Cryptology ePrint Archive: Report 2011/546

Hidden Vector Encryption Fully Secure Against Unrestricted Queries

Angelo De Caro and Vincenzo Iovino and Giuseppe Persiano

Abstract: Predicate encryption is an important cryptographic primitive (see \cite{BDOP04,BoWa07,Goyal06,KaSaWa08}) that enables fine-grained control on the decryption keys. Roughly speaking, in a predicate encryption scheme the owner of the master secret key $\NSK\$ can derive secret key $\NSK\$ for any predicate $P\$ from a specified class of predicates $\MSK\$. In encrypting a message $M\$, the sender can specify an {\emploster attribute} vector $\X\$ and the resulting ciphertext $\K\$ can be decrypted only by using keys $\NSK_P\$ such that $P(\x)=1$.

Our main contribution is the {\em first} construction of a predicate encryption scheme that can be proved {\em fully} secure against {\em unrestricted} queries by probabilistic polynomial-time adversaries under non-interactive constant sized (that is, independent of the length \$\ell\$ of the attribute vectors) hardness assumptions on bilinear groups of composite order.

Specifically, we consider {\em hidden vector encryption} (HVE in short), a notable case of predicate encryption introduced by Boneh and Waters \cite{BoWa07} and further developed in \cite{ShWa08, IoPe08, SLNHJ10}. In a HVE scheme, the ciphertext attributes are vectors $x_=\number \leq x_1,\$ of length $\$ of length $\$ over alphabet $\$ approximate the solution of security to adversaries that could ask only if, for all $\$ over alphabet $\$ previous constructions restricted the proof of security to adversaries that could ask only {\em non-matching} queries; that is, for challenge attribute vectors x_0 and x_1 , the adversary could ask only for keys of vectors y for which $\$ attribute to the the solution of the the solution of the the solution of the the text of te

Our proof employs the dual system methodology of Waters \cite{Waters09}, that gave one of the first fully secure construction in this area, blended with a careful design of intermediate security games that keep into account the relationship between challenge ciphertexts and key queries.

Category / Keywords: public-key cryptography / predicate encryption, full security, pairing-based cryptography

Date: received 4 Oct 2011

Contact author: decaro at dia unisa it

Available formats: <u>PDF</u> | <u>BibTeX Citation</u>

Version: 20111011:181246 (All versions of this report)

Discussion forum: Show discussion | Start new discussion

[<u>Cryptology ePrint archive</u>]