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Abstract. At Eurocrypt’12, Pandey and Rouselakis proposed the notion of property
preserving symmetric encryption (PPEnc). They defined several security notions for
PPEnc and studied their relationship. They also proposed a concrete scheme which
preserves the orthogonality of encrypted vectors. The proposed construction is claimed
to achieve the strongest security notion of property preserving encryption, called LoR
security. In this work, we take a critical look at the three security theorems in the context
of PPEnc. In particular, we show that the Pandey-Rouselakis scheme for orthogonality
property does not even satisfy the weakest notion of security for PPEnc. We also note
that the paper fails to demonstrate that the separation results pertaining to different
security notions of PPEnc are non-vacuous. We fill up this gap by suggesting an example
construction of PPEnc for the concrete property under consideration.

1. Introduction

The notion of property preserving symmetric encryption was introduced by Pandey
and Rouselakis in [PR12a]. This kind of scheme may be used to check for a property
satisfied by plaintexts by running a public test on the corresponding ciphertexts. It is
claimed [PR12a] that such schemes will be of interest to develop private algorithms for
data classification such as clustering streaming data based on some property.

Pandey and Rouselakis also discussed several notions of security for PPEnc such as
Find-then-Guess (FtG) and Left-or-Right (LoR) security. Informally speaking, the former
corresponds to a single challenge and the latter to multiple challenges. While LoR naturally
implies FtG security, [PR12a] claims that the other way is not true. They also define a
hierarchy of FtG security notions based on the number of challenge queries the adversary
is allowed to make. They claim that this hierarchy does not collapse.

While arguing the separation between FtG and LoR, [PR12a] start by assuming the
existence of a FtG secure scheme Π for some property (called Pqr) based on quadratic
residuosity. They convert Π, using one-time pad, to a scheme Π′ which is FtG secure, but
not LoR secure. The authors also comment that the separation result for the FtG hierarchy
can be proven using the same property.

Finally, the authors describe a scheme for testing orthogonality property. Their scheme
is instantiated on a bilinear group of composite order (N = pq). They claim that their
scheme is LoR secure in the generic group model.
Our Contribution: In this work we take a critical look at the security theorems stated
in [PR12a]. Our study reveals some interesting facts as summarised below.

• We show that the PPEnc scheme given in [PR12a, Sec.5] for testing orthogonality
property is not even selective FtG secure. We show a simple attack with just a
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single valid query. Our observation contradicts the claim of [PR12a, Theorem 5.1]
that their proposed construction is LoR secure.
• We observe that the authors fail to show that their separation result between FtG

and LoR security is non-vacuous. This is because the paper does not provide any
evidence that a concrete FtG secure scheme exists for the quadratic residuocity
property for which the separation result holds. We exhibit the existence of such
a scheme and thereby fill the gap in the separation result. The same observation
holds for the second separation result for the hierarchy of FtG security and we
extend our previous result to fill that gap.

Organization. In §2, we recall the definition of property preserving encryption scheme
from [PR12a] and provide an informal description of the security notions. In §3 we describe
the Pandey-Rouselakis scheme for testing orthogonality and then demonstrate our attack.
In §4 we comment on the limitation of their separation results and fill in the gaps. Finally
we make some concluding remarks in §5.

2. Property Preserving Encryption

The notion of property preserving symmetric encryption (PPEnc) was introduced re-
cently by Pandey and Rouselakis [PR12a]. A PPEnc scheme allows computation on en-
crypted data – a topic that has gained a lot of attention in the context of cloud/outsourced
computation. Suppose given the encryption of two vectors (−→x ,−→y ), an untrusted server
wants to check whether −→x ·−→y = 0 and then cluster the data accordingly. A PPEnc scheme
comes with a public Test algorithm that allows anybody to check whether a set of cipher-
texts satisfy a certain property or not without revealing any other meaningful information
about the underlying plaintext. A symmetric PPEnc scheme is defined [PR12a] as follows.

Definition 1. A property preserving encryption scheme for the k-ary property P is a
collection of four probabilistic polynomial time (PPT) algorithms, which are defined as
follows:

(1) Setup(λ): This takes as input the security parameter λ and outputs the message
space (M), public parameters (PP ) and the secret key (SK).

(2) Encrypt(PP, SK,m): This algorithm outputs the ciphertext CT corresponding to
the message m, using the secret key SK and public parameter PP .

(3) Decrypt(PP, SK,CT ): This algorithm outputs the plaintext message m.
(4) Test(CT1,. . . , CTk, PP ): This is a public algorithm that takes as inputs ciphertexts

corresponding to messages m1, . . . ,mk and outputs a bit.

