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Abstract

We design and build a system that enables clients to verify the outputs of programs executed by
untrusted servers. A server provides a succinct non-interactive zero-knowledge proof (also known as a
zk-SNARK), which the client verifies to ascertain correct execution.

The system has two components: a cryptographic proof system for verifying satisfiability of arithmetic
circuits, and a circuit generator to translate program executions to such circuits. Our design of both
components improves in functionality and efficiency over previous work, as follows.

Our circuit generator is the first to be universal: it does not need to know the program, but only a
bound on its running time. It is also the first to support programs expressed as code for a von Neumann
RISC random-access memory architecture, where programs may use just-in-time compilation and self-
modifying code. Moreover, the dependence on program size is additive (instead of multiplicative as in
prior works), allowing efficient verification of large programs.

The cryptographic proof system significantly improves proving and verification times, using a new
pairing-based cryptographic library tailored to the protocol.

We evaluated our system for programs with up to 10,000 instructions, running for up to 32,000
machine steps, each of which can arbitrarily access random-access memory; and demonstrated it executing
programs that use just-in-time compilation. Our proofs are 230 bytes long at 80 bits of security, or 288
bytes long at 128 bits of security. Typical verification time is 5 ms, regardless of the original program’s
running time.

Keywords: computationally-sound proofs, succinct arguments, zero-knowledge, delegation of computation
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1 Introduction

Consider the setting where a client owns a public input x and a server owns a private inputw. The client wishes
to outsource the computation of a publicly-known program F to the server, in order to learn z := F (x,w),
the correct output of F on the two inputs (x,w). (A special case of this setting is when w is the empty string:
the client outsources the computation of z := F (x).)

Two main security desiderata arise in this setting:

(1) INTEGRITY OF COMPUTATION. How can the client ascertain that the server reported the correct output?

(2) CONFIDENTIALITY OF THE SERVER’S INPUT. How can the server prevent the client from learning
anything about his input w (beyond what is inevitably revealed by z)?

Moreover, the client may be either unable or unwilling to engage in lengthy interactions with the server, or
to perform large computations beyond the “bare minimum” of sending the input x and receiving the output
z. For instance, the client may be a computationally-weak device with intermittent connectivity, such as a
smartphone. Hence, we consider the following two additional efficiency desiderata.

(3) NON-INTERACTIVITY. It suffices for the server to send the client the claimed output z̃, along with a
non-interactive proof π that attests that z̃ is the correct output.

(4) SUCCINCTNESS. The client runs in time that is proportional only to (i) the size of F , (ii) the length of his
input x, and (iii) the length of the output z. But the client’s running time does not depend on the length of
the server’s input w, nor the running time of F on input (x,w).

The scenario above is very general, and cryptographic protocols whose guarantees address the aforementioned
security and efficiency desiderata can be applied to a wide range of security applications — provided these
protocols deliver good enough efficiency, and support rich enough functionality (i.e., the class of programs F
that is supported).

1.1 Goal

To achieve the desiderata, we seek a proof system, between a prover and a verifier, which works as follows.

• A proof is non-interactive: it consists of a single message π from the prover to the verifier. The server
(acting as the prover) can then convince the client (acting as the verifier) that he knows w for which
z = F (x,w) by generating a proof π for the statement “there exists w s.t. z = F (x,w)”. By verifying π,
the client checks that the server did not lie.

• A proof is zero knowledge: π leaks no information about w, thereby ensuring confidentiality of the server’s
input.

• A proof is a proof of knowledge. Intuitively, this means that if the client receives a valid proof π from
the server, he can deduce not only that the statement is true, but also that the server knows a valid w that
explains the output z.

• A proof is succinct, i.e., it is very short and easy to verify.

A proof system that achieves the above properties is called a (publicly-verifiable) zero-knowledge Succinct
Non-interactive ARgument of Knowledge (zk-SNARK) (see Section 3.2.)

Our goal in this paper is a zk-SNARK implementation, and we strive for good efficiency and rich
functionality of supported programs.
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1.2 Prior work

There are numerous works studying variations or relaxations of the goal considered in this paper; in Section 7
we summarize some of these. Many works have obtained zk-SNARK constructions [Gro10a, Lip12, GGPR13,
BCI+13, PGHR13, BCG+13, Lip13]. Two of these [PGHR13, BCG+13] also provide implementations;
these two works are the most relevant to us, and thus we briefly recall them.

Parno et al. [PGHR13] present two main contributions.

• A zk-SNARK, with essentially optimal asymptotics, for arithmetic circuit satisfiability. They accompany
their construction with an implementation. Their construction is based on quadratic arithmetic programs
(QAPs) [GGPR13].

• A compiler that maps C programs with fixed memory accesses and bounded control flow (e.g., array
accesses and loop iteration bounds are compile-time constants) into corresponding arithmetic circuits.

Ben-Sasson et al. [BCG+13] present three main contributions.

• Also a zk-SNARK with essentially optimal asymptotics for arithmetic circuit satisfiability, and with a
corresponding implementation. Their construction is also based on QAPs, but follows the linear interactive
proof approach of [BCI+13].

• A simple RISC architecture, TinyRAM, along with a circuit generator for generating arithmetic circuits
that verify correct execution of TinyRAM programs.

• A compiler that, given a C program, produces a corresponding TinyRAM program.

Thus, both works have a component consisting of a zk-SNARK for a low-level language, and a component
for translating a high-level language to the low-level language.

1.3 Limitations of prior work

Prior work has made tremendous progress in improving the efficiency and functionality of zk-SNARK
implementations. Yet, known implementations suffer from two main limitations.

Support for high-level languages remains limited. The circuit generator in [PGHR13] only supports
programs without data dependencies: it does not allow memory accesses and loop iteration bounds to depend
on a program’s input. This limitation is significant, since data dependencies are common.

The circuit generator in [BCG+13] does support arbitrary programs, but it too suffers from significant
limitations. First, programs need to be compiled to TinyRAM, which, being a word-addressable Harvard
architecture, is inconvenient to work with. But, more importantly, the circuit generator outputs circuits with
Ω(`T ) gates for `-instruction T -step TinyRAM programs. Clearly, a size of Ω(`T ) cannot scale.

Indeed, as zk-SNARK implementations get faster and more scalable, users may wish to verify execution
of more sophisticated programs. Inevitably, such programs will rely on libraries (providing, e.g., mathematical
subroutines or data structures), which contribute to program size. Thus, it is crucial for circuit generators to
produce circuits that efficiently scale with program size.

Prior implementations are “1st generation”. zk-SNARKs are pairing-based protocols. We know that
protocol-dependent optimizations are a key ingredient for fast implementations of such protocols [Sco05].
Prior implementations only utilize off-the-shelf cryptographic libraries, and thus miss key optimization
opportunities, especially in the verifier.
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High-performance implementations of zk-SNARKs, even for a low-level language such as arithmetic
circuit satisfiability, are a central goal: such implementations provide strong foundations both for systems
that prove/verify “circuit-like” computations, as well as for systems that extend functionality to complex
programs via circuit generators.

1.4 Results

In this paper we present two main contributions, each addressing a limitation of prior work.

(1) We design and build a new circuit generator that incorporates the following three main improvements.

Improvement #1: Our circuit generator supports programs on a new, more expressive architecture: vnTinyRAM.
Unlike TinyRAM, our architecture follows the von Neumann paradigm: program and data are stored in
the same read-write address space, as in modern machines. Programs may thus utilize techniques such as
just-in-time compilation or self-modifying code. Another change is that memory is accessible as either bytes
or words, to efficiently support both string operations and integer arithmetic.

vnTinyRAM can thus efficiently support many programming styles, including (an adaptation of) the C
compiler of [BCG+13]. We take program executions on vnTinyRAM to be the “high-level language” in this
paper.

Improvement #2: Our circuit generator is universal: when given input bounds `, n, T , it produces a circuit
that can verify the execution of any program with ≤ ` instructions, on any input of size ≤ n, for ≤ T steps.
In contrast, prior circuit generators [PGHR13, BCG+13] hardcoded the program in the circuit.

Improvement #3: Our circuit generator efficiently handles large programs. Concretely, the size of the
generated circuit in terms of the bounds `, n, T , is

O
(
(`+ n+ T ) · log(`+ n+ T )

)
gates.

When ` = Ω(T ), this gives a quadratic improvement over [BCG+13], where the generated circuit has size
Θ
(
(n+ T ) · (log(n+ T ) + `)

)
.

Our efficiency improvements are not merely asymptotic but yield concrete savings. For example, the
amortized number of gates per step is nearly unaffected by program size:1

• ≈ 1,420 gates/step for (`, n, T ) = (104,100,220), vs.
• ≈ 1,442 gates/step for (`, n, T ) = (105,100,220).
These numbers improve 7.6× and 70.0× respectively over the per-cycle counts of the circuit generator
in [BCG+13]; see Figure 1. Moreover, our superior asymptotics ensure that the efficiency improvement
continues to grow, without bound, as the program size bound ` increases. (In fact, even for a million-
instruction program running for a billion steps, we pay only ≈ 1,399 gates per cycle!)

n = 102, T = 220 [BCG+13] this work improvement
` = 103 1,872 1,418 1.3×
` = 104 10,872 1,420 7.6×
` = 105 100,872 1,442 70.0×
` = 106 1,000,872 1,661 602.6×

Figure 1: Per-cycle count (i.e., # gates
T

) improvements over [BCG+13].

1Note that T counts steps of the abstract machine vnTinyRAM. Each step has a concrete cost k in gates, even when merely
executing the machine without any verification. Typically, in our circuit generator > 50% of the gates are dedicated to execution,
and the remainder to verification. Thus, our “multiplicative overhead” compared to the concrete cost kT is only ≈ 2.
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A comparison with the circuit generator in [PGHR13] is not well-defined: (i) it only supports programs
with no data dependencies (so a programmer must “write around” the limited functionality via inefficient
implementations of primitives such as array accesses); and (ii) its efficiency is not easily specified. Intuitively,
we expect [PGHR13]’s circuit generator to perform better for programs that are “already closer to a circuit”,
and worse for programs richer in functionality (which comprise most programs in practice). Experimentally,
this is what we find; see Section 6.2.

(2) A high-performance implementation of a zk-SNARK for arithmetic circuit satisfiability. We im-
prove upon and implement the protocol of Parno et al. [PGHR13]. Unlike previous zk-SNARK implementa-
tions [PGHR13, BCG+13], we do not rely on any off-the-shelf cryptographic libraries. Instead, we build from
scratch the requisite components: fast finite field arithmetic, elliptic-curve group arithmetic, pairing-based
checks, and so on. Our elliptic curve choices, algorithm choices, and code are optimized and tailored for the
the specific zk-SNARK protocol, with a focus on reducing proof verification time.

In our implementation we provide a choice between two security levels: 80 bits of security from an
instantiation based on Edwards curves [Edw07]; or 128 bits of security from an instantiation based on
Barreto–Naehrig curves [BN06] (taking the implementation of [Mit13] as a starting point). We emphasize
that, while we present a concrete implementation, the techniques we employ can be applied to different
algebraic setups, i.e., other choices of elliptic curves and security levels.

