in the working model, such that , and as a result 

. The main difference between the functions is that there is no undershoot using the single gamma function. 

Additionally, a parameter is varied in the single gamma function to vary the degree of misspecification. At the 
largest misspecification this induces a reduction of amplitude to about 30% and a delay of about 2 seconds, 
shown in Figure 2. To quantify the difference between the DGP and working model, the relative difference 
between the functions is computed, defined as the sum of the absolute difference between the functions divided 
by their sum over the whole range. This relative difference was for the event-related design between 0.072 and 
0.278 and for the blocked design between 0.075 and 0.149. The lowest relative difference is solely due to 
selecting the incorrect single gamma function. The largest effect of misspecification is in the event-related design. 
This is to be expected since the shape of the HRF is more important in event-related designs [1]. 

The misspecification in the correlation structure for GLS and the smoothing approach is created by using as a 
working model an AR( ) instead of an AR( ). The amount of misspecification depends on the correlation strength 

of the generated structure with AR( ); see Figure 2. It is clear that estimating the correlation structure using an 

AR( ) process will capture mostly frequencies around zero, whereas it will represent poorly frequencies further 

away from zero. 

The smoothing approach requires setting the smoothing matrix  by the parameter . The value of this 

parameter depends on both the correlation strength and the design. Therefore, we first looked at the effect on 

the variance estimate for different values of correlation strength  and . As can be seen in Figure 3, there is no 

absolute correct value of  for both event-related and blocked designs and all correlation strengths when only 

the correlation structure is misspecified. The value of  seems to be most optimal in the sense that it is 

robust against correlation strength, especially in the event-related design. This value is used in the simulations 
for the smoothing approach unless specified otherwise.  

To compare the four approaches three measures are discussed: the ratio of estimated to true contrast variances, 

the false positive rate, and power. The contrast tested is . The true contrast variance is obtained by 

computing the variance from the  simulations of the estimate  for each of the methods. Note that the true 

variance is defined differently from that defined in [4], where a second-order approximation to the mean squared 

error was used. The bias formulation ignored stochasticity of the estimated correlation matrix  which was 

approximated to the second order. Let  denote the true variance obtained from the  simulations. The ratio of 

 

Figure 2: (a) and (b) Misspecification of the HRF for condition A with the largest relative 
difference of 0.278 for the event-related design and 0.149 for the blocked design. (c) Three 
spectra of AR processes are displayed as a function of frequency for  [34]. The AR( ) 
process was generated with parameter , and the two AR( ) processes are generated 
with , and .

 

Figure 3: Ratios of estimated and true contrast variance for event-related and blocked 

designs as a function of correlation strength  and smoothing parameter  for the 
smoothing approach.



contrast variance is then . If the estimated variance is good, then the ratio will be 1, it is overestimated 

if the ratio is larger than 1, and it is underestimated if the ratio is smaller than 1. 

The false positive rate or size of a test is the probability of a test to reject the null hypothesis when it is true. The 
false positive rate (FPR) is set at 5%. It is expected that when the contrast variance is underestimated, then the 
FPR will be too high, that is, higher than 5%, and when the contrast variance is overestimated, the FPR will be 
too low. In relation to FPR, power is compared between methods as a function of effect size. Power refers to the 
probability of rejecting the null hypothesis when it is incorrect. Power should be close to 1 given a sufficient effect 
size. Effect size  is here defined as the difference between amplitude parameters divided by the true contrast 

variance. If the FPR is too low, then the power will also be low, and when the FPR is too high, the power will be 
high. 

3.3. Results

We first look at the contrast variance when the assumptions about the correlation structure and HRF are correct. 
Then we determine the effect of misspecification of the autocorrelations on the contrast variance, FPR, and 
power. And finally we look at possible interactions of misspecification of the autocorrelations and the HRF. 

When both the HRF and autocorrelations are correctly specified, all methods should work well, except OLS when 
there are autocorrelations. In Figure 4 it is clearly seen that for the event-related and blocked design both the 
sandwich and GLS perform equally well for any value of . As expected, OLS is close to one only when . In the 

event-related design the contrast variance of the smoothing approach with  is quite close to one, but the 

contrast variance for this  is underestimated in the blocked design. In the blocked design the contrast variance 

is very accurate for all values of  when . So, when the model for the noise variance is correct, the sandwich 

is almost exactly the same as the minimum variance GLS regardless of design. The smoothing approach, on the 
other hand, depends strongly on the design, and different smoothing parameters are required for accurate 
contrast variance estimates. 