These set of four algorithms must satisfy the standard correctness requirement. In ad-
dition, if the Test algorithm outputs 1 then, except with negligible probability, one has
P (m1, . . . ,mk) = 1.

Remark 1. When it comes to the actual construction, Pandey-Rouselakis [PR12a], actu-
ally proposed a “slightly weaker” variant called PPTag scheme. The PPTag construction
does not have a decryption algorithm. The authors claim that correct decryption can be
obtained by appropriate use of any IND-CPA secure symmetric encryption scheme.
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2.1. Security Notions. Pandey and Rouselakis [PR12a] proposed several notions of se-
curity for property-preserving encryption. These security definitions are derived from the
corresponding notion of security for symmetric key encryption after taking into account
the specific nature of PPEnc. Here we (informally) describe two different models of secu-
rity for property preserving encryption schemes from [PR12a]. For these definitions, one
first needs the following notion of equality pattern:

Definition 2. For a k-ary property P , two sequences X = (x1, . . . , xn) and Y = (y1, . . . , yn)
are said to have the same equality pattern if for all (i1, . . . , ik) ∈ [n]k, the following holds:

P (xi1 , . . . , xik) = P (yi1 , . . . , yik).

Find-then-Guess Security (FtG). In this game the adversary, after getting the pub-
lic parameters, first adaptively queries the encryption oracle for messages (m1, . . . ,mt).
Then the adversary outputs the challenge messages (m∗0,m

∗
1). The challenger returns the

ciphertext c∗b where b ∈R {0, 1}. The adversary again adaptively queries (mt+1, . . . ,ml).
The adversary wins the game if s/he can correctly predict the bit b. In order to en-
sure that the adversary cannot trivially win the game, the adversarial queries must sat-
isfy the extra condition that the equality patterns of (m1, . . . ,mt,m

∗
0,mt+1, . . . ,ml) and

(m1, . . . ,mt,m
∗
1,mt+1, . . . ,ml) are the same.

Left-or-Right Security (LoR). In this game the adversary makes q encryption queries,

where each query is of the form (m
(i)
0 ,m

(i)
1 ). The queries are such that (m

(1)
0 , . . . ,m

(q)
0 ) and

(m
(1)
1 , . . . ,m

(q)
1 ) have the same equality pattern. The challenger returns the encryption of

m
(i)
b for each i where b ∈R {0, 1} is chosen at the beginning of the game and kept hidden

from the adversary. At the end, the adversary has to output a guess b′ of b and wins if
b′ = b.

Remark 2. Maintaining the same equality patterns for the two sequences of adversar-
ial queries is crucial for the security of PPEnc scheme. For example, consider the bi-
nary property of testing the orthogonality of two vectors mentioned earlier. If two vectors
(xi1 , xi2) ∈ X are orthogonal where as the vectors having the same index i1, i2 in Y , i.e.,
(yi1 , yi2) are not orthogonal, then the public Test algorithm can be used to trivially break
the LoR security of a PPEnc scheme.

It is easy to see that LoR implies FtG. Pandey-Rouselakis claimed that LoR security is,
in fact, a strictly stronger notion than FtG security (see Theorem 4.1 of [PR12a]). They
also claim (as one of their main results – see Theorem 4.4 of [PR12a]) that there is a
hierarchy of FtG notions for PPEnc, indexed by integers η ∈ N, that do not collapse.1

3. Pandey-Rouselakis Construction and its Insecurity

Pandey-Rouselakis proposed a PPTag scheme for testing the orthogonality property of
two vectors. The construction is in the composite order bilinear group setting and claimed
to achieve LoR security in the generic group model. The security claim is established in
Theorem 5.1 of [PR12a] with a precise bound on the adversarial advantage while the proof
is left for the full version.

1The FtG notion described above is for η = 1. FtGη for η ∈ N allows the adversary to make η many
challenge queries interleaved between encryption oracle queries.
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Here, we first reproduce the PPTag scheme described in [PR12a] and then discuss about
its (in)security.

• Setup(λ, n). Pick two different primes p and q uniformly in the range (2λ−1, 2λ)
where λ is the security parameter. Let G and GT be two groups of order N = pq
such that there is an efficiently computable bilinear map e : G×G −→ GT . Select
a vector (γ1, . . . , γn) ∈ Zq such that

∑n
i=1 γ

2
i = δ2 (mod q). Let g0 (resp. g1) be

a generator of a subgroup of order p (resp. q) of G. Set the message space as
M = (Z∗N

⋃
{0})n. Then set

PP = 〈n,N,G,GT , e〉, SK = 〈g0, g1, {γi}, δ〉,

• Encrypt(PP, SK,M). On input a message M = (m1, . . . ,mn), select two random
elements φ and ψ from ZN . The ciphertext is computed as

CT = (ct0, {cti}ni=1) =
(
gψδ1 , {gφmi0 · gψγi1 }

n
i=1

)
.

