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Abstract—Profiling power attacks like Template attack and
Stochastic attack optimizes their performance by jointly eval-
uating the leakages of multiple sample points. However, such
multivariate approaches are rare among non-profiling DPA
attacks, since integration of the leakage of a higher Signal-
to-Noise Ratio (SNR) sample point with the leakages of lower
SNR sample points might result in a decrease in the overall
performance. We study the issue of optimally combining the
leakages of multiple sample points using a linear function in
great details. In this work, our contributions are three-fold: 1)
we first derive a relation between the success rate of a CPA
attack and the SNR of the power traces, 2) we introduce a
multivariate leakage model for Virtex-5 FPGA device, and 3)
using the proposed multivariate leakage model, we derive the
linear Finite Impulse Response (FIR) filter coefficients which
maximizes the SNR of the output leakage, thus optimizes the
success rate of the CPA attacks in a non-profiling setup.

I. INTRODUCTION

Differential Power Analysis (DPA) [20] has been proven
to be an extremely lethal tool for side-channel analysis. It is
highly effective in finding the secret key of a secure device by
analysing the power traces of the device, even without knowing
the implementation details. One of its strengths comes from
its ability to exploit minute data-dependency of leakage by
accumulating them over a large number of power traces. Since
power traces are the scarce resource, to reduce the number
of required power traces for a successful DPA attack, or to
increase the success rate of a DPA attack using a limited
number of power traces has been in the focus of DPA literature
since its introduction.

The success rate of the DPA [23] attacks is largely in-
fluenced by the Signal-to-Noise Ratio (SNR) [23] of the
power traces. As a consequence, in many applications, Power
Analysis attacks are either preceded by various pre-processing
techniques like integration [23], PCA [6] for the reduction
of noise in the power traces or followed by some post-
processing techniques like averaging [9], [S], [6], filtering
[24] for the reduction of the effect of noise on the outputs
of the distinguisher. These techniques attempt to improve
the performance of the DPA attacks directly or indirectly by
extracting information from multiple sample points. Some of
these techniques like PCA are based on some implicit assump-
tions, thus optimally applicable to some specific scenarios
only, while others deploy some heuristic methods (please refer
to Sec. II-D). In this article, we take a model based approach
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to increase the effectiveness of DPA attacks by combining the
leakages of multiple sample points.

Various profiling attacks like Template attack [8] and
Stochastic attack [28] provide optimal performance by jointly
evaluating the leakages at multiple sample points. However,
they use a separate profiling step for approximating the multi-
variate leakage distribution [30] of the power traces. The pro-
filing step requires a large number of power traces to estimate
the multivariate leakage distribution with sufficient accuracy.
Moreover in most of the cases, it needs the knowledge of
the secret key which may not be available in many attacking
scenarios.

Principal Component Analysis (PCA) has been introduced
as a tool to reduce the size of the sample points in Template
attacks [4]. Later in [29], PCA is used as a distinguisher.
Recently in [6], Batina et al. have presented it as a pre-
processing tool for reducing noise in a non-profiling setup.
However, it performs better under the assumption that the
data-dependent variations is larger than the noise variations.
Unfortunately, in side-channel analysis, this assumption does
not hold always. Though in [6], Batina et al. have proposed
a new distinguisher based on some empirical observation, the
performance of such distinguisher is far from being optimal.

Contributions: In this paper, we have studied how to
maximize the success rate of a DPA attack by combining the
leakages of multiple sample points. We have explored two pos-
sible ways of combining: a) combine the leakages of multiple
sample points first and then apply a univariate distinguisher on
the combined leakage, and b) apply a univariate distinguisher
on multiple sample points independently and then combine
their outputs. We have further shown that in certain cases both
the approaches are equivalent in terms of the success rate of
the attack. Next, have devised an optimal way of combining
the leakages of multiple sample points using the following
three steps:

1) We derive an exact relation between the SNR of the
power traces and the success rate of a CPA attack which
is the strongest form of DPA in some applications.
Thanks to the relation, maximization of the success
rate by combining leakages of multiple sample points
becomes equivalent to the maximization of the SNR of
the combined leakage.

2) We introduce a multivariate leakage model by extending



the conventional leakage model for multiple sample
points for Virtex-5 FPGA device. The proposed multi-
variate leakage model enables us to determine the power
of the data dependant signal of a sample point without
knowing the correct key.

3) We derive a linear FIR filter which, when applied to
the power traces, maximizes the SNR of its output. The
derivation does not require the knowledge of the secret
key, thus can be used in non-profiling DPA attacks. We
also study how the derived linear FIR can be made more
resistant to estimation error and computationally more
efficient.

We have also experimentally verified our methods on various
noisy scenarios.

Rest of the paper is organized in this way: Section II
describes the background of DPA along with the necessary
notations used in the work. In Section III, a relation between
the success rate of CPA and the SNR of the power traces
has been derived. Section IV has extended the conventional
leakage model over multiple sample points which results into
a multivariate leakage model. In Section V, an expression has
been derived to compute the coefficients of the linear FIR filter
which optimizes the SNR of its output. The optimum filter
has been further approximated for making it more resistant
to estimation error and computationally more efficient. Sec-
tion VI describes several new basis systems for applying the
approximated optimum filter to make the approximation more
accurate. In Section VII, the improvements in the performance
of CPA using the proposed filtering techniques have been
experimentally verified for various scenarios. Section VIII ver-
ifies the optimality of the proposed pre-processing techniques.
Finally, conclusion has been drawn in Section IX.