Proof verification enjoys excellent efficiency: at 80 bits of security, for an n-kilobyte input to the
circuit, verification takes ≈ 4.7 ms + n · (0.4 ms), regardless of circuit size; at 128 bits of security, it takes
≈ 5.2 ms +n · (0.5 ms). The constant term (4.7 ms or 5.2 ms), which dominates for small inputs, corresponds
to the verifier’s pairing-based checks. Notably, in both cases, this constant term is less than half the time for
separately evaluating the 12 requisite pairings of the checks; we achieve this saving by merging parts of the
pairings’ computation in a protocol-dependent way — another reason we need a custom implementation of
the underlying math.

Our implementation also achieves good efficiency for key generation (i.e., for generating the proof
system’s proving and verification keys) and proof generation. E.g., at 80 bits of security, for a 1-million-gate
circuit C, generating proving and verification keys for C requires 97 s, and producing proofs of satisfiability
for C requires 115 s; if C instead has 16 million gates, these numbers increase to 26 min and 30 min
respectively.

Compared to previous implementations of zk-SNARKs for circuits [PGHR13, BCG+13], our implemen-
tation is significantly more efficient; see Figure 2 for a comparison on a circuit with 1 million gates and a
10-field-element input.

80 bits of security 128 bits of security
[BCG+13] this work improvement [PGHR13] this work improvement

Key generator 306 s 97 s 3.2× 123 s 117 s 1.1×
Prover 351 s 115 s 3.1× 784 s 147 s 5.3×
Verifier 66.1ms 4.8ms 13.8× 9.3ms 5.7ms 1.6×

Figure 2: Comparison with prior zk-SNARKs for a 1-million-gate arithmetic circuit and a 10-field-element input. (The comparison
was conducted on our benchmarking machine, running software provided by the respective authors.)

As in prior work, space quickly becomes a bottleneck to key generation and proving. In our imple-
mentation, we leverage the sparsity of the QAP corresponding to a circuit so to shrink the size of public
parameters; for instance, for the circuits generated by our circuit generator (discussed next), we obtain a 35%
improvement in space.
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Overall system: zk-SNARKs for a von Neumann architecture. By combining the above contributions,
we obtain a zk-SNARK for proving/verifying correctness of vnTinyRAM computations; see Figure 3 and
Figure 4. We evaluated our system for programs with up to 10,000 instructions, running for up to 32,000
steps. Verification time is only a few milliseconds, independent of the running time of the vnTinyRAM
program, even when program size and input size are kilobytes. Proofs are always of constant size (230 bytes
with 80 bits of security, or 288 bytes with 128 bits of security). Moreover, the efficiency of key generation and
proving is significantly improved over prior works. For example, at 80 bits of security, for a 1,000-instruction
program, given a 100-word input, and running for 10,000 steps: key generation takes 16.5 min; proving time
is 5.4 min; and verification time is merely 4.8 ms.

Our contributions push the envelope for zk-SNARK implementations, by enriching the set of supported
programs and improving efficiency. Yet, more work remains to be done to further slash costs of key generation
and proving, so to achieve scalability to much longer computations (e.g., millions of vnTinyRAM cycles and
beyond).

circuit 
generator 

zk-SNARK 
key generator 

proving key 

verification key 

program size bound 

time bound 
input size bound 

universal 
circuit 

OFFLINE PHASE (ONCE) 
Key Generator 

Figure 3: Offline phase (once). The key generator outputs a proving key and verification key, for proving and verifying correctness
of any program execution meeting the given bounds.

witness 
map 

zk-SNARK 
prover 

zk-SNARK 
verifier 

proving key program input 

proof auxiliary 
input 

(nondeterminism) 

accept/ 
reject 

verif. key 

circuit 
assignment 

ONLINE PHASE (ANY NUMBER OF TIMES) 
Prover Verifier 

program input 

Figure 4: Online phase (any number of times). The prover sends a short and easy-to-verify proof to a verifier. This can be repeated
any number of times, each time for a different program and input.

JIT case study: efficient memcpy. Besides evaluating our zk-SNARK for vnTinyRAM, we also provide
an example to demonstrate the rich functionality supported by our system. We wrote a vnTinyRAM
implementation of memcpy that leverages just-in-time compilation (in particular, dynamic loop unrolling)
to improve cycle-count efficiency by 1.4× (see Section 6.5). While ours is a simple case study, just-in-
time compilation is a widely-used powerful technique that has found many applications, e.g., increasing
the performance of interpreted programming languages such as Javascript in web browsers [GES+09]
or Python [RP06]. As the efficiency of zk-SNARK implementations improves, more and more of these
applications will become feasible.

1.5 Roadmap

In Section 2 we provide preliminaries and background. In Section 3 we summarize vnTinyRAM and
provide definitions of a zk-SNARK and circuit generator. In Section 4 we describe our circuit generator for
vnTinyRAM. In Section 5 we summarize the optimizations of our zk-SNARK for circuit satisfiability. In
Section 6 we evaluate our system, by performing microbenchmarks on primitive operations, estimating the
costs of the two components of our system, and providing end-to-end performance data. In Section 8 we
conclude and suggest future directions.
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2 Preliminaries & Background

2.1 Notations

We denote by F a finite field and Fn is the field of size n. Field elements are denoted with Greek letters
(e.g. α, β, γ). We denote by F[z] the ring of univariate polynomials over F, and by F≤d[z] the subring of
polynomials of degree ≤ d. Vectors are denoted by arrow-equipped letters (such as ~a); their entries carry an
index but not the arrow (e.g., a1 or a2).

We shall encounter several concrete finite fields: two prime fields Fr and Fq; and the two field extensions
Fq3 and Fq6 . When working with the prime field of size p we identify its elements with integers modulo p.
The primes r and q respectively have 181 and 183 bits (i.e., dlog2 re = 181).

2.2 Arithmetic circuits

The circuits that we consider are not boolean but arithmetic. Given a finite field F, an F-arithmetic circuit
takes inputs that are elements in F, and its gates output elements in F. We naturally associate a circuit with
the function it computes. The circuits we consider only have bilinear gates.2 Arithmetic circuit satisfiability
is analogous to the boolean case:

Definition 2.1. Let n, h, l respectively denote the input, witness, and output size. The circuit satisfaction
problem of a circuit C : Fn × Fh → Fl with bilinear gates is defined by the relation RC = {(~x,~a) ∈
Fn × Fh : C(~x,~a) = 0l};3 its language is LC = {~x ∈ Fn : ∃~a ∈ Fh, C(~x,~a) = 0l}.

Our circuit generator reduces the correctness of program executions to arithmetic circuit satisfiability (see
Section 4), and our zk-SNARK implementation produces/verifies proofs for this language (see Section 5).

All the arithmetic circuits we consider are over the prime field Fr. In this case, when passing boolean
strings as inputs to arithmetic circuits, we pack the string’s bits into as few field elements as possible: given
x ∈ {0,1}m, we use [[x]]mr to denote the vector ~x ∈ F|m|rr , where |m|r := dm/ log re, such that the binary
representation of xi ∈ Fr is the i-th block of log r bits in x (padded with 0’s if needed). We also extend the
notation [[x]]mr to binary strings x ∈ {0,1}n with n < m bits via padding: [[x]]mr := [[x0m−n]]mr .

2.3 Quadratic arithmetic programs

Our zk-SNARK implementation uses quadratic arithmetic programs (QAPs), introduced by Gennaro et
al. [GGPR13].

Definition 2.2. A quadratic arithmetic program of size m and degree d over F is a tuple ( ~A, ~B, ~C,Z),
where:
• ~A =

(
A0, A1, . . . , Am

)
with Ai ∈ F≤d−1[z];

• ~B =
(
B0, B1, . . . , Bm

)
with Bi ∈ F≤d−1[z];

• ~C =
(
C0, C1, . . . , Cm

)
with Ci ∈ F≤d−1[z];

• Z ∈ F[z] has degree exactly d.

Like a circuit, a QAP induces a satisfaction problem:

2A gate with inputs x1, . . . , xm ∈ F is bilinear if the output is 〈~a, (1, x1, . . . , xm)〉 · 〈~b, (1, x1, . . . , xm)〉 for some ~a,~b ∈ Fm+1.
In particular, these include addition, multiplication, and constant gates.

3Throughout this paper, we identify a circuit (which is a directed acyclic graph with labeled vertices) with the function it
computes.
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Definition 2.3. The satisfaction problem of a size-m QAP ( ~A, ~B, ~C,Z) is the relationR( ~A, ~B, ~C,Z) of pairs
(~x,~s) such that
• ~x ∈ Fn, ~s ∈ Fm, and n ≤ m;
• xi = si for i ∈ [n] (i.e., ~s extends ~x); and
• the polynomial Z(z) divides the following one

(A0(z) +
∑m

i=1 siAi(z)) · (B0(z) +
∑m

i=1 siBi(z))− (C0(z) +
∑m

i=1 siCi(z)) .

We denote by L( ~A, ~B, ~C,Z) the language ofR( ~A, ~B, ~C,Z).

Gennaro et al. [GGPR13] showed that arithmetic circuit satisfiability can be efficiently reduced to the
satisfiability of QAPs:

Lemma 2.4. There exist two polynomial-time algorithms QAPinst,QAPwit with the following properties.

• EFFICIENCY. For any circuit C : Fn × Fh → Fl with α wires and β gates, ( ~A, ~B, ~C,Z) := QAPinst(C)
is a QAP of size m and degree d over F, with m = α and d = β + l.

Now fix a circuit C, and ( ~A, ~B, ~C,Z) := QAPinst(C).

• CORRECTNESS. For any (~x,~a) ∈ RC , it holds that (~x,~s) ∈ R( ~A, ~B, ~C,Z), where ~s := QAPwit(C, ~x,~a).

• PROOF OF KNOWLEDGE. For any (~x,~s) ∈ R( ~A, ~B, ~C,Z), it holds that (~x,~a) ∈ RC , where ~a is a prefix of ~s.

Efficient zk-SNARK constructions for arithmetic circuit satisfiability rely on the above lemma to obtain
a QAP corresponding to a circuit, and then utilize cryptographic techniques to prove/verify the QAP’s
satisfiability.

The intuition behind Lemma 2.4 is the following. The third condition in Definition 2.3 implies that
〈1 ◦ ~s, ~A(ω)〉 · 〈1 ◦ ~s, ~B(ω)〉 = 〈1 ◦ ~s, ~C(ω)〉 for all roots ω of Z. In other words, membership inR( ~A, ~B, ~C,Z)

is characterized by degZ = d rank-1 quadratic constraints in the variable ~s. By suitably selecting coefficients
for the polynomials ~A, ~B, ~C, one can encode satisfiability of an arithmetic circuit C into such constraints.

2.4 Pairings

We discuss zk-SNARK constructions in the next subsection (Section 2.5). However, before that, we need to
introduce notation for pairings, which are used for verifying proofs.

Let G1 and G2 be two cyclic groups of order r. We denote elements of G1,G2 via calligraphic letters
such as P,Q. We write G1 and G2 in additive notation. Let P1 be a generator of G1, i.e., G1 = {αP1}α∈Fr
(α is also viewed as an integer, hence αP1 is well-defined); let P2 be a generator for G2.

A pairing is an efficient map e : G1 ×G2 → GT , where GT is also a cyclic group of order r (which we
write in multiplicative notation), satisfying the following properties:

• BILINEARITY. For every nonzero elements α, β ∈ Fr, it holds that e(αP1, βP2) = e(P1,P2)αβ .