• Test(PP,CT (1), CT (2)). On input two ciphertexts CT (1) = (ct
(1)
0 , {ct(1)i }ni=1) and

CT (2) = (ct
(2)
0 , {ct(2)i }ni=1), the algorithm outputs 1 if and only if:

n∏
i=1

e(ct
(1)
i , ct

(2)
i ) = e(ct

(1)
0 , ct

(2)
0 ).

3.1. Attack on Pandey and Rouselakis Scheme. We show that the construction of
Pandey and Rouselakis is not even FtG secure, and hence, by implication, cannot be LoR
secure. This contradicts the claim of Theorem 5.1 of [PR12a]. In fact, the PPTag scheme
of [PR12a] does not even satisfy the weaker selective notion of FtG security.

We first illustrate our attack with a simple example for the case of n = 2. Next, we
show that our attack works in the weaker selective model of security and can be trivially
extended to the case of any n > 2.
Intuition: Recall that in Setup, the user chooses secret key components γ1, γ2, δ ∈ Zq
such that δ2 = γ21 + γ22 mod q. Now observe that for such values, we have

(1) δ2 = γ1(γ1 + γ2) + γ2(γ2 − γ1) mod q.

The above relation (Eqn. 1) immediately suggests the following attack. The adversary
sets vectors (0, 1) and (1, 0) as the challenge messages. Next, the adversary queries vector
(1, 1) and obtains a corresponding ciphertext. It processes the ciphertext to obtain a
pseudo-ciphertext for (2, 0) by taking product and ratio of the second and third components
of the given ciphertext and retaining the first component of the ciphertext. Note that (0, 1)
is orthogonal to (2, 0), while the other challenge vector (1, 0) is not. Now the adversary
uses the pseudo-ciphertext in the Test algorithm to distinguish the challenge messages as
shown below.

(i) In the FtG game A receives the public parameter PP from its challenger S.
(ii) A asks for the encryption of ~v1 = (1, 1) and obtains,

(C0, C1, C2) = (gψδ1 , gφ0 g
ψγ1
1 , gφ0 g

ψγ2
1 ),

where φ, ψ ∈R ZN are chosen by the challenger (unknown to A).
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(iii) From the obtained ciphertext (C0, C1, C2), A computes the following:

(2) ξ = (ξ0, ξ1, ξ2) = (C0, C1 · C2, C2/C1) = (gψδ1 , g2φ0 g
ψ(γ1+γ2)
1 , g

ψ(γ2−γ1)
1 ).

(iv) A outputs the challenge vectors ~w∗0 = (0, 1) and ~w∗1 = (1, 0).
(v) The challenger returns the encryption C~wb , for a bit b ∈R {0, 1}. We shall denote

the ciphertext of ~wb = (m1,m2) by C~wb where

(3) C~wb = (ζ0, ζ1, ζ2) = (gψ1δ
1 , gφ1m1

0 gψ1γ1
1 , gφ1m2

0 gψ1γ2
1 ).

(vi) A runs the Test algorithm with inputs (ξ, C~wb) and returns b′ = 0 if Test(ξ, C~wb)
returns 1. Otherwise A returns b′ = 1.

The following claim establishes that A wins the FtG security game with overwhelming
probability of success. In particular, the “pseudo-ciphertext” ξ of the vector (2, 0) can be
used to distinguish vectors orthogonal to it from those which are not.

Claim 1. The vector ~wb = (m1,m2) is orthogonal to (2, 0) (except with negligible proba-
bility) if Test(C~wb , ξ) = 1, where the algorithm Test outputs 1 if and only if

(4) e(ζ0, ξ0) = e(ζ1, ξ1) · e(ζ2, ξ2).

Proof. We show that if the algorithm Test(ξ, C~wb) outputs 1 then m1 = 0, except with
negligible probability. We verify the following regarding the left hand side of Eqn. 4:

e(ζ0, ξ0) = e(g1, g1)
ψ1ψδ2 .

Similarly, using Eqn. 2 and Eqn. 3 the right hand side of Eqn. 4 equals (where the last
but one equality is obtained by using Eqn. 1):

e(ζ1, ξ1) · e(ζ2, ξ2) = e(g0, g0)
2m1φ1φ · e(g1, g1)ψ1ψγ1(γ1+γ2) · e(g1, g1)ψ1ψγ2(γ2−γ1)

= e(g0, g0)
2m1φ1φ · e(g1, g1)ψ1ψ(γ21+γ

2
2)

= e(g0, g0)
2m1φ1φ · e(g1, g1)ψ1ψδ2 .