II. PRELIMINARIES
A. Notations

For the rest of the paper, we will use a calligraphic letter
like X to denote a finite set. The corresponding capital and
small letter, X and x, are used to denote a random variable
over the set and a particular element of it respectively. E[X],
ox and Var(X) are used to denote mean, standard deviation
and variance of the random variable X respectively. We also
denote by Cov(X,Y") and Corr(X,Y), the covariance and the
Pearson’s correlation coefficient between the random variables
X and Y respectively. The vector {zg,--- , 2} is denoted by
{zi}o<i<k. Alternatively, it is also denoted by a letter in bold
like x. For convenience, sometimes we use ux to denote the
mean of the random variable X. Gaussian distribution with
mean m and standard deviation o is represented by N(m, o).
x’ denotes the Hermitian transpose of the vector or matrix x.

B. Differential Power Analysis

We will mainly follow the formalisation of Differential
Power Analysis by Standaert et al. in [30]. It is briefly
described below.

Generally, the DPA attacks have two parts. In the first part, a
Device Under Test (DUT) is under the control of the attacker.

The attacker collects the leakage L;~ at time instant ¢* due to
the manipulation of some intermediate key-dependent variable
S = Fj«(X) by executing the DUT repeatedly, say ¢ times,
for ¢ different inputs. S is commonly referred to as farget and
Fi+» : X — S be a function of a known part of the plaintext
x € X. Iy~ is determined by both the algorithm and a small
part of the secret key referred to as the subkey k* € K. The
leakage L, satisfies

Ly =W(S)+ N (1)

where the function ¥ : & — R maps the target S to the de-
terministic part of the leakage and N ~ N(uy, o) accounts
for the independent Gaussian noise. At the end, the attacker
collects ¢ measurement curves l- = {1%,--- 14!} corre-
sponding to the execution of ¢ plaintexts x = {zg,- -+ ,Zq—1}.

In the second part, the attacker chooses a suitable pre-
diction model ¥ : & — R and compute the predicted
leakage represented by the random variable Py using P, =
U(Sk) = ¥(Fr(X)) for each key hypothesis k € K. If ¥
is a good approximation for T, the leakage L~ is strongly
dependent on the correct predicted leakage Pj-. However,
since Fj«(X) and F}(X) are almost independent for k* # k,
L+ is independent of the prediction variable Pj. Then, a
statistical tool D is used to detect this dependence between the
actual leakage and the predicted leakage for the correct key.
The theoretical distinguisher is given by D = {dy}rex =
{D(Li, Pi)}rex = {D(¥(Fi- (X)) + N, W(F (X)) brex.
The theoretical first order success rate (10SR) [30] of the
attack is given by Pr(k* = argmazpexdy). However in
practice, the random variables X, Ly« and N are estimated
by the vector x, 1« and n = {ng,---,ng_1} respec-
tively. Thus, the practical distinguisher is given by D =
{ditrex = {D(l, U(Fr(x))rex = {D(¥(Fi-(x)) +
n, U(F;(x)))}kex and the practical 10SR of the attack is
given by Pr(k* = argmamke;gdk).

C. Correlation Power Analysis with a model

When the hardware leakage behavior follows a well known
leakage model like Hamming weight model or Hamming
distance model, some known prediction model ¥ closely
approximates W ie. W(s) ~ a - ¥(s) holds for some real
constant ¢ and for all s € S. Then, Eq. 1 can be approximated
[7] as

Ly-=a-9(S)+ N 2)

Under the above equation, the relation between the actual
leakage L;- and the predicted leakage for the correct key
P+ = U(S) (since S = Sk+) becomes linear. In Correlation
Power Analysis (CPA) [7], Pearson’s correlation is used to
detect the linearity by computing

pr = Corr(Ly-, U(Fi,(X)))
= Corr(Ly-, Py)
_ Cov(Li-, Py
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for all & € KC where Py, and oy, denotes ¥(Sy) and op, respec-
tively. Since, Pearson’s correlation detects the linear relation
between two variables, it performs better than other attacks
like Mutual Information Analysis (MIA) [15], Difference of
Mean (DoM) [20]. When the hardware leakage model is not
sufficiently known, ‘generic’ attacks like MIA perform better
than CPA. In the rest of the paper, we will consider only the
scenarios where the hardware follows a well known leakage
behavior.

D. Multivariate DPA

In practical attacks, multiple leakage samples at discrete
time instants are collected during the encryptions or decryp-
tions. As a result, the leakage L is a vector of 7' random

variables {Lo, - -+, LT_1} where L; represents the leakage of
time instant (sample point) ¢ for 0 < ¢ < T'. One snapshot of
L denoted by 1 = {lo,--- ,lp_1} is referred to as a trace or

power trace. In that case, a univariate distinguisher is applied
on each of the sample points independently and then the
attacker chooses the best result among those.

While all the profiling attacks like Template attack [8]
and Stochastic attack [28] optimizes their performance by
considering the multivariate leakage distribution of the power
traces, combining the leakages of multiple sample points is
rare in non-profiling DPA. Though a few distinguishers like
MIA can be extended as a multivariate distinguisher, most
of them are not easily extendable for multivariate DPA. Even
though they can be extended for multivariate DPA, they do not
always improve the performance of the attacks. Instead, such
multivariate approaches mainly exist in the forms of various
pre-processing techniques like PCA [29], [6], integration [23]
and filtering [24]. However, they are either heuristic in nature
or based on some assumption. Moreover, to the best of
the authors knowledge, there is no such techniques which
optimally combines the leakages of multiple sample points.
In the paper, we investigate the possibility of the combining
leakages of multiple sample points in a way that optimizes the
success rate.

As shown in Fig. 1, there are two alternative approaches to
combine the leakages of multiple sample points: 1) combine
the leakages of multiple sample points first using a function
g : RT — R and then apply a univariate distinguisher on
the resultant leakage g(L) (as shown in Fig. la), and 2)
apply the univariate distinguisher D on all the sample points
independently resulting in || vectors {dj(t) }o<i<7 for each
k € K and then apply the function g to generate the final
distinguisher {dy}rex having dp = g({di(t)}o<i<r) (as
shown in Fig. 1b).