• NON-DEGENERACY. e(P1,P2) is not the identity in GT .

Typically, G1 is instantiated as the group of points of an elliptic curve E defined over Fq; G2 as the group of
points of a twist of E; and GT as an order-r subgroup of F∗

qk
, where k is known as the embedding degree of

the curve E.
For the high-level discussion of zk-SNARKs in the next subsection, the choice of instantiation of

G1,G2,GT , as well as the choice of pairing e, does not matter. However, later, when discussing optimizations
in our implementation (see Section 5), these choices will matter a great deal.
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2.5 zk-SNARK constructions

There are several constructions of zk-SNARKs in the literature [Gro10a, Lip12, GGPR13, BCI+13, PGHR13,
BCG+13, Lip13]. The most efficient constructions are based either on quadratic span programs (QSPs)
[GGPR13, Lip13] or quadratic span programs (QAPs) [GGPR13, BCI+13, PGHR13, BCG+13]. While
QSPs allow for tight reductions from boolean circuits, QAPs allow for tight reductions from arithmetic ones
(see Lemma 2.4).

In this work, we consider arithmetic circuits, because arithmetic gates significantly improve the efficiency
of our circuit generator (see Section 4). Thus, we focus on zk-SNARKs based on QAPs. Our starting point is
the zk-SNARK for arithmetic circuit satisfiability of Parno et al. [PGHR13]. The protocol is summarized in
Figure 5. As mentioned in Section 1 and discussed in Section 5, one of our contributions is a high-performance
implementation of this protocol, to be used for the circuits produced by our circuit generator.

We refer to [PGHR13] for additional details regarding the intuition for the protocol, as well as the
cryptographic assumptions on which its proof of security relies. (Briefly, security relies on the q-power Diffie-
Hellman, q-power knowledge-of-exponent, and q-strong Diffie-Hellman assumptions [Gro10b, BB04, Gen04]
for q that depends polynomially on the arithmetic circuit’s size.)

3 zk-SNARKs for a Simple von Neumann RISC Architecture

In Section 3.1 we summarize the main features of vnTinyRAM, a simple von Neumann RISC architecture
we introduce. In Section 3.2, we informally define zk-SNARKs for vnTinyRAM. In Section 3.3 we define
the notion of a circuit generator for vnTinyRAM. In Section 3.4 we explain how to obtain a zk-SNARK
for vnTinyRAM by combining a circuit generator for vnTinyRAM and a zk-SNARK for arithmetic circuit
satisfiability.

3.1 A summary of vnTinyRAM

Ben-Sasson et al. [BCG+13] introduced TinyRAM: a RISC architecture, with word-addressable memory,
following the Harvard paradigm. We modify TinyRAM to obtain vnTinyRAM, which differs from it in two
main ways.

• vnTinyRAM follows the von Neumann paradigm, whereby program and data are stored in the same
read-write address space. Programs may use runtime code generation.

• vnTinyRAM has byte-addressable memory, along with instructions to load/store bytes and to load/store
words. Byte accesses are typically used by programs performing array or string operations, while word
accesses by programs performing arithmetic. Simultaneous support for both greatly simplifies compiling
to vnTinyRAM.

Besides the above two main differences, vnTinyRAM is very similar to TinyRAM. Due to space limitations,
here we limit our discussion to only a high-level summary containing just enough details for discussing our
circuit generator later on.

Overview of vnTinyRAM. vnTinyRAM is parametrized by the word size, denoted W and chosen to be a
power of 2 and divisible by 8, and the number of registers, denoted K.

The state of the machine consists of the following.

• The program counter; it consists of W bits.
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Public parameters. A prime r, two cyclic groups G1 and G2 of order
r with generators P1 and P2 respectively, and a pairing e : G1×G2 →
GT (where GT is also cyclic of order r).

(a) Key generator G

• INPUTS: circuit C : Fnr × Fhr → Flr
• OUTPUTS: proving key pk and verification key vk

1. Compute ( ~A, ~B, ~C,Z) = QAPinst(C); extend ~A, ~B, ~C via

Am+1 = Bm+2 = Cm+3 = Z ,

Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 = 0 .

2. Randomly sample τ, ρA, ρB, αA, αB, αC, β, γ ∈ Fr .

3. Set pk := (C, pkA, pk
′
A, pkB, pk

′
B, pkC, pk

′
C, pkK, pkH) where

for i = 0,1, . . . ,m+ 3:

pkA,i := Ai(τ)ρAP1 , pk′A,i := Ai(τ)αAρAP1 ,

pkB,i := Bi(τ)ρBP2 , pk′B,i := Bi(τ)αBρBP1 ,

pkC,i := Ci(τ)ρAρBP1 , pk
′
C,i := Ci(τ)αCρAρBP1 ,

pkK,i := β
(
Ai(τ)ρA +Bi(τ)ρB + Ci(τ)ρAρB

)
P1 ,

and for i = 0,1, . . . , d, pkH,i := tiP1.

4. Set vk := (vkA, vkB, vkC, vkγ , vk
1
βγ , vk

2
βγ , vkZ, vkIC) where

vkA := ρAαAP2 , vkB := ρBαBP1 , vkC := ρAρBαCP2

vkγ := γP2 , vk1βγ := γβP1 , vk2βγ := γβP2 ,

vkZ := Z(τ)ρCP2 ,
(
vkIC,i

)n
i=0

:=
(
Ai(τ)P1

)n
i=0

.

5. Output (pk, vk).

Key sizes. When invoked on a circuit C : Fnr × Fhr → Flr with a wires
and b (bilinear) gates, the key generator outputs:

• pk with (6a+ b+ l + 25) G1-elements and (a+ 4) G2-elements;

• vk with (n+ 3) G1-elements and 5 G2-elements.

Proof size The proof always has 7 G1-elements and 1 G2-element.

(b) Prover P

• INPUTS: proving key pk, input ~x ∈ Fnr , and witness ~a ∈ Fhr
• OUTPUTS: proof π

1. Compute ( ~A, ~B, ~C,Z) := QAPinst(C).

2. Compute ~s := QAPwit(C, ~x,~a) ∈ Fmr .

3. Randomly sample δ1, δ2, δ3 ∈ Fr .

4. Compute ~h = (h0, h1, . . . , hd) ∈ Fd+1
r , which are the coefficients

of H(z) := A(z)B(z)−C(z)
Z(z)

where A,B,C ∈ Fr[z] are as follows:

A(z) := A0(z) +
∑m
i=1 siAi(z) + δ1Z(z) ,

B(z) := B0(z) +
∑m
i=1 siBi(z) + δ2Z(z) ,

C(z) := C0(z) +
∑m
i=1 siCi(z) + δ3Z(z) .

5. Letting ~c := (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F4+m
r , compute

πA := 〈~c, pkA〉, π
′
A := 〈~c, pk′A〉, πB := 〈~c, pkB〉, π

′
B := 〈~c, pk′B〉,

πC := 〈~c, pkC〉, π
′
C := 〈~c, pk′C〉, πK := 〈~c, pkK〉, πH := 〈~h, pkH〉.

6. Output π := (πA, π
′
A, πB, π

′
B, πC, π

′
C, πK, πH).

(c) Verifier V

• INPUTS: verification key vk, input ~x ∈ Fnr , and proof π

• OUTPUTS: decision bit

1. Compute vk~x := vkIC,0 +
∑n
i=1 xivkIC,i ∈ G1.

2. Check validity of knowledge commitments for A,B,C:

e(πA, vkA) = e(π′A,P2) , e(vkB, πA) = e(π′B,P2) ,

e(πC, vkC) = e(π′C,P2) .

3. Check same coefficients were used:

e(πK, vkγ) = e(vk~x + πA + πC, vk
2
βγ) · e(vk1βγ , πB) .

4. Check QAP divisibility:

e(vk~x + πA, πB) = e(πH, vkZ) · e(πC,P2) .

5. Accept if and only if all the above checks succeeded.

Figure 5: zk-SNARK for arithmetic circuit satisfiability. One of our contributions is a high-performance implementation of the
above protocol, which is from Parno et al. [PGHR13]. The resulting zk-SNARK can be used to prove/verify satisfiability of circuits
output by our circuit generator.

• K general-purpose registers; each consists of W bits.

• The (condition) flag, denoted flag; it consists of 1 bit.

• Memory, which is a linear array of 2W bytes.

• Two tapes, each with a string of W -bit words, and read-only in one direction. One tape is for a primary
input x and the other for an auxiliary input w. We treat the primary input as given, and the auxiliary input
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as nondeterministic.

At each step, the machine executes an instruction, which changes the machine’s state. Briefly, the instruction
set of vnTinyRAM includes load and store instructions for accessing random-access memory (in byte or word
blocks), as well as simple integer, shift, logical, compare, move, and jump instructions. Thus, vnTinyRAM
can efficiently implement control flow, loops, subroutines, recursion, and so on. Complex instructions (e.g.,
floating-point arithmetic) are not directly supported and can be implemented “in software”.

In memory, any vnTinyRAM instruction is represented as a double word. A program P is a list of
address/double-word pairs specifying the initial contents of memory; all other memory locations assume the
initial value of 0. Thus, the initial state of the machine is as follows. The contents of all general-purpose
registers and flag are all 0. The content of one tape defines the primary input and that of the other tape defines
the auxiliary input. The initial contents of pc is 0, so that execution begins with the instruction encoded by
the double word aligned to the 0-th byte in memory.

At every time step, the machine executes the instruction encoded by the double word aligned to the
[pc]2W -th byte in memory, where [pc]2W denotes the unsigned integer given by pc rounded down to a
multiple of 2W/8; every instruction increments pc by 2W/8, unless it explicitly modifies pc. (Note that
2W/8 is the number of bytes in a double word.)

The machine’s only input is via the input tapes and initial memory, and only output is via an answer
instruction (which halts execution) having a single argument A, representing the return value. By default,
A = 0 means “accept”.

Parameter choices. Two examples of natural parameter choices are W,K = 16 (a 16-bit machine with 16
registers) and W,K = 32 (a 32-bit machine with 32 registers). For concreteness, in the rest of the paper we
fix W,K = 16.

3.2 Informal definition of zk-SNARK for vnTinyRAM

At high-level, a zk-SNARK for vnTinyRAM is a cryptographic primitive that gives short and easy-to-verify
non-interactive zero-knowledge proofs of knowledge for the correct execution of programs on the machine
vnTinyRAM.

We only provide an informal definition, and refer to prior work for a formal definition of zk-SNARKs for
random-access machines [BCI+13]. Below, the security parameter is implicit.

We begin by introducing the following useful notation:

Definition 3.1. Fix bounds `, n, T . The language L`,n,T consists of pairs (P, x) such that:
• P is a program with ≤ ` instructions,
• x is a primary input with ≤ n words,
• There exists an auxiliary input w s.t. P(x,w) accepts in ≤ T steps.
We denote byR`,n,T the relation corresponding to L`,n,T .

A zk-SNARK for vnTinyRAM is a triple of polynomial-time algorithms (KeyGen,Prove,Verify) work-
ing as follows.

• KeyGen(`, n, T ) → (pk, vk). On input a program size bound `, time bound T , and primary-input size
bound n, the key generator KeyGen probabilistically samples a proving key pk and a verification key vk.