If there is misspecification in the correlation structure, then the contrast variance of a robust estimator should still 
be accurate for all levels of correlation strength. It is clear from Figure 5 that now OLS and GLS perform poorly. 
OLS always underestimates the true contrast variance, and GLS either underestimates or overestimates contrast 
variance. Both the smoothing approach and the sandwich are robust for misspecification of the correlation 
structure in the event-related design. However, in the blocked design only the sandwich is robust at all levels of 
correlation strength. As a consequence the smoothing approach has a slightly higher FPR than the nominal 5% in 
the event-related design but a dramatically higher FPR in the blocked design, shown in Figure 6. This was 
expected because from Figure 5 the contrast variance was underestimated, and so the FPR is expected to be too 
high. In contrast, the sandwich has FPR slightly below the nominal 5% in both designs because it overestimated 
the contrast variance slightly. In accordance with the contrast variance and FPR results, the power of the 
smoothing approach is slightly higher than that of the sandwich, as can be seen in Figure 7. The power for the 
blocked design is comparable. 

 

Figure 4: Ratios of estimated and true contrast variance when the correlation structure is 
correctly specified as an AR( ) process as a function of the AR( ) parameter . The methods 

displayed are: OLS (black, dotted line), GLS (green, dashed-dotted line), smooth with  
(red, dashed line), smooth with  (red, long-dashed line), and sandwich (blue, solid line).

 

Figure 5: Ratios of estimated and true contrast variance when the correlation structure is 
misspecified for the four methods for both the event-related and blocked design as a 
function of correlation strength .

 

Figure 6: False positive rate as a function of correlation strength  for the event-related and 
blocked design when the correlation structure is incorrect.

 

Figure 7: Power for the event-related design as a function of correlation strength  and 
effect size .



In addition to misspecification of the correlation structure the HRF model can be misspecified. To look at possible 
interactions with correlation strength, we varied both HRF misspecification and correlation strength. As can be 
seen in Figure 8, for the event-related design the sandwich is more accurate than the smoothing approach, which 
underestimates the contrast variance. But there is only a small effect of HRF misspecification for both the 
sandwich and smoothing approach. For the blocked design, on the other hand, the smoothing approach 
underestimates contrast variance greatly. Accordingly, the FPR of the smoothing approach in the event-related 

design is too low, around 2.5%. This is due to overcompensation of the degrees of freedom  in the smoothing 

approach. When there are no autocorrelations,  is high, and when there are autocorrelations,  is low. When 

the HRF is modeled incorrectly,  is too low so that the FPR is too low. In the blocked design the FPR behaves as 

expected for the smoothing approach: the contrast variance is underestimated which leads to overestimated 
FPR. The sandwich remains in both designs relatively stable around 5%. The power behaves as expected in this 
case (not shown): for the smoothing approach the power is similar to that in Figure 7 for the event-related 
design and higher for the blocked design. The power of the sandwich is similar to that of Figure 7. 

4. Discussion

It has been repeatedly shown that the false positive rate in fMRI brain activity maps can be quite high if the 
assumptions of the method are violated (see, e.g., [4, 7]). Therefore, the robustness of the variance estimator of 
the GLM coefficients is an important issue. It has been shown here that the sandwich is unbiased and accordingly 
an exact -test with the sandwich exists. Additionally, misspecifications in both autcorrelation and HRF model are 

accommodated by the sandwich for both event-related and blocked designs. In contrast, the smoothing approach 
is affected by both autocorrelation and HRF misspecification. Additionally, the smoothing approach requires a 
smoothing parameter which must be specified for each correlation structure to get accurate results. In contrast, 
the sandwich variance has two main advantages to the smoothing approach: (i) the sandwich adapts to local 
changes in correlation structure, whereas the smoothing approach does not, and (ii) no model or parameter 
needs to be determined for accurate results with the sandwich. 

The potential of the application of the sandwich to real data is large. For example, we have applied the sandwich 
to real fMRI data in Weeda et al. [37]. In that paper we took a multivariate approach to model the GLM 
coefficients using Gaussian shaped functions. Using an incorrect shape function and incorrect autocorrelation 
assumptions, we showed that the contrast variance is still accurate of the sandwich. Using the sandwich we 
were able to find a plausible set of areas of brain activity in an auditory task. 

Another area where the sandwich can be used is random effects analysis [38], which is our current work. The 
first level of a two-level random effects model requires only an OLS estimate of the coefficient of each subject and 
its sandwich. Then at the second level, the group effects are estimated with OLS again, and another sandwich is 
formed which is simply the sandwich of the first-level variance with the group design for all subjects. 