(5)

Hence, except with a negligible probability, Test outputs 1 only when m1 = 0. �

The above attack can be easily extended to prove the following more general claim.

Proposition 2. The PPTag scheme proposed in [PR12a] for testing orthogonality is not
even selective FtG secure.

Proof. We establish the claim in terms of the following attack game between the adversary
and the challenger.

(i) A outputs two n-dimensional vectors −→m∗0,
−→m∗1 as the challenge messages where

n � N . The challenges are of the form −→m∗0 = (m1,m0, 1, . . . , 1) and −→m∗1 =
(m1,m1, 1, . . . , 1), where m1 6= m0 are from Z∗N .

(ii) A receives the public parameter PP from challenger.
(iii) A queries Q = ((m1 +m0)/2, (m0 −m1)/2, 1, . . . , 1,−(n− 3)). Observe that Q is

not orthogonal to either of the challenge messages (−→m∗0,
−→m∗1) and hence, is a valid

query.
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(iv) S responds with

CTQ =
(
gψδ1 , g

φ(m1+m0)/2
0 gψγ11 , g

φ(m0−m1)/2
0 gψγ21 , gφ0 g

ψγ3
1 , . . . , gφ0 g

ψγn−1

1 , g
−(n−3)φ
0 gψγn1

)
for some ψ, φ ∈R ZN .

(v) Given CTQ, A takes the product and ratio of the second and third components

of the ciphertext to obtain gm0φ
0 g

ψ(γ1+γ2)
1 , g−m1φ

0 g
ψ(γ2−γ1)
1 . A now computes the

pseudo-ciphertext for −→m′ = (m0,−m1, 1, . . . , 1,−(n− 3)) as

CT ′Q = (gψδ1 , gm0φ
0 g

ψ(γ1+γ2)
1 , g−m1φ

0 g
ψ(γ2−γ1)
1 , gφ0 g

ψγ3
1 , . . . , gφ0 g

ψγn−1

1 , g
−(n−3)φ
0 gψγn1 ).

Note that the message vector −→m′ is orthogonal to −→m∗0 but not to −→m∗1. As in
our previous attack, the pseudo-ciphertext for −→m′ can be used to distinguish the
challenge messages (−→m∗0,

−→m∗1).
(vi) A now asks for the challenge ciphertext. Suppose that the challenger responds

with

CTb =
(
gψ̃δ1 , gm1φ̃

0 gγ1ψ̃1 , gmbφ̃0 gγ2ψ̃1 , gφ̃0 g
γ3ψ̃
1 , · · · , gφ̃0 g

γnψ̃
1

)
,

where b ∈R {0, 1} is chosen by S and φ̃, ψ̃ ∈R ZN .
(vii) A runs the Test algorithm on CT ′Q and CTb. This amounts to computing:

A = e(gψδ1 , gψ̃δ1 ) and

B = e(gm0φ
0 g

ψ(γ1+γ2)
1 , gm1φ̃

0 gγ1ψ̃1 ) · e(g−m1φ
0 g

ψ(γ2−γ1)
1 , gmbφ̃0 gγ2ψ̃1 )

n−1∏
i=3

e(gφ0 g
ψγi
1 , gφ̃0 g

γiψ̃
1 ) · e(g−(n−3)φ0 gψγn1 , gφ̃0 g

γnψ̃
1 ).

(viii) If A = B then A outputs b′ = 0, otherwise A outputs b′ = 1.

Using the fact that

δ2 = γ1(γ1 + γ2) + γ2(γ2 − γ1) + γ23 + . . .+ γ2n mod q,

we observe that, except with negligible probability, A = B implies mb = m0. Hence, the
adversary wins the selective FtG game with overwhelming probability of success. �

4. On the Separation of Security Notions

The other two contributions of Pandey and Rouselakis are to establish that (i) FtG 9
LoR and (ii) FtGη 9 FtGη+1. The former is established through Theorem 4.1 and the latter
through Theorem 4.4. We now briefly comment on these two contributions of [PR12a].