The keys pk and vk are published as public parameters and can be used, any number of times, to prove and
verify membership in the language L`,n,T as follows.

12



• Prove(pk,P, x, w) → π. On input a program P with ≤ ` instructions, x with ≤ n words, and w such
that P(x,w) accepts in ≤ T steps, the prover Prove outputs a non-interactive proof π for the statement
(P, x) ∈ L`,n,T .

• Verify(vk,P, x, π)→ b. On input a program P with ≤ ` instructions and x with ≤ n words, the verifier
Verify outputs b = 1 if he is convinced that (P, x) ∈ L`,n,T .

The key generator KeyGen is “universal”: it does not depend on the program P or primary input x, but only
on their respective size bounds ` and n (as well as the time bound T ).

A zk-SNARK satisfies the following properties.

Correctness. The honest prover can convince the verifier for any instance in the language. I.e., for every
(P, x) ∈ L`,n,T with a witness w,

Pr

[
Verify(vk,P, x, π) = 1

∣∣∣∣ (pk, vk)← KeyGen(`, n, T )
π ← Prove(pk,P, x, w)

]
= 1 .

Succinctness. An honestly-generated proof π has O(1) bits, and Verify(vk,P, x, π) runs in time O(`+ n).
In particular, verification time does not depend on the time bound T .

Proof of knowledge (& soundness). If the verifier accepts a proof, the prover “knows” a witness for the
instance. (Thus, soundness holds.) I.e., for every polynomial-size adversary A there is a polynomial-size
witness extractor E s.t.

Pr

Verify(vk,P, x, π) = 1(
(P, x), w

)
/∈ R`,n,T

∣∣∣∣∣∣
(pk, vk)← KeyGen(`, n, T )

(P, x, π)← A(pk, vk)
w ← E(pk, vk)

 ≤ negl .

Zero knowledge. The proof π is statistical zero knowledge.

3.3 Definition of circuit generator for vnTinyRAM

As we discuss in the next subsection (Section 3.4), one of the components of our zk-SNARK for vnTinyRAM
is a circuit generator for vnTinyRAM; its purpose is to produce circuits that verify execution of vnTinyRAM
programs. We now define the notion of a circuit generator. Below, we use the notations [[·]]r and | · |r,
introduced in Section 2.2.

Definition 3.2. A circuit generator of efficiency f(·) is a polynomial-time algorithm circ, together with an
efficient witness map wit, with the following properties.

• EFFICIENCY. For any program size bound `, time bound T , and primary-input size bound n, C :=
circ(`, n, T ) is an f(`, n, T )-gate Fr-arithmetic circuit C : Fmr × Fhr → Flr, for m := |`2W |r + |nW |r
and some h, l, where W is the word size (cf. Section 3.1).

Now fix bounds `, n, T , and let C := circ(`, n, T ).

• CORRECTNESS. For every (P, x) ∈ L`,n,T with witness w, it holds that (~x,~a) ∈ RC , where ~x :=
[[P]]`2Wr ◦ [[x]]nWr and ~a := wit(`, n, T,P, x, w).

• PROOF OF KNOWLEDGE. Given any (~x,~a) ∈ RC , one can efficiently “extract” a witness w for (P, x) ∈
L`,n,T .
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KeyGen

• INPUTS: bounds `, n, T

• OUTPUTS: proving key pk and verification key vk

1. Compute C := circ(`, n, T ).

2. Compute (pk, vk) := G(C), and output (pk, vk).

Prove

• INPUTS: proving key pk and (P, x) ∈ L`,n,T with witness w

• OUTPUTS: proof π

1. Compute ~x := [[P]]`2Wr ◦ [[x]]nWr .

2. Compute ~a := wit(`, n, T,P, x, w).

3. Compute π := P (pk, ~x,~a), and output π

Verify

• INPUTS: verification key vk and (P, x) ∈ L`,n,T
• OUTPUTS: decision bit

1. Compute ~x := [[P]]`2Wr ◦ [[x]]nWr .

2. Compute b := V (vk, ~x, π), and output b.

Figure 6: Our circuit generator and our zk-SNARK for arithmetic circuit satisfiability can be combined to obtain a zk-SNARK for
vnTinyRAM.

The circuit C output by circ does not depend on the program P or primary input x, but only on their
respective size bounds ` and n (as well as the time bound T ). This fact enables KeyGen to be universal (see
Section 3.4). In particular, universality makes it possible to generate keys for all bound choices, in powers of
2 up to a certain constant, once and for all; afterwards, one can pick the key corresponding to bounds fitting a
given computation.

3.4 Construction of a zk-SNARK for vnTinyRAM

We obtain a zk-SNARK for vnTinyRAM by combining:

• A circuit generator for vnTinyRAM. We use it to make circuits that verify execution of vnTinyRAM
programs.

• A zk-SNARK for arithmetic circuit satisfiability. We use it to produce and verify proofs for the circuits
output by the circuit generator for vnTinyRAM.

See Figure 6 for more details. We next proceed as follows. In Section 4 we summarize the construction of
our circuit generator for vnTinyRAM. In Section 5 we summarize the optimizations in our implementation
of the zk-SNARK for circuit satisfiability from Figure 5. In Section 6 we evaluate each component, as well
as the combined system.

14



4 A Circuit Generator for a Simple von Neumann RISC Architecture

A circuit generator translates the correctness of any suitably-bounded program execution into circuit satisfia-
bility. (See definition in Section 3.3.) We show:

Theorem 4.1. For any program size bound `, time bound T , and primary-input size bound n, there exists a
circuit generator of efficiency

f(`, n, T ) := O
(
(`+ n+ T ) · log(`+ n+ T )

)
.

For comparison, the circuit generator in [BCG+13] has efficiency Θ
(
(n+ T ) · (log(n+ T ) + `)

)
. Thus,

ours is a quadratic improvement over previous work: the size of our circuit does not grow with ` · T , but only
with `+ T . As our evaluation demonstrates (see Section 6.2), this improvement translates into significant
savings in practice.

In short, previous work hardcoded the program into each step’s verification. Instead, we store the program
in memory, and we verify instruction fetch by relying on the same routing network that is also used for
verifying data loads/stores.

4.1 Past techniques

Our results extends previous techniques, so we begin by recalling these techniques. One of the main
difficulties that arise when designing a circuit generator is: how to (efficiently!) handle memory accesses?
Accesses to memory depend on the inputs of the program, while a circuit’s topology does not depend on its
inputs. Thus, a circuit tasked with verifying program executions must be “ready” to support access patterns
arising from any possible input.

Of course, we could restrict our focus only to programs that do not exhibit data dependencies [PGHR13].
Doing so simplifies the circuit generation problem, but also severely limits functionality. Indeed, most
programs have data dependencies. Thus, the problem requires a solution.
The naive approach. A naive approach is for the circuit generator to construct a layered circuit that works
as follows. The i-th layer contains the entire state of the machine (CPU state and random-access memory) at
time step i, and layer i+ 1 is computed from it by evaluating the transition function of the machine, handling
any accesses to memory via multiplexing. However, this approach is very wasteful: for a program that
accesses S addresses in memory, the resulting circuit has size that is at least Ω(TS). In general, S may be as
large as T , so that the circuit has quadratic size.
An efficient approach: nondeterministic routing. Sorting and routing are ubiquitous techniques in fast
simulation results between nondeterministic models of computation [Ofm65, Sch78, GS89, Rob91]. Ben-
Sasson et al. [BCGT13] suggested using nondeterministic routing on a Beneš network as the basis for a
circuit generator for random-access machines (RAMs). Ben-Sasson et al. [BCG+13] introduced a simple
RAM architecture, called TinyRAM, and constructed a routing-based circuit generator for TinyRAM.

We summarize the main idea behind nondeterministic routing; for more details, see [BCG+13]. We
introduce two notions:

• A CPU state, denoted S, is a string of (W +KW + 1) bits, encoding the values of the program counter,
K registers, and condition flag at a given time step.

• An execution trace for a program P, time bound T , and primary input x is a sequence of states tr =
(S1, . . . , ST ). An execution trace tr is valid if there is an auxiliary input w such that the sequence of states
induced by P running with input tapes (x,w) is tr.
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We seek an arithmetic circuit C for verifying that tr is valid. We break this down by splitting validity into 3
sub-properties:

• Validity of instruction fetch. For every time step, the correct instruction is fetched.

• Validity of instruction execution. For every time step, the fetched instruction is correctly executed (up to
memory).

• Validity of memory accesses. Every load from an address retrieves the value of the last store to that address.

The first two properties are verified as follows. Construct a circuit CP so that, for any two states S and S′,
CP(S, S′, g) is satisfied for some “guess” g if and only if S′ can be reached from S (by fetching from P the
instruction indicated by the program counter in S and then executing it), for some state of memory. Then, the
two properties hold if CP(Si, Si+1, ·) is satisfiable for i = 1, . . . , T − 1. Thus, C contains T copies of CP,
each wired to a pair of adjacent states in tr.

The third property is verified via nondeterministic routing. Assume that C also gets as input MemSort(tr),
which is the same trace tr but sorted by accessed memory addresses (breaking ties via timestamps). One can
write a circuit Cmem so that validity of memory accesses holds if Cmem is satisfied by each pair of adjacent
states in MemSort(tr). (Roughly, Cmem checks for consistency of “load-after-load”, “load-after-store”, and
so on.) But C does not know if the auxiliary input tr∗ equals MemSort(tr). So C works as follows: (a) C has
T copies of Cmem, each wired to a pair of adjacent states in tr∗; (b) C verifies that tr∗ = MemSort(tr) by
routing on a O(T log T )-node Beneš network. The switches of the routing network are set according to non-
deterministic guesses and the routing network merely verifies that the switch settings induce a permutation.
This allows for a particularly tight reduction: all known constructions that compute the correct permutation
hide impractical constants in big-Oh notation [AKS83]. In fact, non-determinism is key ingredient thorough
the reduction: it is used to get tight sub-circuits for multiplexing, division (by guessing the result and verify it
by multiplication), etc.

Past inefficiencies. After filling in additional details, the construction of [BCG+13] summarized above
gives a circuit of size:

Θ
(
(n+ T ) · (log(n+ T ) + `)

)
= Ω(` · T ) .

The Ω(` · T ) arises from the fact that the circuit CP has the program P hardcoded, so that CP has size
Ω(`) for `-instruction programs. When ` is already in thousands, the size of CP is completely dominated by
program size, and the corresponding cost of Ω(`T ) does not scale.

4.2 Our construction

We summarize how our more efficient circuit generator works. We do not hardcode the program P in a
circuit that is repeated T times. Instead, our machine follows the von Neumann paradigm: P lies in the same
read-write memory as data. But then how do we verify validity of instruction fetch when an instruction is
loaded from memory?

At the highest level, we do not distinguish between accesses to memory caused by instruction fetch or
load/store instructions, and verify consistency of both using the same nondeterministic routing network. (This
would achieve both validity of instruction fetch and validity of memory accesses.)

1. We extend the execution trace to include instructions, besides CPU states. Namely, tr = (I1, S1, . . . , IT , ST )
where Ii is the instruction executed at step i.

16



2. We extend the auxiliary input tr∗ to (allegedly) contain the “memory sort” of both instructions and CPU
states; sorting is verified by routing its 2T items on a Beneš network.