Interestingly, if we consider Pearson’s correlation (as in
CPA) as the univariate distinguisher and restrict the function g
to the space of linear functions, then the above two approaches
are equivalent. To see it, let us denote the Pearson’s correlation
at sample point ¢ for key guess k by py(t). Since, gisa T x 1
linear mapping, ¢(yo, ..., y7—1) can be represented as an inner
product of the vector {yo,...,yr—1} and the real coefficient
vector {hg, ..., hy—1}. Hence, the output for the key guess k

obtained in the second approach

di, = g({dr(t) }o<t<r)
T—1

= Z htpi(t)

t=0
- Ti:l htCO'U(.Z/t, Pk;)

=0 0L, 0k

_ Til Cov(h;Li/61,, By)
=0 Tk
_ Cov(X !y heLi/61,, Pr)
Ok
_ Cona(L). By)
Ok
= Corr(g(L), P)651)

where g be a T" x 1 linear mapping with coefficient vector
{hy/&1,} 2. Since Gy does not influence the success rate
of a univariate distinguisher, for each linear function g in
the second approach, there exist a linear function g in the
first approach which results in the same success rate. In other
words, optimization of the success rate in the first approach
also optimizes the success rate in the second approach and
vice-versa. Since the first approach is computationally more
efficient, we consider the first approach in the rest of the paper.

In the next section, we derive a relation between the success
rate of CPA and the SNR of the power traces.

III. DERIVING THE SUCCESS RATE

The first attempt to estimate the number of traces required
to achieved a level of success rate from the value of correlation
coefficient has been made in [22]. However, it assumes that
the distribution of the wrong keys to have zero mean. It also
considers the distributions of the correlation coefficients for
different keys as independent. Later in [27], Rivain proposed
to evaluate the ‘exact’ success rate of a side channel analysis
from the leakage distribution and the algorithmic parameters
using the widely admitted Gaussian leakage model. In [13],
Fei at al. has established an analytical relationship among the
success rate of a mono-bit DPA attack, the side channel charac-
teristic and the algorithm characteristic of an implementation.
Their approach has been extended for multi-bits CPA in [31].

In this section, we follow an alternative way to derive the
success rate of CPA on the leakage of a sample point which
follows Eq. 2. As stated in [13], there are two sources of
randomness in the output of a distinguisher. The first source
is the randomness in the inputs and the second source is the
noise (part of the leakage independent of the target S). In [13],
Fei et al. have assumed the distribution of the input plaintext to
be uniformly random while in [31], Thillard et al. assumed that
the frequency of every plaintext to be same. In our derivation,
we let the parameters to be the functions of input distribution,
since the input distribution is known. Moreover when plaintext
distribution is uniformly random, the parameters converge to
some global value for sufficiently large number of plaintexts.
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(a) Approach 1: Combining is done before
applying the distinguisher.

D

(b) Approach 2: Combining is done after
applying the distinguisher.

Fig. 1: Alternative approaches for combining leakages of multiple sample points.

Here we derive the success rate by considering a known dis-
tribution & for the input random variable X. For convenience,
we neglect the sub-script t* of the leakage L~ in Eq. 2.

As in [27], we define the occurrence ratio of x € X" in the
input vector x as

_ il = 2}

q

“4)

and Py as >, 72 Pr(x). For simplicity, we also focus on
the distribution of the following coefficient

— Py)l- ®)

Note that as argued in [27], by replacing p by pi, success
rate remains unchanged in a univariate attack. The distribution
of pj, is given by the following proposition.

Proposition 1: [27] The vector of coefficients {p }rcx has
multivariate Gaussian distribution for the input distribution 2
with mean vector 1, having elements

a_ik S (Pu(x) — Po)E

reX

Elin] = Ll2)  ©

for all k£ € K and with covariance matrix 3, having elements
1

40k, Ok,

(Pra (2)

for all (k1,ks) € K2.

Applying the above proposition on the leakage L which fol-
lows the leakage model given in Eq. 2, we state and prove the
following result about the distribution of the comparison vector
(as defined in [27]) {Apk fre\(k=} = {0k — Pk Frer\ (ke =
Ap:

Corollary 1: The comparison vector Ap has a multivariate
Gaussian distribution with mean vector ua  having elements

Z Tw(Pkl(m) - p’ﬁ)x
reX

— Pp,)Var(L|z) (7

CO’U(ﬁkl ; ﬁkg) =

E[Apk] =a- CO’U(APk, Pk*) (8)

for all k € K\ {k*} where AP} = {PﬁT(f) —
and Py« = { Py (x)},cx. The distribution of the vector has a
covariance matrix X a ; having elements

Py (z)
ZT}mGX

2
Cov(Apr,, Apr,) = %COU(APM, AP.,) (9

for all (ky, ko) € (K \ {k*})? where AP}, is defined as before.
Proof: From the definition of Apy and Eq. 5, we get

Apr = P — Pr

g—1 1 g—1
= (P (23) — Ppe )t — — Py(z;) — Pyl
& ; ex (1) — Pre )l qo’k;( k(i) — Pr)ly

q
= Z APk ml Apk)lz*
=0

where APy (z;) and AP, denote P’“*(m ) P’“(m ) and Lex _ P
respectively. Applying Proposition 1 ‘on the above expression
of Apy and using Eq. 2, we get

E[Apr] =Y ro(APy(z) — AP,)E[L|x]
= grr(APk(m) — AP)(a- Pe(z) + )
= grr(APk(m) — AP)(a - Py ()
= 2€~XCOU(AP)€, P
Similarly,
Cov(Apr, s Dpry) :é 26; (AP, (z) — APy, ) x
(AP, (z) — AP,)Var(Lz)

2
:%COU(APk1 ) Asz)

|

For a successful attack, the condition {Apg}rex\ (k=3 > 0
holds where 0 is a zero vector of size || — 1 and vy > vy
implies each element of v is greater than the corresponding



element of vy. Thus the first order success rate can be given
by the term Pr({Apy}rex k<3 > 0). We mention by passing
that for a negative value of a in Eq. 2, one would expect a
negative correlation for the correct key and thus the definition
of success rate should be changed accordingly. For the time
being we assume a positive correlation for the correct key and
state Proposition 2. Without the loss of generality, we also
assume that the distribution of Ap = {Apg}rex\ (k=) is non-
degenerative [1].

