Cryptology ePrint Archive: Report 2011/298

Local limit theorem for large deviations and statistical box-tests

Igor Semaev

Abstract: Let $n\ particles be independently allocated into <math>N\ boxes$, where the $l\ varphi box appears with the probability <math>a_1$. Let $\nu r\ varphi be the number of boxes with exactly <math>r\ particles and \nu r_1, ldots, \nu r_m]$. Asymptotical behavior of such random variables as $N\ tends$ to infinity was studied by many authors. It was previously known that if $Na_1\ are all upper bounded and \nu r_N\ is upper and lower bounded by positive constants, then <math>\nu tends$ in distribution to a multivariate normal low. A stronger statement, namely a large deviation local limit theorem for νu under the same condition, is here proved. Also all cumulants of νu are proved to be O(N).

Then we study the hypothesis testing that the box distribution is uniform, denoted h, with a recently introduced box-test. Its statistic is a quadratic form in variables $\mu_{mu}(h)$. For a wide area of non-uniform a_1 , an asymptotical relation for the power of the quadratic and linear box-tests, the statistics of the latter are linear functions of μ_{mu} , is proved. In particular, the quadratic test asymptotically is at least as powerful as any of the linear box-tests, including the well-known empty-box test if μ_{mu} is in μ_{mu} .

Category / Keywords: secret-key cryptography / hash functions

Date: received 6 Jun 2011

Contact author: igor at ii uib no

Available formats: PDF | BibTeX Citation

Version: 20110608:113525 (All versions of this report)

Discussion forum: Show discussion | Start new discussion

[Cryptology ePrint archive]