While the high level description is intuitive, a number of technical challenges need to be overcome.
First, byte-addressable memory is now accessed in different blocks: instruction-size blocks when loading

instructions during instruction fetch; word-size blocks when loading/storing words; and byte-size blocks
when loading/storing bytes. These different accesses complicate the task of Cmem, which is checking the
validity of each pair of items in the memory-sorted tr∗. Our design of Cmem only has 200 + log T gates.

Second, we need to ensure that, when the machine starts executing, the program P is already correctly
loaded in memory. (It does not suffice for memory to be initialized to some values.) We solve this problem by
extending the execution trace with an initial boot section, preceding the beginning of computation, during
which the program is stored in memory, one instruction at a time. We then ensure correctness of the stores by
using the same Beneš network, which now must route `+ 2T for `-instruction programs.

The above description is only intuitive, and, due to space limitations, does not discuss all optimizations
that ultimately yield the performance that we report in Section 6.2.

5 A High-Performance zk-SNARK For Arithmetic Circuit Satisfiability

We summarize the optimizations that we have used in our implementation of a zk-SNARK for arithmetic
circuit satisfiability. (See Figure 5 for a high-level summary of the key generator, prover, and verifier
algorithms.) The zk-SNARK can be used to produce and verify proofs for the circuits output by the circuit
generator of Section 4.

As mentioned in Section 1.4, our zk-SNARK implementation provides a choice between two security
levels: 80 bits or 128 bits. For simplicity, in this section (and later in Section 6) we only discuss the 80-bit
security level. Nevertheless, most of the optimizations that we shall discuss are generic, and extend to other
algebraic setups and security levels.

5.1 Fast finite field and curve arithmetic

The key generator, prover, and verifier perform many arithmetic operations, in various finite fields as well as
over different elliptic curves. An efficient implementation of these three algorithms must first of all be built
on fast arithmetic.
Montgomery reduction for prime fields. Arithmetic in fields of prime order is used for several tasks,
including implementing other kinds of arithmetic. For example, the key generator performs Fr-arithmetic
when evaluating each Ai, Bi, Ci ∈ Fr[z] at τ ∈ Fr (see Step 3 in Figure 5a), and the prover when computing
the coefficients ~h of H ∈ Fr[z] (see Step 4 in Figure 5b). Moreover, Fq-arithmetic underlies arithmetic in G1

and G2, as well as pairing computations.
We achieved highly-optimized implementations of arithmetic for Fr and Fq via Montgomery reduction

[Mon85], which is a technique used for speeding up field multiplication. Indeed, field addition and subtraction
are typically cheap operations: it suffices to add/subtract the representative field elements and adjust the
result should it “wrap around”. In contrast, field multiplication is more complex: adjusting the overflow after
multiplication requires a modular reduction, which maps the result to its remainder modulo the prime.

The Montgomery representation of a ∈ Fp is the integer [a] := aR mod p. Adding/subtracting
Montgomery representations is the same as adding/subtracting in Fp. Crucially, the reduction step [a][b]→
[ab] (abR2 → abR mod p) only requires a few simple operations and then dividing the result by R. If R is
a power of 2, division by R corresponds to right-shifting, which permits particularly efficient implementation.
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Following the SOS method outlined in [KAK96], our implementation of field multiplication does
multiplication and Montgomery reduction simultaneously (interleaving the corresponding instructions).
Compared to ordinary modulus reduction, we achieve a 4× speedup.

Towering-friendly fields. As we shall discuss, arithmetic in Fq3 is used to implement operations in G2,
while arithmetic in Fq6 is used in pairing computations by the verifier.

Because q ≡ 1 mod 6 for us, the field Fq6 is towering friendly [BS10], so that Fq6 can be represented via
successive root extractions. In particular, following [DOhSD06], we construct Fq6 as Fq3 [Y ]/(Y 2 −X) with
Fq3 = Fq[X]/(X3 − δ) and δ is not a square nor a cube in Fq. This tower representation reduces the cost of
squaring, multiplication, and Frobenius map (which sends α to αq) in Fq6 , all of which, as we discuss later,
are important for pairing computations.

For the cubic and quadratic extensions, we use the Karatsuba method for squaring and multiplication
[Knu97, DOhSD06], and inversion via multiplication [Knu97, LH00, BGDM+10] for inversion.

Edwards curves. Recall from Section 2.4 that G1 and G2 are cyclic groups of order r that admit an efficient
pairing e : G1 ×G2 → GT . (The pairing allows the verifier to perform the necessary checks; see Figure 5c.)
Thus, G1 and G2 need to be instantiated as groups defined over a pairing-friendly elliptic curve. Yet, since
different instantiations yield different efficiency, the choice of instantiation must be done with care.

Our curve choice is the same as in [BCG+13]: we use pairing-friendly Edwards curves [Edw07]. We
briefly explain the rationale behind this choice. The complexity of the key generator and prover is dominated
by the cost of arithmetic in G1 and G2; moreover, both perform many more operations in G1 than in G2

(roughly 7 times as many). While high-degree twists (which reduce the cost of G2 arithmetic relative to G1

arithmetic) are not available between Edwards curves [CLN10], Edwards curves enjoy one of the fastest
group laws for elliptic curves [BL07, BBJ+08], reducing the cost of G1 operations, which are more numerous
for us.4

Given an Edwards curve E defined over Fq such that E(Fq) (its curve group over Fq) has order divisible
by a prime r, one can set G1 to an order-r subgroup of E(Fq); then, if E’s embedding degree is k = 6 (as in
our case), G2 can be set to an order-r subgroup of E′(Fq3), where E′ is a quadratic twist of E and E′(Fq3)
is its group over the larger field Fq3 . Thus, group operations in G2 are indeed more expensive than those in
G1. Finally, GT is simply an order-r subgroup of the multiplicative group of Fq6 .

Thus, as in [BCG+13], we use the complex-multiplication method [AM93] applied to a curve family
of [GMV07] to construct an Edwards curve E, defined over Fq, with embedding degree k = 6 such that (i)
the size of E’s curve group over Fq is 4r, and (ii) r − 1 is sufficiently smooth. The primes r and q have 181
and 183 bits, so E achieves 80-bit security [FST10].

Property (i) implies that log q
log r ≈ 1; this ensures that operations in the order-r groups G1 and G2 are not

too expensive to implement relative to the group size. Property (ii) ensures that F∗r has a primitive root of
unity of large-enough power-of-2 order, which enables important optimizations in the key generator (see
Section 5.3) and prover (Section 5.4), including allowing the use of radix-2 multiplicative FFTs (which have
excellent asymptotic and concrete efficiency).

Next, we discuss optimizations specific to the verifier (Section 5.2), prover (Section 5.3), and generator
(Section 5.4).

5.2 An optimized verifier

The verifier’s computation consists of two parts:
4E.g., Barreto–Naehrig curves [BN06] enjoy sextic twists, but addition (in Jacobian coordinates) costs 11 field additions plus 5

field squarings. For Edwards curves the cost is only 9 field additions plus 1 field squaring [BL13].

18



• Use the verification key vk and input ~x ∈ Fnr to compute vk~x := vkIC,0 +
∑n

i=1 xivkIC,i. (See Step 1 in
Figure 5c.)

• Use the verification key vk, value vk~x, and proof π, to compute 12 pairings and perform the required
checks. (See Step 2, Step 3, Step 4 in Figure 5c.)

Quite clearly, the verifier “only” performs O(n) scalar multiplications in G1, followed by O(1) pairing
evaluations. But how fast can the verifier be? After all, fast verification may be critical to some applications
(where, e.g., a proof is separately verified by many mutually-untrusting weak devices).

Variable-base multi-scalar multiplication techniques can be used to significantly reduce the number of G1

operations needed to compute vk~x. We discuss these, in the context of prover optimizations, in Section 5.3.
But for small n, the expensive pairing computations dominate, and it is thus important to reduce their

cost as much as possible. By only making “black-box” use of a pairing, the verifier would need to evaluate
12 pairings (Figure 5c), amounting to 12 Miller loops plus 12 final exponentiations. The straightforward
approach is thus to rely on any high-performance pairing library for carrying out these evaluations.

We proceed differently: we first obtain high-performance implementations of sub-components of a
pairing, and then combine these in a way that is tailored to the verifier protocol. We now summarize how we
instantiate this approach.
Short Miller loops. Different curves support different pairings; also, on a given curve, there is more
than one pairing. The choice of pairing impacts efficiency. For instance, the “standard” choice of reduced
Tate pairing [FR94, FMR06] is not the most efficient one on our curve. Instead, we follow Vercauteren
[Ver10] and construct an optimal pairing on our curve, which requires only 1/2 the number of Miller
loop iterations as the reduced Tate pairing. We efficiently compute each Miller loop iteration by adapting,
to the optimal pairing case, the formulas of Arène et al. [ALNR11] for fast computation of the reduced
Tate pairing on Edwards curves. These efficient computations heavily rely on the fact that Fq6 is suitably
represented as a quadratic extension over a cubic one.
Fast final exponentiation. The final step of many pairing computations (including the optimal pairings we
use) is a reduction known as final exponentiation, which requires exponentiating the Miller loop’s output by
a certain power. Final exponentiation ensures output uniqueness, so to enable comparisons across pairing
evaluations. Since the embedding degree in our case is k = 6, the output of the Miller loop is an element

α ∈ Fq6 , and the output of the pairing is α
q6−1
r .

If performed naively, final exponentiation is extremely expensive: it involves exponentiating an element
in a very large field (Fq6 has size ≈ 21100) by a very large power ( q

6−1
r is ≈ 2900); such an operation in our

implementation would cost 1,479.5 µs. Fortunately, the pairing-based cryptography literature contains a host
of techniques to select from to make final exponentiation much more efficient.

First, the exponent q
6−1
r factors into (q3 − 1) · (q + 1) · q

2−q+1
r [SBC+09]. The first two factors are the

“easy part”: β := α(q3−1)·(q+1) can be computed with 1 inversion, 2 multiplications, and 4 applications of the
Frobenius map (which is fast to compute due to the way we represent Fq6).

The “hard part” is computing γ := β
q2−q+1

r . For this, one can write q2−q+1
r as

∑m
i=0wiq

i, for some
integer weights w1, . . . , wm of “small norm”, and then compute γ via multi-exponentiation as

∏m
i=1(β

qi)wi .
There are generic lattice reduction techniques for finding such weights [KKC13], but in our case the
curve arises from a curve family so that good solutions can be found by hand [SBC+09]: we can write
q2−q+1

r = w0 + w1q with |w0| ≈
√
q and w1 = 4 so that γ := βw0+4q.

To further simplify computing γ, we use the fact that β lies in a cyclotomic subgroup of Fq6 , which makes
squaring ≈ 3 times faster than for general field elements in Fq6 [GS10].
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Overall, our final exponentiation costs 194.9 µs, amounting to a ≈ 7.59× improvement over a naive
implementation.

Sharing Miller loops and final exponentiations. The verifier computes a product of two pairings in Step 3,
and another one in Step 4 (see Figure 5c). A product of pairings can be evaluated faster than evaluating each
pairing separately and then multiplying the results [Sol03, Sco05, GS06, Sco07].

Concretely, in a product of m pairings, the Miller loop iterations for evaluating each factor can be carried
out in “lock-step” so to share a single Miller accumulator variable, using one Fq6 squaring per loop instead
of m.