Proposition 2: The first order success rate (10SR?) of
CPA for the input distribution & is given by

10SR? = o 5., (1ap) (10)

where ®¢ 52, , be the cdf of a multivariate normal distribution
with || — 1 dimensional zero mean vector and covariance
matrix X a.

Proof: Since, Ap follows the multivariate normal distri-
bution with mean pa; and covariance matrix 3 a4, the first
order success rate is given by

10SR? = Pr(Ap > 0)
= fap(0 <Ap <o)
= fap(—pap < Ap—pap < o)
= fas(—00 < Ap—pas < piap)
= Qo,x4,(1ap)

where fa; denotes the pdf of the distribution of Ap.
|
To analyse the first order success rate further, from Corol-
lary 1 we note that ua; = apap and Xa; = TEAP
where pap be the vector {Cov(APy, Pp-)}rex\(k+} and
Yap be the (K] — 1) x (]| — 1) matrix with elements

Cov(APy,, APy,) for all (ki,k2) € (K \ {k*})%. Let us
also define the signal-to-noise ratio [23] of traces as
Var(E[L|Py- 202,
SNR = ar( [ | k]) _aak (11)

Var(L — E[L|Py])  o%

Then we state the following result.

Corollary 2: The first order success rate (10SR?) of CPA
for the input distribution & is given by

10SR? = ®¢ 51, (v/iVSNRo piap) (12)
where ®, X Ap and pap is defined as before.
Proof Let us first denote the multi-dimensional inti-

1
gration fu flz,f'll (Y05 - -+ Y|k|-1)dY|xc|—1 - dyo as
Jl\)q_l}, ul =

fll (Yo, -+ s yxc)—1)dy where 11 = {ll, ...
{ulo, ..., uljx|—1} and y = {yo,...,¥y|x|—1}. From Proposi-
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Fig. 2: Plots of the practical and theoretical 10SR for CPA
on the output of Present S-box using HW model. The 10SR
is estimated using number of traces 64, 256 and 1024 respec-
tively.

tion 2, we get

2 nap 1 Ciymily
10SR” = ———————c 2 FaiVdy

— 00

where y = @y
ON

q

- ¢)072AP ( fﬂAﬁ)
oN

qa
= Do 55 ( ,uAP
= P05, (V14 Uk* LAP)

= @0, x5 (VaVS R%* pap)

|

When the input random variable X is uniformly random,
for sufficiently large value of ¢, the input distribution 2
converges. Therefore, 10SR? also converges to the global
first order success rate. Thus, Corollary 2 expresses the first
order success rate of a CPA attack in terms of number of power
traces g, side channel characteristic SNR and some algorithm
dependent parameters like pap, Xap and oy-. Moreover, it
shows how the first order success rate of CPA depends on the
SNR of the power traces.

To experimentally validate Eq. 12, we computed practical
10SR by simulation. For the simulation, we generated power
traces by adding Gaussian noise to the Hamming weight of
the output of Present S-box. The success rate is computed by
repeating CPA on the simulated power traces 10000 times. On
the other hand, we estimated theoretical 10SR using Eq. 12.
Both the results are plotted in Fig. 2 with the increasing
variance of Gaussian noise.



Similar relation between more general o order success rate
with SNR can be found. Thus for a given algorithm and a fixed
set of traces, maximization of the success rate requires the
maximization of SNR. In this work, we combine the leakages
Ly, ,Lr_; using a linear function ¢ in such a way that it
maximizes the SNR of the resultant leakage g(Lg, - , L7—1).
However, such combining is not possible in non-profiling setup
without any estimation of the information contained in each
sample point. Thus in the following sections, we try to estimate
the information at each sample point using some parameters
which can be computed without knowing the correct key.

IV. MULTIVARIATE LEAKAGE MODEL: EXTENDING THE
LEAKAGE MODEL OVER MULTIPLE TIME SAMPLES

A. Profiling the Power Traces of AES

In this section, our objective is to investigate how leakage
due to a known computation varies over a range of sample
points. The nature of leakages at several sample points have
been investigated with respect to the correct predicted leakage
Pie. P = P, = U(S) using the following metrics.

1) Squared Pearson’s Correlation between Data Dependent

Leakage and Predicted Leakage (SCDP): 1t is defined as
follows:

SCDP; = Corr*(E[L|P), P)

E[Li|p] quantifies the deterministic leakage at sample
point ¢ due to the predicted leakage p for p € P. Since,
Pearson’s correlation detects the linear relation between
two variables [11], SCDP, = Corr?(E[L|P], P) re-
veals the linear dependency between the deterministic
leakage at ¢ and the predicted leakage P. It should be
noted that if the leakage of a sample point ¢ follows
Eq. 2, then the value of SCDP at t is almost one. On
the other hand, if L; and P are almost independent,
E[L¢|p] will be almost constant for all p € P, resulting
to SCDP; almost zero.
2) Variation of Data Dependent Leakage (VDL):

VDL, = Var(E[L|P))

It reveals the variations in leakage caused by the pre-
dicted leakage P at sample point ¢. Sometimes, it is
used to quantify the signal in the leakage. On the other
hand, noise is quantified by Var(L, — E[L|P)).

