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Abstract

This paper analyzes the cryptographic security of J3Gen, a promising pseudo
random number generator for low-cost passive RFID tags. Although J3Gen
has been shown to fulfill the randomness criteria set by the EPCglobal Gen2
standard and is intended for security applications, we describe here two crypt-
analytic attacks which question its security claims: i) a probabilistic attack
based on solving linear equation systems, and ii) a deterministic attack based
on the output sequence decimation. Numerical results, supported by simu-
lations, show that for the specific recommended values of the configurable
parameters, a low number of intercepted output bits are enough to crytan-
alyze J3Gen. We then make some recommendations which address these
issues.
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1. Introduction

The term “Internet of Things” (IoT) was coined in 1999 by Kevin Ash-
ton, one of the cofounder of Auto-ID [1]; a center that promoted research
and development of tracking products for the supply-chain by using low-
cost RFID tags. The advantages of RFID over barcode technology are that
it is wireless, does not require direct line-of-sight, and tags can be interro-
gated at greater distances, faster and concurrently [2]. This makes the IoT
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a wireless network of objects and sensors that collect and process informa-
tion autonomously. RFID tags and sensors enable computers to observe,
identify and understand for situational awareness without the limitations of
human-entered data.

Nowadays, RFID is already a mature technology and it is widely de-
ployed for supply-chain, retail operations, inventory managements and au-
tomatic identification in general. Typical RFID architecture involves three
main components: i) Tags or transponders, which are electronic data stor-
age devices that are attached to the objects to be identified. ii) Readers
or interrogators, which manage tag population, read data from and write
data to tags; and iii) a Back-end Server, which is a trusted entity that ex-
changes tag information with the readers and processes these data according
to the specific intended application. Most tags are passive, which means
that they do not have any kind of battery and receive the energy that they
need to work from the reader. Thus, tags are inactive till they pass through
the electromagnetic field generated by a reader which is tuned to the same
frequency.

Initial designs of RFID protocols focused on performance with little at-
tention being paid to resilience and security. However, as early as 2002 the
first papers pointing out some possible security and privacy issues were al-
ready published, and in 2003 CASPIAN (Consumer Against Supermarket
Privacy Invasion and Numbering) complained against the possible misuse of
the RFID technology and called for boycotts against companies that decided
to incorporate them. The European Commission in 2008 launched a public
consultation on the issues by the use of RFID technology, particularly in
terms of privacy, data protection and information security [3]. RFID can be
indeed used to perform different privacy invasions, such as unauthorized read-
ing or tracking people, and can be subject to impersonation. To overcome
these issues, apart from the legal pressure for the protection of personal infor-
mation (e.g. [4] in Europe and [5] in the US), the technical mean to control
access to tags is the implementation of cryptographical mechanisms which
take into account their special characteristics: power-constrained devices,
vulnerability of the radio channel, reply upon-request, etc.

This increasing concern about security is evidenced with the inclusion
of some optional cryptographic features in the recently ratified (November-
2013) second version of the EPCglobal Gen2 Specificiation [6]. EPCglobal
Gen2, hereafter EPCG2, is the standard (ISO [7]) for low-cost tags which
work in the UHF band 860-960 MHz. This defines a platform for RFID pro-



tocol interoperability, and supports basic reliability guarantees, provided by
a 16-bit Cyclic Redundancy Code (CRC16) and an on-chip 16-bit pseudo-
random number generator (PRNG). The first version was published in 2004,
and since then, there have been many attempts to secure EPCG2 protocols
with the use of the passwords defined by the standard (e.g. [8, 9]), or based
on the CRC (e.g. [10, 11]). However, practically they all, due to the length
of the keys, which are also static, and the linearity properties of CRC, have
proven unsuccessful [12]. As a result, PRNG has become the key element in
most security protocols proposed in the literature for this kind of tags (e.g.
(13, 14, 15, 16, 17]). These protocols are based on the assumption that the
PRNG implemented in the tag is cryptographically secure. In the new ver-
sion (second) of the standard, tags may support one or more cryptographic
suites (which must be specified), but then again, these would most likely
require the implementation of a secure PRNG. The PRNG is also used for
some process such as the anti-collision algorithm or the link-cover coding (a
basic privacy mechanism described in the standard). However, despite its
practical significance, EPCG2 does not specify any possible implementation,
manufacturers are reluctant to make publicly accessible their PRGN designs,
and in the literature there are only a few descriptions of PRNGs for low cost
RFID tags (e.g., [18, 19, 20]). Thus, as far as we know, the work of Melia
et al. [21] is hitherto the only reference which proposes an EPCG2 compli-
ant PRNG and checks how it meets the specific randomness requirements
established by the standard.