Both the above theorems are claimed to have been established for a property based
on quadratic residuosity. Let QRp (resp. QNRp) be the set of quadratic residues (resp.
quadratic non-residues) in Z∗p for some prime p. For any two messages (m1,m2) ∈ Z∗p×Z∗p
a binary property is defined as follows:

(6) Pqr(m1,m2) =

{
1 if m1 ·m2 ∈ QRp
0 if m1 ·m2 ∈ QNRp
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Given a PPEnc scheme Π for Pqr that is FtG secure, Pandey-Rouselakis shows how to
construct another scheme Π′ which is FtG secure but not LoR secure and thereby prove
their Theorem 4.1. However, the paper does not provide any concrete construction of a
PPEnc scheme for Pqr. Nor is there any evidence at all to assume that such a scheme
actually exists. In the absence of any concrete scheme satisfying the Pqr property that
is FtG secure, the authors leave open the possibility that Theorem 4.1 can, in fact, be
vacuous.2

In Theorem 4.4, Pandey-Rouselakis claims that for the same property Pqr they can

show that FtGη 9 FtGη+1. However, the paper does not suggest any concrete scheme
that satisfies the FtGη security property. Our observation in the context of Theorem 4.1
discussed above is applicable for Theorem 4.4 as well.

4.1. A Concrete FtG Secure Scheme for Pqr. We now complete the gap in the sepa-
ration result for the FtG and LoR security notions. In particular, we show the existence of
an FtG secure scheme for the property Pqr as defined in Eqn. 6. The existence of such a
scheme together with Lemma 4.2 and Lemma 4.3 of [PR12a], will complete the argument
that, in general, FtG 9 LoR for property preserving encryption.

The basic strategy is as follows. Note that LoR secure schemes exist only for the
inner product property [KT13, AAB+13]. However, one needs a concrete FtG secure
scheme for the property Pqr based on quadratic residuosity for the separation result to
go through. So we realize the property Pqr using the test for orthogonality for two-
dimensional vectors. Using the scheme described in [AAB+13, Sec. 8] one can obtain
FtG secure property preserving encryption scheme for the property Pqr as outlined below.
Alternatively, one can construct a PPEnc scheme for Pqr from the symmetric inner product
preserving encryption (SIPE) scheme of [KT13, Sec. 2.4].

We first observe that the Pqr property of an integer α modulo a prime p is captured by
the following encoding:

(7) v(α) =

{
(1, 1), if α is a QR modulo p,

(1,−1), otherwise.

It is easy to see that x·y mod p is a non-residue if and only if v(x)·v(y) = 0. We now use,
for example, the PPEnc scheme for inner product [AAB+13, Sec. 8] for two-dimensional
vectors and the message space restricted to M = {(1, 1), (1,−1)}. By [AAB+13, Cor.
8.4], the above scheme is LoR secure (see [AAB+13] for details) and, hence, FtG secure.
We highlight this security result in the following statement.

Claim 3. The PPTag scheme outlined above for the Pqr property is LoR secure.

We use this modified scheme from [AAB+13] as the scheme Π for the property Pqr.
Now the argument given in [PR12a, Thorem 4.1] can be used to construct another scheme
Π′ which is FtG secure but not LoR secure.

2The conditional theorem of [PR12a] cannot be treated at par with a conditional theorem that assumes,
for example, the existence of one-way function. It is now a standard assumption in cryptography that one-
way functions exist and certain well-known functions are one-way. However, that is not the case with a
completely new assumption such as the existence of an FtG-secure scheme for Pqr, where some evidence is
warranted in order to convince the readers that the conditional theorem is non-vacuous.
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4.2. On the hierarchy result: FtGη 9 FtGη+1. We now briefly comment on the result
from [PR12a] concerning the hierarchy in FtG security. Note that no proof for The-
orem 4.4 was provided in [PR12a]. However, the presentation given by Rouselakis at
Eurocrypt’12 [PR12b] provides some intuition why this will hold for the property Pqr.

Note that, the construction of Π for the property Pqr given in the previous section is
LoR secure and hence, FtGη secure for any η which is polynomial in the security parameter.
We can use this fact and the strategy outlined in [PR12b] to construct a scheme which
is FtGη secure but not FtGη+1 secure. This will complete the argument of Theorem 4.4
of [PR12a].

5. Concluding Remarks

In their Eurocrypt 2012 paper [PR12a], Pandey-Rouselakis stated three theorems: one
pertaining to the security of their proposed construction of property preserving encryption
for testing orthogonality, one concerning the separation between FtG and LoR security and
the other pertaining to the existence of a strict hierarchy in the FtG notion of security.
In this work we have shown an easy attack on their proposed construction and thereby
established that the corresponding theorem statement does not hold. We also note that
there is no evidence in the paper to claim that the other two theorems are non-vacuous. We
then filled-up the gap in the proof of their first separation result by providing a concrete
FtG secure scheme for the quadratic residuosity property. Finally, we outline how the
same scheme can be used to complete the proof for their result regarding FtG hierarchy.
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