3) Squared Mean Leakage (SML):

SML; = E*[Ly]

It quantifies the magnitude or the strength of the leakage
at a sample point.

Fig. 3 shows the plot for the above three metrics which are
estimated over 20,000 traces of AES encryptions. The AES
is implemented using parallel iterative hardware architecture
on the setup described in Appendix A. The correct predicted
leakage P is taken as the Hamming distance between the
ciphertext and the input to the last round. The metrics are
plotted only for 400 sample points around the last round
register update.
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Fig. 3: Plots of the chosen metrics in the last round of
unprotected implementation of AES.

The figure shows that as the cycle begins, with the mean
leakage (SML), SCDP also rises rapidly, remains almost con-
stant for about 150 sample points and then it decreases slowly.
The slight fluctuations in the curve are due to the presence of
small amount of noise after averaging a limited number of
power traces. This leads us to the following observation:

Observation 1: The deterministic leakages at alarge number

of sample points show high linear dependencies with the correct
predicted leakage P.
In other words, a large number of sample points contains
information about the correct predicted leakage P. It should
be noted that various profiling attacks optimally extract the
information from multiple sample points by estimating the
multivariate leakage distribution of the sample points using
a profiling step.

From the figure, we can also see that VDL almost super-
imposes on SML i.e. VDL is highly correlated to SML. This
leads us to the following observation:

Observation 2: The variation in deterministic leakage of a

sample point is correlated to the square of the mean leakage of
the sample point.
In other words, the second observation states that the mag-
nitude of the variation in leakage at a sample point due to
some computation is proportional to the mean value (strength)
of the leakage at that sample point. It should be noted that
similar kinds of observation can be found in Chapter 4.3.2 of
[23] for the leakages of a micro-controller. The authors have
also suggested several trace compression techniques based on
the observation and have shown their usefulness to attack
software implementation of AES. However, to the best of our
knowledge, no attempt has been made to incorporate these
observations into the leakage model.

In the next sub-section, we extend the conventional leakage
model for multiple sample points using the above two obser-
vations which will be latter used to derive an impulse response
of the matched filter.

B. Modeling the Leakage over Multiple Time Samples
Observation 1 and 2 immediately extend the conventional

leakage model given by Eq. (2), into the following multivariate
leakage model:

Lt:at-\Il(S)—i—Nt:at-P—i—Nt (13)



for tg < t < tg + 7 where a; € R and the random vector
N = {Ny,...,Nyyrr—1} follows a multivariate Gaussian
distribution with zero mean vector and covariance matrix .
It should be noted that the linear relation in Eq. (13) is a
consequence of Observation 1 while Observation 2 enforces
the mean vector of N to be a zero vector.

In a parallel iterative hardware architecture, a single round
consists of several parallel S-boxes and the attacker targets
only a part of it (usually a single S-box). Thus, in addition to
the predicted leakage P due to the computation of the target
S = Fi+(X), leakage due to the computation of the other
parallel bits adds to it. This is known as algorithmic noise and
we denote it by U'. It should be noted that for a fully serialized
architecture, U takes the value zero. Leakages due to the key
bits and the control bits is denoted by c. Since key scheduling
and the controlling operations are fixed for a specific round in
all the encryptions, c is constant for all the inputs.

Thus, we can adopt Eq. 13 to incorporate these new vari-
ables as follows:

Li=a;- (P+U+¢)+ N
:at-(I—i—c)—i—Nt,

(14)

to <t<to+T (15)

where I = P + U. We are interested in the leakages of the
above window namely {to,to + 1,...,¢o + 7 — 1} that can
be roughly determined by the clock cycle in which the target
operation is being performed. We denote this time span by
{0,...,7 — 1} and in the rest of the paper, power trace is
referred by the sample points of this time span only.

V. DERIVATION OF THE MATCHED FILTER IMPULSE
RESPONSE

In this section, our objective is to explore Approach 1 of
Fig. 1 in order to maximize the success rate of CPA. Since we
are restricting the combining function g to be a linear function,
our objective is to find a vector h = {hg,...,h;_1} which
maximizes the success rate of CPA on the combined leakage
L, = tT:_Ol hiLy. According to Corollary 2, this objective
is achieved by finding h which maximizes the SNR of the
output leakage. Such a pre-processing is commonly referred
to as time-domain filtering and the vector h is referred to as
impulse response of the filter. Time-domain filters have been
previously applied in side-channel attacks in [24], [10], [25]. In
[25], the success rate of CPA has been maximized by searching
the optimal linear FIR filter coefficients h. However, there
the authors have assumed a semi-profiling approach. In this
section, we find the optimum impulse response of h using the
multivariate leakage model in a non-profiling setup.

In practice, a linear filter is applied on each of the traces
separately. Thus, we need to define the SNR of a sample point
with respect to a single trace. The output [, of a linear filter
with impulse response h = {hg,...,h,_1} applied on a trace
1={lo,...,l-—1} is given by

T—1
lo=Y hL=h'l (16)
t=0

Since the trace 1 satisfies the multivariate leakage model given
in Eq. 15, " element of 1 satisfies l; = a; - (i +c) +n; where i
and n; are the instants of random variables I and N;. Hence,
the output leakage [, can be written as

|
-

T

lo = (htat . (’L + C) -+ htnt) = (Z + c)h’a + h’n (17)

“
i
o

Without loss of generality, we assume that the traces are
centered to zero with respect to its mean over all the traces.
Thus, the centred trace 1 can be represented by

1=1-E[

i~ E[I)a+n

a-+n

I
S N

(18)

where i = i — E[I]. Similarly the centered output leakage can
be represented by

l, =h'(1— E[L])
=ih’a+h'n

(19)
(20)

where ¢ is defined as before.