In a similar vein, one can perform a single final exponentiation on the product of the outputs of the m
Miller loops, instead of m final exponentiations and then multiplying the results. In fact, since the output of
the pairing can be inverted for free (as the element is unitary so that inverting equals conjugating [SB04]), the
idea of “sharing” final exponentiations extends to a ratio of pairing products. Thus, in the verifier we only
need to perform 5, instead of 12, final exponentiations.

Overall, while separately computing 12 optimal pairings costs 13.6 ms, our verifier, by leveraging
the aforementioned techniques, performs all the pairing checks in only 8.1 ms, amounting to a 1.68×
improvement.

Precomputation by processing the verification key. Of the 12 pairings the verifier needs to evaluate, only
one is such that both of its inputs come from the proof π. All other 11 pairing evaluations have one fixed
input, coming from the verification key vk (or being a generator of G1 or G2).

Whenever one of the two inputs to a pairing is fixed, precomputation techniques apply [GHS02, BLS03,
Sco07], especially in the case when the fixed input is the base point in Miller’s algorithm (which, in our
case, holds for 9 out of the 11 pairing evaluations). We thus split the verifier’s computation into an offline
phase, which consists of a one-time precomputation that only depends on vk, and a many-time online phase,
which depends on the precomputed values, input ~x, and proof π. More precisely, the result of the offline
phase is a processed verification key vk∗. While vk∗ is longer than vk (but still short), it allows the online
phase to be faster. In our implementation, vk∗ decreases the total cost of pairing checks from 8.1 ms to 4.7 ms
(improvement of 1.72×); for inputs of n field elements, vk has size 436 B + n · 24 B while vk∗ has size
151 kB + n · 24 B.

5.3 An optimized prover

The prover’s computation consists of two main parts:

• Compute the coefficients ~h of H(z) := A(z)B(z)−C(z)
Z(z) . (See Step 4 in Figure 5b.)

• Use the coefficients ~h, QAP witness ~s, and public key pk to compute π. (See Step 5 in Figure 5b.)

Each part is very costly if naively performed. We summarize how we efficiently perform these computations.

Computing the coefficients of H . In general, a computation such as finding the coefficients of H can
be efficiently performed by using FFT and Inverse FFT (IFFT) algorithms for fast polynomial evaluation
and interpolation. As in [BCG+13], we rely on the fact that Fr contains a primitive root of unity of large
enough order 2i, use the classical radix-2 multiplicative FFT [CT65] and its inverse. This algorithm, tailored
to the special structure of the field Fr, only requires O(n log n) field operations for degree-n polynomials,
and is particularly simple and efficient in practice.
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Variable-base multi-scalar multiplication. Computing π in the prover’s last step requires solving large
instances of variable-base multi-scalar multiplication. Given elements Q1, . . . ,Qn all in G1 or G2 and
scalars α1, . . . , αn ∈ Fr, the prover needs to compute 〈~α, ~Q〉 := α1Q1 + · · ·+ αnQn.

A good choice of multi-scalar multiplication algorithm depends on what distribution we expect the scalars
to follow. In the prover, the scalars ~α are one of two types:

• either ~α is the vector ~c := (1 ◦ ~s ◦ δ1 ◦ δ2 ◦ δ3) ∈ F4+m
r , where ~s := QAPwit(C, ~x,~a) ∈ Fmr is the QAP

witness and δ1, δ2, δ3 ∈ Fr are random;

• or ~α is the vector ~h ∈ Fd+1
r representing the coefficients of the degree-d polynomial H .

The entries in ~h are essentially random. Instead, the entries in ~s depend on the input (C, ~x,~a) to QAPwit; in
turn, (C, ~x,~a) depends on our circuit generator (Section 4).

For the case ~α = ~h, we use an in-place multi-scalar multiplication algorithm [BC89] (and we implement
it following the suggestions in [BDL+11]). The algorithm’s efficiency relies on a heuristic, but avoids the
space requirements of non-heuristic algorithms (such as wNAF-based interleaved multiplication [Möl01])
that require storing 2w−1n elements for window size w — too much for us because n is very large.

For the case ~α = ~c, using the previous algorithm “as is” is inefficient. Indeed, the heuristic algorithm
works well when all the scalars have roughly the same bit complexity, but the entries in ~c have very different
bit complexity. Nonetheless, we observe that the entries can be “clustered” into just a few groups of scalars
with approximately the same bit complexity; thus, we apply the algorithm of [BC89] to each such group.

We stress that, while previous works did leverage multi-scalar multiplication [PGHR13, BCG+13], they
did not tailor its use to the specific scalar distributions arising in the protocol.
Proving key in sparse representation. As discussed above, the prover computes 〈~α, ~Q〉 for various choices
of scalar vectors ~α (supplied by the prover) and element vectors ~Q (taken from the proving key pk). Because
some of the element vectors contain many zero elements (which do not affect the inner product), the key
generator stores these vectors in pk in a sparse, rather than dense, form (see Section 5.4). We extend the
multi-scalar multiplication algorithms, in the straightforward way, to support element vectors in sparse form,
thereby saving time and space for the prover.

5.4 An optimized key generator

The key generator’s computation consists of two parts:

• Evaluate each Ai, Bi, Ci at τ .

• Compute the proving key pk and verification key vk. (See Step 3 and Step 4 in Figure 5a.)

Once again, each part is very costly if naively performed. We summarize how we efficiently perform these
computations.
Evaluation of Ai, Bi, Ci. As in [BCG+13], the first part can be performed in O(|C|) field operations, by
relying on the fact that Fr has a primitive root of unity of large enough order.
Fixed-base multi-scalar multiplication. The second part is dominated by the computation of pk, due to
the large number of entries in pk. This computation requires solving large instances of fixed-base multi-scalar
multiplication. Namely, given an element P in G1 or G2 and scalars α1, . . . , αn ∈ Fr, the key generator
needs to compute α1P, . . . , αnP .

Again, a good choice of multi-scalar multiplication algorithm depends on what distribution we expect the
scalars to follow. In the key generator, the scalars ~α are either zero (see next paragraph) or random evaluations
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of low-degree polynomials. As in [PGHR13, BCG+13], we find that using fixed-base windowing [BGMW93]
is a simple but very efficient solution.

Leveraging sparsity of the QAP. Given an arithmetic circuit C, some of the polynomials in the QAP
instance ( ~A, ~B, ~C,Z) = QAPinst(C) are zero. Discussing the details of how the instance map QAPinst
(from Lemma 2.4) works is outside the scope of this paper. Though, very roughly, C’s topology (i.e., the
graph induced by C’s gate connections) determines which polynomials in ~A, ~B, and ~C are zero.

In practice, many circuits yield a QAP instance for which the density of non-zero polynomials in ~A, ~B, ~C
is well below 100%. For instance, our circuit generator typically outputs a circuit for which the percentage of
non-zero polynomials in ~A, ~B, and ~C is approximately 52%, 15%, 71% respectively.

We reduce the size of the proving key pk (and thus also reduce the space usage of the key generator)by
leveraging the sparsity of the QAP instance. Concretely, instead of representing, say, the pkA component
of pk as a dense array of elements, we represent pkA as a list of position-element pairs corresponding to
the non-zero elements. Similarly for the pk′A, pkB, pk′B, pkC, and pk′C components of pk. (As for pkK and
pkH, the remaining components in pk, there is no sparsity to leverage.) For circuits produced by our circuit
generator, the size of pk shrinks by 35%.

6 System Evaluation

We evaluated our system on a desktop computer with a 3.40 GHz Intel Core i7-4770 CPU (with Turbo Boost
disabled) and 16 GB of RAM. All experiments, except the largest listed in Figure 12 and Figure 13, used a
small fraction of the RAM. For the two largest experiments in Figure 13 we increased RAM to 32 GB and
added a Crucial M4 solid state disk for swap space.

While our code supports multithreading, for ease of comparison we ran it in single-thread mode.

6.1 Microbenchmarks

Finite field and curve arithmetic. To estimate the costs of our finite-field and curve arithmetic (discussed
in Section 5.1), we performed various microbenchmarks, which are reported in Figure 7 and in Figure 8. We
remind that for us the primes r and q respectively have 181 and 183 bits (i.e., dlog2 re = 181).

Pairing computation. The verifier needs to evaluate 12 pairings. However, as discussed in Section 5.2,
our implementation does not treat the pairing as a black box. Instead, we utilize numerous optimiza-
tions, some of which require “sharing” sub-computations of a pairing across multiple pairing evalu-
ations. Thus, we have separately benchmarked the various sub-computations of one optimal pairing
evaluation on our curve; see Figure 9. (Benchmarks for the whole verifier are reported in Section 6.3.)

Multi-scalar multiplication. The key generator needs to solve large instances of fixed-base multi-scalar
multiplication (Section 5.4), while the prover large instances of variable-base multi-scalar multiplication (see
Section 5.3).

In both cases, we employ a multi-scalar multiplication algorithm. In the first case, we use fixed-base
windowing [BGMW93]; in the second case, we use an in-place heuristic algorithm [BC89] (or a variation
thereof, depending on the distribution of scalars). See Figure 10 for microbenchmarks comparing the
performance, for random points and scalars, of multi-scalar multiplication against naive multiplication in the
two cases.
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Operation Time
Fr add 6.4 ns
Fr sub 5.7 ns
Fr mul 26.1 ns
Fr sqr 21.1 ns
Fr inv 920.7 ns

Operation Time
Fq add 4.2 ns
Fq sub 5.5 ns
Fq mul 26.2 ns
Fq sqr 23.1 ns
Fq inv 976.1 ns

Operation Time
Fq3 add 17.3 ns
Fq3 sub 16.8 ns
Fq3 mul 300.8 ns
Fq3 sqr 233.7 ns
Fq3 inv 1,304.7 ns

Operation Time
Fq6 add 38.2 ns
Fq6 sub 40.2 ns
Fq6 mul 1,052.5 ns
Fq6 sqr 778.4 ns
Fq6 inv 2,568.5 ns

Operation Time
Fq6 Frobenius map 163.2 ns
Gφ6(q) squaring 520.7 ns
Fq6 unitary inversion 22.1 ns

Figure 7: Finite field arithmetic microbenchmarks. Costs of operations in the fields Fr , Fq , Fq3 , and Fq6 .

Operation Time
G1 add 335.4 ns
G1 neg 8.1 ns
G1 dbl 242.1 ns
G1 compr 1,014.2 ns
G1 decom 14,957.0 ns

Operation Time
G2 add 3,177.8 ns
G2 neg 20.4 ns
G2 dbl 2,101.4 ns
G2 compr 2,904.8 ns
G2 decom 357,260.4 ns

Figure 8: Curve arithmetic microbenchmarks. Costs of operations in the curve groups G1 and G2. The labels “compr” and
“decom” stand for compression and decompression of curve points.

Operation Time
Precomputation for G1 input 1.2 µs
Precomputation for G2 input 563.8 µs
Miller loop (given precomputation) 283.5 µs
Final exponentiation 106.2 µs

Figure 9: Pairing computation. Costs of various sub-computations necessary to evaluate a single optimal pairing on our curve.