Appendix

To prove the distributional result of the statistic  we assume three things: (i) the DGP as stated in Section 2, 

(ii) the working model of Section 2, and (iii) the noise is multivariate normal, that is, . Then, to prove 

that  is central  distributed with degrees of freedom  and , we need to show that (i) the variance  

is Wishart distributed, (ii)  and  are independent, and (iii) the degrees of freedom are  and  (see, e.g., 

[39, chapter 7 and 8]). (i) By Proposition  7.4 of [39] we have that if , then 

, where . So, if  is Wishart distributed, we are done. Rewrite , such 

that if , then . Now  is . This is seen by noting that 

 and , because of the variance of the 

residuals. Then by definition . For (ii), to show independence of  and , it is sufficient 

 

Figure 8: Ratios of estimated and true contrast variance for the event-related and blocked 
design when both the correlation structure and HRF model are incorrect. Two cuts of both 
the sandwich (blue) and smoothing approach (red) variance estimates are shown, at  
and  for event-related, and at  and  for blocked design.

 

Figure 9: False positive rate as a function of relative difference  for the event-related and 
blocked design when both the correlation structure and HRF model are incorrect. The 
correlation strength was .



to show independence of  and . Because the data are normal by assumption, the covariance of  and  

needs to be zero to show independence. Since the covariance of  is , it then follows that  

and  are independent. To show (iii), that the degrees of freedom are  for the numerator and  for the 

denominator, proposition 8.2 of [39] is used. It implies that if  and 

, then . The first part is true under  and from the variance of the 

OLS estimate , and the second part was shown in (i).  

References

1. G. Sarty, Brain Activity Maps from fMRI Time Series Data, Oxford University Press, Oxford, UK, 2006.

2. A. Dale and R. Buckner, “Selective averaging of rapidly presented individual trials using fMRI,” Human Brain 
Mapping, vol. 5, no. 5, pp. 329–340, 1997. 

3. K. Friston, C. Frith, R. Turner, and R. Frackowiak, “Characterizing evoked hemodynamics with fMRI,” 
NeuroImage, vol. 2, no. 2, pp. 157–165, 1995. 

4. K. Friston, O. Josephs, E. Zarahn, A. Holmes, S. Rouquette, and J.-B. Poline, “To smooth or not to smooth? 
Bias and efficiency in fMRI time-series analysis,” NeuroImage, vol. 12, no. 2, pp. 196–208, 2000. 

5. L. Waldorp, H. Huizenga, and R. Grasman, “The Wald test and Cramér-Rao bound for misspecified models in 
electromagnetic source analysis,” IEEE Transactions on Signal Processing, vol. 53, no. 9, pp. 3427–3435, 
2005.

6. K. Friston, A. Holmes, J.-B. Poline, et al., “Analysis of fMRI time-series revisited,” NeuroImage, vol. 2, no. 1, 
pp. 45–53, 1995. 

7. J. Marchini and S. Smith, “On bias in the estimation of autocorrelations for fMRI voxel time-series analysis,” 
NeuroImage, vol. 18, no. 1, pp. 83–90, 2003. 

8. K. J. Worsley, C. Liao, J. Aston, et al., “A general statistical analysis for fMRI data,” NeuroImage, vol. 15, no. 
1, pp. 1–15, 2002. 

9. J. Locascio, P. Jennings, C. Moore, and S. Corkin, “Time series analysis in the time domain and resampling 
methods for studies of functional magnetic resonance brain imaging,” Human Brain Mapping, vol. 5, no. 3, 
pp. 168–193, 1997. 

10. E. Zarahn, G. Aguirre, and M. D'Esposito, “Empirical analyses of BOLD fMRI statistics: I spatially unsmoothed 
data collected under null-hypothesis conditions,” NeuroImage, vol. 5, no. 3, pp. 179–197, 1997. 

11. J. Marchini and B. Ripley, “A new statistical approach to detecting significant activation in functional MRI,” 
NeuroImage, vol. 12, no. 4, pp. 366–380, 2000. 

12. M. Woolrich, B. Ripley, M. Brady, and S. Smith, “Temporal autocorrelation in univariate linear modeling of 
FMRI data,” NeuroImage, vol. 14, no. 6, pp. 1370–1386, 2001. 

13. E. Bullmore, C. Long, J. Suckling, et al., “Colored noise and computational inference in neurophysiological 
(fMRI) time series analysis: resampling methods in time and wavelet domains,” Human Brain Mapping, vol. 
12, no. 2, pp. 61–78, 2001. 

14. T. Ferguson, A Course in Large Sample Theory, Chapman & Hall, Suffolk, UK, 1996.

15. R. Henson, “Analysis of fMRI timeseries: linear time-invariant models, event-related fMRI and optimal 
experimental design,” in Human Brain Function, R. S. Frackowiak, J. T. Ashburner, W. D. Penny, et al., Eds., 
chapter 10, Academic Press, New York, NY, USA, 2nd edition, 2004.