Now following the standard definition of SNR [32], we
define the SNR of a sample point ¢ with respect to a single
trace 1 as

SN RZ _ Power of the signal in the trace Iat sample point ¢

Average noise power
(Bll|I =1])?
El|n:|?]
2. a2
=—1 1)
g N,

It should be noted that SNR of the sample point ¢ over all the
traces can be obtained as

. 2 2
SNR, = B[SNR)] = 271
N,

which is equivalent to the definition given by Eq. 11.
From Eq. 20, we compute the SNR of the output leakage
l~0 as follows:
lih’al|?
E[|h'n]?]
2 [h'al?
=" X —————
E[(h'm)(h'n)’]
o Inap
h'Ynh
Recall that X be the 7 X 7 covariance matrix of the
multivariate Gaussian noise N = {Np,--- , N _1}.

The filter which maximizes the SNR' is commonly re-
ferred to as matched filter in DSP and its impulse response h
involves auto-correlation function or the covariance matrix Xy
[32]. However, computation of 3 requires the knowledge of
the secret key which cannot be obtained in non-profiling DPA.
Thus instead of optimizing the SNR of the output signal, we

SNRl =

(22)



will optimize a different metric which does not involve the
covariance matrix of noise. Hence, we define Signal Ratio
(SR) of the output as the ratio of the power of the output due
to the deterministic leakage and the average output power:
oo _ 0l
Efllo[?]

We simplify the above definition as:

gl PInal?
E[|b'(1- E[L])P]"
_ 72y |h'al?
WE[(1- E[L])'(1 - E[L])|h
- |h'a]?
=i x WS h (23)
=2 |h'al?
h'Yph + h/Yxh
) b'al?

B o?|h’'al? + h'Enh @4
where X1, and Xp be the covariance matrices of the total
leakage and the deterministic leakage respectively. The last
step follows because Cov(ay, (I + ¢), ay, (I +¢)) = ay, ar,07.
Our objective is to find h such that SNR! of the output
is maximum. Interestingly, both the SNR' and the SRl
reaches their maximum simultaneously. It is stated in the
following lemma.

Lemma 1: The SNR of the output leakage [, reaches its
maximum if and only if SR of that also reaches its maximum.
Proof: From Eq. 24,

using Eq. 19

7 1 1
SRlo — U% h/ENh = B + #
72 + P\h’a|2 1 SNRlo

where ¢; = ‘;—f We can rewrite the above equation as,
1 1
— =C1 + =
SRle SN Rlo
Since ¢; is constant for a given trace, the SR’ of the output
leakage reaches its maximum if and only if the SN R!° reaches
its maximum. ]

In Lemma 2, we state an expression of h which maximizes
the SR of the output leakage.

Lemma 2: The impulse response h of a linear filter which

maximizes the SR of the output leakage [, can be derived as
XL la.
The proof can be followed from the derivation of the matched
filter given in [3] by replacing SNR with SR using Eq. 23. We,
now, state and prove our final result in Theorem 1. Before
that let us denote by pp, the mean leakage vector E[L] =
{E[LO]a e 7E[LT—1]}'

Theorem 1: The impulse response h of the optimum linear
filter for the leakage L which follows Eq. 15 can be given by
EE ! ML

Proof: Taking the expectation on both sides of Eq. 15 we
get, a = ur,/(E[I] + ¢). Putting this value of a in the expres-
sion of the impulse response obtained from Lemma 2, we get

the impulse response of the linear filter which maximizes the
SR of the output [, to be h = Iy 'a/(E[I] + c). Since, by
Lemma 1, maximization of SR also leads to the maximization
of SNR, by neglecting the constant divisor of h, we conclude
that the impulse response of the optimum linear filter for the
output response is X ! UL- |
Thus, the impulse response of an optimum linear filter can
be computed using the expression 3, 1441, Tt should be noted
that neither 3y, nor uy, requires the knowledge of the correct
key to estimate. Hence, the filter can be useful in non-profiling
DPA also.
Elimination of the Matrix Inversion: Computation of 3 Ny
involves the computation of the inverse of a 7 X7 matrix which
has a computational complexity O(73). Moreover, the inverse
operation is highly susceptible to the error in the estimation
of the covariance matrix. We avoid this operation by setting
the off-diagonal elements of the covariance matrix Xy, to zero
which results in the approximated impulse response
B:{/”LLO"H 7NJLT_1}

2 2
Lo Ly

(25)

In other words, the above approximation neglects the correla-
tion between different sample points of the power traces.

VI. COMPUTING IN A NEW BASIS

When the leakages of different sample points are signifi-
cantly correlated, the approximation of Eq. 25 might result
into sub-optimal pre-processing. To avoid this, the leakage
L = {Lg, - ,L;_1} can be transformed into a new basis
system L= {io, e ,iT,l} by some linear transformation
such that the leakage components along two different axes
Ztl and itz become uncorrelated. Here, we discuss two such
basis conversions.

Principal Component Analysis: Principal Component
Analysis (PCA) [12] is a mean to convert a data set into
the basis of eigenvectors of its covariance matrix. In this new
basis, components along different axes (Principal Components
or PCs) are uncorrelated to each other. Moreover, PCs are
sorted by their variance i.e. the first PC has maximum variance,
the second PC has second maximum variance, and so on. Thus
in low noise scenario, where most of variations in traces is due
to the target S, PCA projects the data dependent variations
(signal) into the first PC while variations in all other PCs are
mainly caused by noise. Thus, performing DPA on the first
PC greatly increases performance of a DPA attacks [4], [29],
[6]. However in high noise scenario, data dependent variations
are rather scattered in all the PCs [6], [18]. Since, PCA is a
linear transformation [12], Eq. 15 is valid in the domain of
eigenvector also. Consequently, we can apply Eq. 25 on this
domain i.e. on the PCs.