Number of Fixed-base in G1 Variable-base in G1

exponents Naive Opt. Naive Opt.
104 0.8 s 0.7 s 0.8 s 0.1 s
105 8.4 s 1.2 s 8.5 s 0.6 s
106 84.4 s 6.6 s 84.8 s 6.7 s

Figure 10: Multi-scalar multiplication Comparing the costs of naive vs. multi-scalar multiplication in G1 for fixed and variable
bases.

6.2 Performance of our circuit generator

We benchmark our circuit generator for vnTinyRAM. A summary of the construction is in Section 4. For
concreteness, when reporting costs in this subsection, we fix W,K = 16 (i.e., a machine with 16 registers of
16 bits).

Recall from Definition 3.2 that a circuit generator consists of a circuit generator circ and witness
map wit. The circuit generator circ takes as input integers `, n, T , and outputs an Fr-arithmetic circuit
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C : Fmr × Fhr → Flr, for m := |`2W |r + |nW |r and some h, l. If the circuit generator has efficiency f(·)
then C has f(`, n, T ) gates.

The circuit C verifies the correct execution of any program with ≤ ` instructions, for ≤ T steps, on
primary inputs of ≤ n words. The witness map wit maps a program with accepting inputs into a satisfying
assignment for C.

Theorem 4.1 states that our circuit generator has efficiency

f(`, n, T ) := O
(
(`+ n+ T ) · log(`+ n+ T )

)
.

Of course, the above expression only characterizes asymptotic efficiency, so we must discuss the concrete
efficiency of our circuit generator. We begin by “uncovering” the constants hidden in the big-oh notation,
which we estimated by measuring the number of gates in various subcircuits of the generated circuit C. We
obtained the following expression:

≈ 720T + (200 + 2 logS) · (n+ `+ 2T ) + (10 + 2 logS) · S ,

where S is (` + n + 2T ) rounded to the next power of 2. Let us go through the above expression so to
understand it.
Execution: 720T . This term arises from T copies of a subcircuit tasked with ensuring validity of instruction
execution from one CPU state to the next one in the execution trace. We stress that the interpretation “we
incur a 720× overhead” is thoroughly incorrect: T bounds the number of steps of the abstract machine
vnTinyRAM. Even merely executing (not to talk about verifying) each step of vnTinyRAM has a concrete
cost c in terms of gates. So 720T must be compared against cT . Of course, we do not know what is the
optimal value of c, but, since a CPU state consists of hundreds of bits, c is likely to be in the hundreds, if not
even higher than 720. (Indeed, 720 is obtained by leveraging nondeterminism wherever possible, which is
not available during plain execution!)
Memory: (200 + 2 logS) · (n + ` + 2T ). This term arises from (n+ `+ 2T ) copies of a subcircuit
tasked with verifying validity of all memory accesses (both instruction fetch and data loads/stores) in the
memory-sorted execution trace. The first (n+`) copies correspond to the initial stores for initializing memory
with program and input; while the remaining 2T copies correspond to T instruction fetches and T (potential)
data loads/stores.
Routing: (10 + 2 logS) · S. This term arises from routing constraints in the Beneš network, which has
2 logS · S switches. The rounding effect (S is a power of 2) comes from the fact that a Beneš network routes
packets in powers of 2.

Overall, the second and third terms are the ones that we could consider “true overheads”, while the first term
represents the concrete cost of verifying abstract execution steps.

In Figure 11, we give the gate count in C := circ(`, n, T ), including subcounts for the aforementioned
three parts,
• for ` = 104, n = 102, and increasing values of T ; and
• for ` = 105, n = 102, and increasing values of T .
The gate counts show two things. First, the concrete cost of machine execution almost always accounts
for ≈ 50% of the per-cycle count, so the overhead we incur due to verification is only ≈ 2×. Second, our
techniques efficiently handle large programs: for instance, a ten-fold increase in program size, from ` = 104

to ` = 105, barely impacts the per-cycle gate count, which increases from 1419.5 to only 1441.4 for T = 220.
Comparison with prior circuit generators. The circuit generator in [BCG+13] gives, e.g., per-cycle
counts of 10,872 and 100,872 for ` = 104 and ` = 105 respectively, when T = 220. Thus we achieve 7.6×

24



smaller circuits for 104-instruction programs, and 70.0× smaller circuits for 105-instructions. Moreover, our
superior asymptotics ensure that our improvement grows, without bound, as ` increases.

A comparison with the circuit generator in [PGHR13] is not well-defined because (i) it supports only
programs with no data dependencies, and (ii) its efficiency is not easily specified as a function of the input
program. Intuitively, we expect [PGHR13]’s circuit generator to perform better for programs that are “already
closer to a circuit”, and worse for programs richer in functionality (which comprise most programs in practice).
Experimentally, this is what we find.

On the one hand, we wrote a simple C program multiplying two 10× 10 matrices of 16-bit integers. The
circuit generator in [PGHR13] produces a circuit with 1100 gates, while our circuit generator (when given
the corresponding vnTinyRAM assembly) produces a circuit with ≈ 107 gates. Thus, not surprisingly, when
invoked on a “circuit-like” program such as matrix multiplication, our circuit generator does not perform
well compared to more specific techniques, and for such programs one should use the circuit generator
in [PGHR13].

On the other hand, most realistic programs are not “circuit like”. For instance, consider a fundamental
operation: given an m-integer array, read the integer at a non-constant index i ∈ [m]. Unable to support
data-dependent indices, the circuit generator in [PGHR13] forces a programmer to implement array accesses
via a linear scan (at least without useful information about possible values of i). Established via experiment,
the cost, in gates, of such an access in [PGHR13] is ≈ 2m. In contrast, in vnTinyRAM an array access only
costs one vnTinyRAM cycle, which usually costs < 1500 gates. Thus, for m > 104, the cost of linear scan
is > 13× the cost of one vnTinyRAM cycle, and the efficiency gap grows as m increases.

This inefficiency extends beyond array accesses. While vnTinyRAM supports, say, O(1)-time operations
on hash-tables orO(log n)-time operations on binary search trees or heaps, the circuit generator of [PGHR13]
can only emulate these with O(n)-time scans. This limitation also precludes efficiency benefits of data
structures more complex than arrays.

We find it an intriguing open question whether techniques for handling arbitrary programs such as
nondeterministic routing can be effectively combined with more specific techniques [PGHR13] so to yield
circuit generators that are efficient both for restricted and rich programs.

` = 104

n = 102

T = ∗

Num. of gates in C := circ(`, n, T )

Per
cycle

Per cycle divided between
exec. mem. routing

220 1,419.5 720.0 487.5 212.0
222 1,441.6 720.0 493.6 228.0
224 1,465.2 720.0 501.2 244.0
226 1,489.0 720.0 509.0 260.0
228 1,513.0 720.0 517.0 276.0

` = 105

n = 102

T = ∗

Num. of gates in C := circ(`, n, T )

Per
cycle

Per cycle divided between
exec. mem. routing

220 1,441.4 720.0 509.4 212.0
222 1,447.2 720.0 499.2 228.0
224 1,466.6 720.0 502.6 244.0
226 1,489.4 720.0 509.4 260.0
228 1,513.1 720.0 517.1 276.0

Figure 11: Number of gates in generated circuit. Number of gates in the circuit C := circ(`, n, T ) as the time bound T increases,
for two settings of program size bound ` and input bound n. The numbers show that the per-cycle costs are not significantly impacted
by ` as T increases.

6.3 Performance of our zk-SNARK for circuit satisfiability

We benchmark our implementation of the zk-SNARK for circuit satisfiability from Figure 5. A summary of
our efficiency optimizations is given in Section 5.

The key generator takes as input an arithmetic circuit C : Fnr × Fhr → Flr. Its efficiency mostly depends
on the number of gates and wires in C, because these affect the size and degree of the corresponding QAP
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(see Lemma 2.4) used by the generator. Thus, for the purposes of benchmarking, we ran the generator on a
circuit with ≈ 2i gates and wires for i ∈ {10,12, . . . ,24} (and fixed values n = h = l = 100). In Figure 12
we report the resulting times, together with sub-times corresponding to various sub-computations.

The prover takes as input a proving key pk, input ~x ∈ Fnr , and witness ~a ∈ Fhr . Its efficiency depends
for the most part on the number of gates and wires in C used to generate pk; we thus ran the prover on the
proving keys output by the key generator (on the same circuits). In Figure 12 we report the resulting times,
together with sub-times for various sub-computations, and the proof size (which is always 230 bytes).

The verifier takes as input a verification key vk generated for C, input ~x ∈ Fnr for C, and proof π. Its
efficiency only depends on ~x. Thus, for the purposes of benchmarking, we ran the verifier on a random input
~x ∈ Fnr with n = 2i for i = 0,2, . . . ,20. In Figure 12 we report the resulting times, including the time to
preprocess the verification key (which is a one-time computation) and to run the verifier.

Discussion. Our measurements demonstrate that our zk-SNARK implementation efficiently scales up
to sixteen million gates (for which key generation takes 26 min and proving takes 30 min), on a desktop
computer with 32GB RAM. Our verification times are excellent (≈ 0.4 ms per kilobyte of input), and do not
suffer from the same space limitations as key generation and proving; indeed, for an n-kilobyte input, the
verification key is ≈ 1.02 · n kilobytes.

Remark 6.1. Another factor affecting the efficiency of the key generator and prover is the sparsity of the
QAP instance obtained from the circuit C. (See Section 5.3 and Section 5.4.) Sparsity depends on C’s
topology, and varies from circuit to circuit. In Figure 12 we reported worst-case numbers in this respect: we
only used circuits whose QAP has no sparsity. In general, sparser QAP instances make the key generator and
prover faster; in particular, sparsity plays a role in our combined system, as the circuits output by our circuit
generator induce relatively-sparse QAP instances.

6.4 End-to-end performance

As discussed in Section 3.4 (and Figure 6), we obtain a zk-SNARK for vnTinyRAM by combining our circuit
generator for vnTinyRAM (Section 4) and our zk-SNARK for circuit satisfiability (Section 5). We now
benchmark the system obtained from this combination.

But how should we benchmark this system? Recall from Section 3.2 that a zk-SNARK for vnTinyRAM
consists of a triple of algorithms (KeyGen,Prove,Verify). Given bounds `, n, T (for program size, input size,
and time),

• the efficiency of KeyGen and Prove depends on `, n, T ;

• while the efficiency of Verify depends only on `, n.

Thus, we benchmark the system as follows.

Benchmarking KeyGen. We evaluate KeyGen for various choices of ` and T , while keeping n fixed at,
say, 100. (Varying ` or n affects KeyGen’s efficiency in similar ways, so we report times only for a fixed n.)
In Figure 13, we report KeyGen’s total running time; the subtime for only running the circuit generator circ
(the remaining time is spent in the zk-SNARK key generator G); and the sizes of the corresponding proving
and verification keys.

