

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1880-313X PRINT ISSN : 0388-6107

Biomedical Research Vol. 30 (2009), No. 3 June pp.189-192

[PDF (531K)] [References]

Photocatalytic bactericidal action of fluorescent light in a titanium dioxide particle mixture: an in vitro study

<u>Hironobu Koseki¹</u>, <u>Koutaro Shiraishi¹</u>, <u>Tomohiko Asahara¹</u>, <u>Toshiyuki Tsurumoto¹</u>, <u>Hiroyuki Shindo¹</u>, <u>Koumei Baba²</u>, <u>Hiroshi Taoda³</u> and <u>Nao Terasaki⁴</u>

1) Department of Orthopedic Surgery, Graduate School of Biomedical Science, Nagasaki University

2) Industrial Technology Center of Nagasaki

3) Ecological Ceramics Group, Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST)

4) Measurement Solution Research Center, National Institute of Advanced Industrial Science and Technology (AIST)

(Received March 16, 2009) (Accepted April 2, 2009)

ABSTRACT

Traditional titanium dioxide (TiO_2) has photocatalytic bactericidal properties only under ultraviolet (UV) irradiation, which restricts its use in clinical treatment regimens. In this study, we evaluated the photocatalytic bactericidal effects of an aqueous system of TiO₂ particles irradiated by fluorescent light (FL) on *Staphylococcus aureus*. A TiO₂ particle mixture containing 19 ppm (0.019 mg/mL) of TiO₂ was prepared. A bacterial solution of 1×10^5 CFU/mL was added one drop at a time to the TiO₂ mixture. The resulting product was then irradiated with FL. The bacterial survival rate decreased steadily in the TiO₂ mixture group, reaching 76.7% after 30 min of FL irradiation and 10.9% after 60 min. After 60 to 180 min, the bacterial survival ratio of the TiO₂ mixture group was significantly lower than that of the control group (P < 0.05). The present study indicates that treating the surfaces of surgical devices and the surgical field with a TiO₂ particle mixture can create a nearly sterile environment that can be maintained throughout surgery, even at low luminous intensities.

Download Meta of Article[Help] <u>RIS</u> BibTeX

To cite this article:

Hironobu Koseki, Koutaro Shiraishi, Tomohiko Asahara, Toshiyuki Tsurumoto, Hiroyuki Shindo, Koumei Baba, Hiroshi Taoda and Nao Terasaki; "Photocatalytic bactericidal action of fluorescent light in a titanium dioxide particle mixture: an in vitro study", *Biomedical Research*, Vol. **30**, pp.189-192 (2009).

doi:10.2220/biomedres.30.189 JOI JST.JSTAGE/biomedres/30.189

Copyright (c) 2009 Biomedical Research Press