16. K. Friston, A. Mechelli, R. Turner, and C. Price, “Nonlinear responses in fMRI: the balloon model, Volterra 
kernels, and other hemodynamics,” NeuroImage, vol. 12, no. 4, pp. 466–477, 2000. 

17. G. Glover, “Deconvolution of impulse response in event-related BOLD fMRI,” NeuroImage, vol. 9, no. 4, pp. 
416–429, 1999. 

18. K. Worsley, “Statistical analysis of activation images,” in Functional MRI: An Introduction to Methods, P. 
Jezzard, P. Matthews, and S. Smith, Eds., chapter 14, pp. 251–270, Oxford University Press, Oxford, UK, 
2001.

19. K. Friston, P. Fletcher, O. Josephs, A. Holmes, M. Rugg, and R. Turner, “Event-related fMRI: characterizing 
differential responses,” NeuroImage, vol. 7, no. 1, pp. 30–40, 1998. 

20. S. Huettel, A. Song, and G. Mccarthy, Functional Magnetic Resonance Imaging, Sinauer Associates, New York, 
NY, USA, 2004.



21. C. Liao, K. Worsley, J.-B. Poline, J. Aston, G. Duncan, and A. Evans, “Estimating the delay of the fMRI 
response,” NeuroImage, vol. 16, no. 3, pp. 593–606, 2002. 

22. R. Henson, C. Price, M. Rugg, R. Turner, and K. Friston, “Detecting latency differences in event-related BOLD 
responses: application to words versus non-words and initial versus repeated face presentations,” 
NeuroImage, vol. 15, no. 1, pp. 83–97, 2002. 

23. H. White, “Using least squares to approximate unknown regression functions,” International Economic 
Review, vol. 21, no. 1, pp. 149–170, 1980. 

24. K.-Y. Liang and S. Zeger, “Longitudinal data analysis using generalized linear models,” Biometrika, vol. 73, 
no. 1, pp. 13–22, 1986. 

25. J. MacKinnon and H. White, “Some heteroskedasticity-consistent covariance matrix estimators with 
improved finite sample properties,” Journal of Econometrics, vol. 29, no. 3, pp. 305–325, 1985. 

26. H. Huizenga and P. Molenaa, “Estimating and testing the sources of evoked potentials in the brain,” 
Multivariate Behavioral Research, vol. 29, no. 3, pp. 237–267, 1994. 

27. T. Gautama and M. Van Hulle, “Estimating the global order of the fMRI noise model,” NeuroImage, vol. 26, 
no. 4, pp. 1211–1217, 2005. 

28. Y.-G. Wang and X. Lin, “Effects of variance-function misspecification in analysis of longitudinal data,” 
Biometrics, vol. 61, no. 2, pp. 413–421, 2005. 

29. M. Crowder, “On the use of a working correlation matrix in using generalised linear models for repeated 
measures,” Biometrika, vol. 82, no. 2, pp. 407–410, 1995. 

30. K. Worsley and K. Friston, “Analysis of fMRI time-series revisited—again,” NeuroImage, vol. 2, no. 3, pp. 
173–181, 1995. 

31. R. S. Frackowiak, J. T. Ashburner, W. D. Penny, et al., Human Brain Function, Academic Press, New York, NY, 
USA, 2004.

32. G. Seber and C. Wild, Nonlinear Regression, John Wiley & Sons, Toronto, Canada, 1989.

33. A. Wink and J. Roerdink, “BOLD noise assumptions in fMRI,” International Journal of Biomedical Imaging, vol. 
2006, Article ID 12014, 11 pages, 2006.

34. M. Priestly, Spectral Analysis and Time Series, vol. 1, Academic Press, New York, NY, USA, 1981.

35. T. Amemiya, Advanced Econometrics, Basil Blackwell, Oxford, UK, 1985.

36. S. Smith and T. Nichols, “Threshold-free cluster enhancement: addressing problems of smoothing, 
threshold dependence and localisation in cluster inference,” NeuroImage, vol. 44, no. 1, pp. 83–98, 2009. 

37. W. Weeda, L. Waldorp, I. Christoffels, and H. Huizenga, “Activated region fitting: a robust high power 
method for fMRI analysis using parameterized regions of activation,” Human Brain Mapping, vol. 30, pp. 
2595–2605, 2009. 

38. C. Beckmann, M. Jenkinson, and S. Smith, “General multilevel linear modeling for group analysis in FMRI,” 
NeuroImage, vol. 20, no. 2, pp. 1052–1063, 2003. 

39. M. Bilodeau and D. Brenner, Theory of Multivariate Statistics, Springer, New York, NY, USA, 1999.

Copyright © 2009 Hindawi Publishing Corporation. All rights reserved.