Benchmarking Prove. We evaluate Prove for the same choices of `, n, T as for KeyGen. In Figure 13,
we report Prove’s total running time, and subtime for running the witness map wit (the rest is spent in the
zk-SNARK prover P ).
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Key generator G Prover P
Gate Total Subtime for computing pk vk Total Subtime for computing π
count time QAP at τ pk vk size size time H(z) π size
210 0.2 s 2.2ms 0.2 s 5.4ms 255.0 kB 2.8 kB 0.2 s 3.6ms 0.2 s 230B
212 0.7 s 8.6ms 0.6 s 5.1ms 1.0MB 2.8 kB 0.6 s 16.3ms 0.6 s 230B
214 2.3 s 34.3ms 2.2 s 5.1ms 4.2MB 2.8 kB 2.2 s 73.0ms 2.1 s 230B
216 7.8 s 137.3ms 7.7 s 5.1ms 16.6MB 2.8 kB 8.3 s 0.3 s 7.9 s 230B
218 27.9 s 0.5 s 27.3 s 5.1ms 66.5MB 2.8 kB 31.0 s 1.4 s 29.6 s 230B
220 100.9 s 2.2 s 98.6 s 5.1ms 266.1MB 2.8 kB 119.4 s 6.4 s 113.0 s 230B
222 356.9 s 8.8 s 347.5 s 5.1ms 1.1GB 2.8 kB 458.6 s 28.0 s 430.6 s 230B
224 1,327.7 s 35.1 s 1,290.3 s 5.0ms 4.3GB 2.8 kB 1,771.7 s 120.8 s 1,650.9 s 230B

Verifier V
Input size vk Preprocess vk Total time Subtime for computing

as field elts. as bytes size (offline) (online) vk~x pairing checks
20 23B 475B 3.4ms 4.7ms 0.1ms 4.6ms
22 90B 544B 3.4ms 4.8ms 0.2ms 4.6ms
24 360B 820B 3.4ms 4.9ms 0.3ms 4.6ms
26 1.4 kB 1.9 kB 3.4ms 5.7ms 1.1ms 4.6ms
28 5.8 kB 6.3 kB 3.4ms 8.2ms 3.6ms 4.6ms
210 23.0 kB 24.0 kB 3.4ms 16.4ms 11.8ms 4.6ms
212 92.2 kB 94.7 kB 3.4ms 45.3ms 40.7ms 4.6ms
214 368.6 kB 377.3 kB 3.4ms 151.5ms 146.9ms 4.6ms
216 1.5MB 1.5MB 3.4ms 555.0ms 550.3ms 4.6ms
218 5.9MB 6.0MB 3.4ms 2,321.9ms 2,317.3ms 4.6ms
220 23.6MB 24.1MB 3.4ms 9,556.2ms 9,551.6ms 4.6ms

Figure 12: Performance of zk-SNARK for arithmetic circuit satisfiability. Costs of the key generator and prover for various
circuit sizes, and of the verifier for various input sizes. In the verifier, the preprocessing of vk is a one-time operation that can be
amortized across any number of verifications.

Benchmarking Verify. Since the efficiency of Verify does not depend on T , we evaluate Verify for various
choices of ` and n. In Figure 13, we report Verify’s running time. (All the times assume that the verification
key vk has been preprocessed; this one-time operation saves 3.5 ms.)

Remark 6.2. As the program size bound ` grows, so does verification time. Yet, if one has to verify many
proofs relative to the same program P but different inputs, one can avoid this: verification time can be made
independent of `, and dependent only on the input size bound n. Namely, given vk and P, one can derive, in
time O(`), a program-specific verification key vkP. Using vkP it is possible, e.g., to reduce verification time
to 4.7 ms, 4.8 ms, 5.1 ms, 8.2 ms respectively for n = 10,102,103,104 regardless of `. The idea behind this
technique is evaluating the program-specific part of vk~x computation (see Figure 5) ahead of time, so that the
online phase would be tasked with just evaluating the input-dependent part of vk~x and combining it with the
pre-computed result.

6.5 Case study: memcpy with just-in-time compilation

The function memcpy is a standard C function that works as follows: given as input two array pointers and a
length, memcpy copies the contents of one array to the other. Of course, with no data dependencies, copying
data in a circuit is trivial: you just connect the appropriate wires. However, when the array addresses and
their lengths are data dependent, and memcpy is invoked as a subroutine in a larger program, an efficient
implementation is needed.
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Times for KeyGen (and subtimes for circ)
n = 100 ` = 102 ` = 103 ` = 104

T = 4000 405.6 s (3.6 s) 417.1 s (3.7 s) 665.5 s (5.9 s)
T = 8000 701.3 s (6.2 s) 778.7 s (7.1 s) 902.2 s (8.3 s)
T = 16000 1,349.9 s (12.3 s) 1,486.2 s (13.9 s) 1,604.6 s (15.0 s)
T = 32000 2,665.6 s (24.2 s) 2,681.2 s (24.3 s) 3,200.5 s (29.0 s)

Sizes of proving and verification keys output by KeyGen

n = 100 ` = 102 ` = 103 ` = 104

T = 4000 1.2GB 1.1 kB 1.2GB 4.8 kB 2.0GB 41.6 kB
T = 8000 2.2GB 1.1 kB 2.5GB 4.8 kB 2.8GB 41.6 kB
T = 16000 4.3GB 1.1 kB 4.9GB 4.8 kB 5.3GB 41.6 kB
T = 32000 8.7GB 1.1 kB 8.7GB 4.8 kB 10.2GB 41.6 kB

Times for Prove (and subtimes for wit)
n = 100 ` = 102 ` = 103 ` = 104

T = 4000 154.0 s (5.6 s) 155.0 s (5.8 s) 308.9 s (9.6 s)
T = 8000 306.6 s (9.9 s) 314.8 s (11.9 s) 321.9 s (13.8 s)
T = 16000 637.5 s (23.3 s) 665.5 s (28.2 s) 726.2 s (30.5 s)
T = 32000 1,606.1 s (60.8 s) 1,604.9 s (61.1 s) 1,721.1 s (85.3 s)

Times for Verify
` = 102 ` = 103 ` = 104

n = 0 4.7ms 4.8ms 5.2ms
n = 10 4.7ms 4.8ms 5.2ms
n = 102 4.8ms 4.9ms 5.2ms
n = 103 5.2ms 5.2ms 5.5ms
n = 104 8.4ms 8.4ms 8.7ms

Figure 13: Performance of zk-SNARK for vnTinyRAM. Costs of KeyGen and Prove for various choices of ` and T (all with
n = 100), and of Verify for various choices of ` and n. The T = 32,000 case is slightly slower than interpolation suggests, due to
swapping memory to disk.

A naive implementation of memcpy iterates, via a loop, over each array position i and copies the i-th
value from one array to the other. In vnTinyRAM each such loop iteration costs 6 instructions; 2 of these are
to increase the iteration counter and jump back to the start of the loop. Thus, for m-long arrays, copying
takes 6m instructions (discounting loop initialization). A cost of 6m also holds for TinyRAM of [BCG+13].

In contrast, in vnTinyRAM, one can do better. Namely, loop unrolling can be used to avoid paying for
the 2 “control” instructions; one can verify that, asymptotically, the optimal number of unrollings depends
on the array length: it is Θ(

√
m). This is why dynamic loop unrolling is used, and requires the use of a von

Neumann architecture. We wrote a 54-instruction vnTinyRAM program for memcpy that uses dynamic loop
unrolling to achieve an efficiency of ≈ 4m+ 11.5

√
m cycles for m-long arrays. For m ≥ 600, we get 1.25×

speed-up over the naive implementation, and 1.4× speed-up for m ≥ 3000.

7 Other Prior Work

Prior work that is most relevant to us is previous work on zk-SNARKs, which is discussed in Section 1.2.
There are also numerous works studying variations or relaxations of the goal we consider; here, we summarize
some of them.

Interactive proofs for low-depth circuits. Goldwasser et al. [GKR08] obtained an interactive proof for
outsourcing computations of low-depth circuits. A set of works [CMT12, TRMP12, Tha13] has optimized
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and implemented the protocol of [GKR08]. The protocol of [GKR08] can also be reduced to a two-message
argument system [KR09, KRR13]. Canetti et al. [CRR12] showed how to extend the techniques in [GKR08]
to also handle non-uniform circuits.

Batching arguments. Ishai et al. [IKO07] constructed a batching argument for NP, where, to simultaneously
verify that ` circuits of size S are satisfiable, the verifier runs in time max{S2, `} (i.e., in time (S2/`) per
circuit).

A set of works [SBW11, SMBW12, SVP+12, SBV+13] has improved, optimized, and implemented
the batching argument of Ishai et al. [IKO07] for the purpose of outsourcing computation. In particular, by
relying on quadratic arithmetic programs of [GGPR13], Setty et al. [SBV+13] have improved the running
time of the verifier and prover to max{S, `} · poly(λ) and Õ(S) · poly(λ) respectively.

Vu et al. [VSBW13] provide a system that incorporates both the batching arguments of [SBW11,
SMBW12, SVP+12, SBV+13] as well as the interactive proofs of [CMT12, TRMP12, Tha13]. The system
decides which of the two approaches is more efficient to use.

Braun et al. [BFR+13] apply batching techniques (as well as zk-SNARKs) to verify MapReduce compu-
tations, by relying on various verifiable data structures.

Arguments with competing provers. Canetti et al. [CRR11] use collision-resistant hashes to get a protocol
for outsourcing deterministic computations in a model where a verifier interacts with two computationally-
bounded provers at least one of which is honest [FK97]. Remarkably, the protocol in [CRR11] works
directly for random-access machines, and therefore does not require reducing random-access machines to any
“lower-level” representation (such as circuits). Canetti et al. implement their protocol for deterministic x86
programs.

Previous circuit generators. Some prior work addressed the problem of translating high-level languages
into low-level languages such as circuits. Yet, most prior work only supported limited functionality for
high-level languages: [SVP+12, SBV+13] present a circuit generator based on Fairplay [MNPS04, BDNP08],
whose SFDL language does not support important primitives and has inefficient support for others; [PGHR13]
present a circuit generator for programs without data dependencies.

Some recent works support much more expressive functionality: [BCG+13] relies on nondeterministic
routing to support random-access machine computations [BCGT13]; [BFR+13] relies on online memory
checking [BEG+91, BCGT13] to support stateful computations.

Other cryptographic tools. Fully-homomorphic encryption (FHE) [Gen09] and probabilistically-checkable
proofs [AS98, ALM+98] are powerful tools that are often used in protocols for outsourcing computations (with
integrity or confidentiality guarantees, or both) [Kil92, Mic00, AIK10, GGP10, CKV10, KRR13, GKP+13].
However, such constructions have so far not been explored in practice. Another powerful tool is secure
multi-party computation [GMW87, BOGW88], but most work in this area does not consider the goal of
succinctness.

8 Conclusion & Future Work

We have presented a high-performance implementation of a zk-SNARK for programs written in a relatively
expressive model of computation: a simple von Neumann RISC architecture. Proofs are non-interactive and
publicly verifiable; moreover, proofs are only a few-hundred bytes long and can typically be verified in just a
few milliseconds.

Our system combines a highly-optimized circuit generator for the architecture and a high-performance
zk-SNARK for producing and verifying proofs for the resulting arithmetic circuits. As discussed in Section 6,
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our system significantly improves, both in efficiency and functionality, over previous implementations of
succinct non-interactive arguments [PGHR13, BCG+13].

Going forward, we believe that further enriching classes of programs that zk-SNARKs can (efficiently!)
support is crucial for catalyzing their use in security applications. Our system efficiently supports a simple
von Neumann RISC architecture; we view this as a solid foundation.

More work lies ahead to push the envelope towards richer functionality and better efficiency: from
building faster proof systems at the foundations, to applications, such as compilers for architectures like
vnTinyRAM. We are eager to see where the journey to succinct verified computation will bring us.
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