Discrete Fourier Transform: Other alternative is to use
Discrete Fourier Transform (DFT) to convert the leakage
samples to a new orthonormal basis (frequency domain).
In frequency domain, the absolute value of the complex
coefficients obtained from the DFT is commonly used to
attack [14], [25]. By taking only the absolute value, phase



component is ignored which is useful to attack misaligned
traces. However, we do not use it since the absolute op-
eration is not a linear operation. Rather, we keep both the
real part (cosine coefficient) and the imaginary part (sine
coefficient) as separate sample points. Since, both the real and
the imaginary part are obtained using linear transformations
and the linear transformation does not destroy the statistical
property of the power signal, the resulting DFT traces also
follows Eq. 15. It should be noted that this approach aims
at gaining efficiency in the presence of misaligned traces by
optimally combining leakages spread over multiple sample
points due to the misalignment. Moreover, even if there exist
significant correlations among sample points in time domain,
we can assume the covariance matrix of the sample points in
frequency domain is sparsed. Hence, we can use Eq. 25 to
compute approximated matched filter on this domain.
Determination of Window: The model is valid only in the clock
cycle in which the target operation is being performed (called
target clock cycle). For an iterative hardware architecture, the
window can be set to the whole period of the target clock cycle
which is relatively easier to find. However in our experiments,
we have roughly chosen the window from the beginning of the
target clock cycle up to a sample point for which the mean
leakage is slightly greater than zero.

VII. EXPERIMENTAL RESULTS

For experimental evaluation, we have collected 40 sets of
3,000 traces of AES encryptions. The cipher is implemented
using parallel iterative hardware architecture on SASEBO-GII
using the setup described in Appendix A. The S-boxes are
implemented using Xilinx device primitive: distributed ROM.
The setup is properly calibrated to reduce the quantization
noise.

We performed CPA (1) on all the sample points inde-
pendently and (2) on the output of approximated matched
filter (AMF) applied on (a) time domain traces, (b) frequency
domain traces and (c) on the PCs by adding Gaussian noise
at each sample point. In addition to these, we also performed
CPA on the output of matched filter (MF) on time domain
traces. Fig. 4 shows global success rate [2] of CPA after
applying all the above pre-processing. Global success rate is
defined by the probability of getting the correct key for all the
16 bytes simultaneously. The figure shows that both MF and
AMF optimizes the performance of CPA in each of the three
domains.

We have further evaluated the pre-processing techniques
by adding a constant noise to each of the sample points of
the traces. Such noise resemblances very low frequency noise
such as flicker noise [21]. In the presence of constant noise,
leakages of the different sample points gets positively corre-
lated. Thus filtering using AMF which neglects the correlation
between two different sample points becomes sub-optimal.
This can be seen in Fig. 5. The figure shows the GSR of CPA
on the output of AMF is badly affected by the constant noise.
However, AMF in frequency domain and on PCs performs
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Fig. 4: Plots of the global success rate (GSR) of CPA after
applying various pre-processing techniques on real traces of
AES encryption. The GSR is computed over 40 sets of 3,000
power traces.
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Fig. 5: Plots of the global success rate (GSR) of CPA after
applying various pre-processing techniques on AES encryption
traces. A constant noise is added to each sample point of
the traces and then GSR is computed by adding independent
Gaussian noise to each sample points of increasing variance.

almost optimally since in the new basis the sample points get
sparsely correlated.

VIII. OPTIMALITY OF MATCHED FILTER

In this section, our objective is to verify the optimality
of matched filter as a pre-processing technique. To compare
with we choose the Stochastic attack with a profiling step as
an optimal attack since it can “learn” quickly using smaller
number of traces [16]. Profiling Stochastic attack consists of
three phases. In the first phase the deterministic leakage is
estimated in b-dimensional vector space, and in the second
phase the multivariate density of noise in estimated. Third
phase is the key recovery phase where maximum likelihood
principal [28] or the minimum principal [28] is used to find
an unknown key using a new set of traces.

For our experiments, we chose the vector space using (1) the
bit model where 9-dimensional space is chosen by taking each
bit of the target S as the first eight dimensions and last one
corresponds to constant leakage [28], [16], and (2) Hamming
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Fig. 6: Plots of the global success rate (GSR) of profiling
Stochastic attack and CPA on the output of matched filter.

weight model where 2-dimensional space is chosen by taking
the Hamming weight of the target S and the constant leakage.
We used maximum likelihood principal in the third phase since
it performs better than minimum principal method [28]. To
evaluate the optimality of matched filter, we used first 60,000
traces of 120, 000 traces to build the Stochastic models and the
impulse response of matched filter and the rest of the traces for
key recovery. To compute the success rate in the key recovery
phase, we divided the 60,000 traces into 30 groups of 2,000
traces. The GSRs of all the attacks with increasing variance
of added Gaussian noise are shown in Fig. 6. From the figure
we see that CPA on the output of matched filter performs
best which is slightly better than Stochastic attack using HW
model. On the other hand, Stochastic attack using bit model
which is more sensitive to the error in model estimation using
a lesser number of traces performs worse than the one with
HD model but better than classical time domain CPA.

IX. CONCLUSION

In this paper, we have derived the impulse response of the
linear FIR filter (matched filter) which optimizes the SNR of
the power traces for non-profiling DPA attacks. The derivation
is based on the multivariate leakage model which is introduced
for Virtex-5 FPGA device. We have experimentally evaluated
several matched filter based pre-processing techniques. The
experimental results reveal significant improvements of CPA
using the proposed pre-processing techniques over the existing
techniques in various noisy scenarios. We have further evalu-
ated the optimality of the best proposed method by comparing
it with profiling Stochastic attack.
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APPENDIX A
EXPERIMENTAL SETUP AND PRE-PROCESSING

For all the experiments, we have used standard side-
channel evaluation board SASEBO-GII [19]. It consists of two
FPGA device: Spartan-3A XC3S400A and Virtex-5 xc5vIx50.
Spartan-3A acts as the control FPGA where as Virtex-5
contains the target cryptographic implementation. The cryp-
tographic FPGA is driven by a clock frequency of 2 MHz.
During the encryption process, voltage drops across VCC
and GND of Virtex-5 are captured by Tektronix MSO 4034B
Oscilloscope at the rate of 2.5 GS/s i.e. 1,250 samples per
clock period.

The traces acquired using the above setup are already hori-
zontally aligned. However, they are not vertically aligned. The
vertical alignment of the traces are performed by subtracting
the DC bias from each sample point of the trace. The DC
bias of each trace is computed by averaging the leakages of a
window taken from a region when no computation is going on.
This step is also necessary since the derived impulse response
of the matched filter is sensitive to the absolute value of mean
leakages.

For mounting the attacks, we selected a window of 300
sample points around the last round register update. After
transforming into a different domain, variance of some of
the sample points may become very close to zero in the new
domain. As a result, while applying approximate matched filter
in this new domain, the weights (which are mean/variance of
the sample points) of those sample points may become very
high even if their mean values are very less. In other words,
due to very low variance, some low SNR sample points may
get very high weight. We solved this problem by setting the
weight of a sample point having variance less than a fraction
of 1/200 of the maximum variance to zero.

APPENDIX B
EXPERIMENTAL VALIDATION OF THE MULTIVARIATE
LEAKAGE MODEL

To validate Eq. 15, we first classify all the traces according
to the values of I. Then we estimate the deterministic leakage
d’ = {E[L¢|I = i]}ty<t<to+- for all i € Z by computing the
mean leakage curve of each class. Lastly, we verify the linear
equation E[Li|I =i — E[LI = 0] = a,-¢ for all i € T\ {0}
and ty <t <ty + 7 using linear regression. However, we do
not know the values of a;, tg < t < tg + 7. Thus, we start

with correlating d** and d?®2 for all 41,42 € Z and then use the
high correlation among them to estimate a = {a; }+y<t<to+r-
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Fig. 7: Mean Leakage for the five Hamming distance classes
across the 200 sample points.

We implemented an iterative structure of 32 parallel 10 x 4
S-boxes using distributed ROM in the setup described in
Appendix A. All of the S-boxes were connected to the
same input to increase the SNR of the power traces by the
synchronous computations of the S-boxes. It should be noted
that though the duplication of a single S-box increases the SNR
of all the sample points, their relative SNR remains same. We
collected 1,600 power traces each having 200 sample points
with random inputs. The values of the target variable S is taken
to be the output of the S-box. We have also considered the
Hamming distance model i.e. ¥(s) is taken to be the Hamming
distance between s and the least significant 4 bit of the S-box
input for all s € S. Since all the parallel S-boxes have the
same input and the output, the algorithmic noise U is zero i.e.
I=P=0(9).

The classification involves partitioning all the 1,600 traces
into five HD classes for I = 0 to 4. Fig. 7 shows the
deterministic leakage curve d° = {E[Li|I = i}t <t<torr
for 0 < ¢ < 4 i.e. for each of the five classes. It is seen
in the figure that the deterministic leakage for different HD
classes i.e. different values of I are following almost same
pattern. However, the non-zero leakage for HD class 0 is
caused by the switching activities of the control bits and the
DC power consumption which is also present in the leakages
of all other classes. To remove this factor, we computed

absolute deterministic leakage curves as d* = d* — d° =
. t —1 A\t —1
{E[L|I =] — E[LJI = 0]};27 " = {a, - i}~ (from
Eq. 15) for¢ = 1,--- , 4. Table I shows the correlation between
Correlation d! d? d3 d4
d! 1 0.9991 0.9981 0.9978
d? 0.9991 1 0.9995 0.9992
d? 0.9981 0.9995 1 0.9997

TABLE I: Pearson’s correlation between absolute deterministic
leakage curves of different pairs of HD Classes

d® and d* for all i1,i5 € Z \ {0}. The values of these
correlations are close to one which ensure that all of these



vectors follow linear relations with a common vector namely

4 3t

a={ay, - 721:;_11‘1
Next, we plot the vectors d’ for all i € Z\ {0} against the
estimated a. The plot is shown in Fig. 8. The figure shows

,Ato+7—1 - We estimate a by
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Fig. 8: Scatter Plots of d!, d2, d® and d* against a.

the linear relationships of d”’s with the estimated a. So, we
have further used linear regression to find the closest linear
models of the relation between each of di, ds, ds and dy
and the estimated a = {a;}7_,. The relations obtained using
linear regression are sufficiently close to the expected relation
which are shown in Table II. This provides an evidence of the
validity of Eq. 15.

Variable Obtained Relation Expected Relation
E[L{|I = 1] — E[L¢|I = 0] ay x 1.23 — 1.60 x 10~° ap x 1
E[L¢|I = 2] — E[L¢|I = 0] ap X 2.17 — 7.26 x 1078 ap X 2
E[L¢|I = 3] — E[L¢|I = 0] ap X 2.95 — 1.41 x 10~6 ap X 3
E[L¢|I = 4] — E[L¢|I = 0] ay X 3.65 — 1.75 x 10~ P ap X 4

TABLE II: Relations of d;, ds, d3 and d4 with a = {a;}]_,.