Melia-Seguli et al. describe, in a first version [21] and then with more de-
tails [22], a PRNG for low-cost passive RFID tags (including but not limited
to EPCG2), called J3Gen, which provides a very high level of unpredictabil-
ity, with a reduced computational complexity and low-power consumption.
J3Gen is based on a linear feedback shift register (LFSR) configured with
multiple feedback polynomials, and its authors claim that it is suitable for
security purposes (e.g. [23, 24]). However, in this paper we analyze the de-
sign of J3Gen and show that the security level provided by this PRNG falls
well short of its security claims. Two different cases, for two different sets of
suggested parameters, are cryptanalyzed. As a result, the randomness of the
generated sequences decreases dramatically and its use for security applica-
tions is questioned. We then suggest some values for the choice of parameters
which could hinder these cryptanalyses, as well as some possible changes to
strengthen the protocol.

The rest of the paper is organized as follows. Section 2 introduces some
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general concepts about EPCG2 PRNGs and describes the structure and the
characteristics of J3Gen in particular. Section 3 cryptanalyzes J3Gen for
two different sets of recommended parameters. Then, in Section 4, we com-
ment some possible modifications to improve J3Gen, and finally Section 5
concludes the paper.

2. An EPCG2 compliant PRNG: J3Gen

Definition 1 (PRNG). A PRNG is a pseudo-random bit generator (PRG)
whose output is partitioned into blocks of a given length n. Fach block defines
a n-bit number, said to be drawn from the PRNG.

Definition 2 (PRG). A PRG is a deterministic algorithm that, on input a
binary string of length K, called the seed, generates a binary sequence s of
length S >> K which “appears” to be random.

While it is very difficult to give a mathematical proof that a PRNG is
indeed secure, we gain confidence by subjecting it to a variety of statisti-
cal tests designed to detect the specific characteristics expected of random
sequences (we refer the reader to [25] for a comprehensive collection of ran-
domness tests). Although the new version of the standard [6] explains that
the different implemented cryptographic suites may define more stringent re-
quirements for the PRNG, these are the “basic” randomness criteria set by
EPCG2:

1. Probability of a single RN16: The probability that any RN16 drawn
from the PRNG has value RN16 = 7, for any j, shall be bounded by:

0.8/2'° < Prob(RN16 = j) < 1.25/2'°.

2. Probability of simultaneously identical sequences: For a tag
population of up to 10,000 tags, the probability that any two or more
tags simultaneously generate the same sequence of RN16s shall be less
than 0.1%, regardless of when the tags are energized.

3. Probability of predicting an RN16: An RN16 drawn from a tag’s
PRNG shall not be predictable with probability better than 0.025%,
when the outcomes of prior draws from the PRNG under identical
conditions are known.



According to the authors, J3Gen amply fulfills these requirements, pro-
viding a high level of security (equivalent key size of 372 bits). We find,
however, some flaws in the design of this PRNG, which question the validity
of this proposal. Before analyzing these issues, we describe the structure and
the characteristics of J3Gen.

2.1. Description of J3Gen

J3Gen is based on a dynamic linear feedback shift register (DLFSR) of
n cells. A DLFSR can be defined, in turn, as a LFSR [26] where the feed-
back polynomial, p;(z), is not static but changes dynamically [27]. J3Gen
combines this DLFSR topology with a physical source of true randomness
(thermal), which generates a “true random bit”, denoted by trn. This bit
controls the change of polynomials, preventing the linear behavior of the
DLFSR.

Figure 1 depicts the block diagram of J3Gen. A set of m primitive feed-
back polynomials are implemented as a wheel, and the Polynomial Selector
rotates one position if trn = 0 and two positions (one position at one shift
cycle and another at the next shift cycle) if trn = 1. These rotations are
performed every [ cycles, with 1 < [ < n. This value must be lower than
n (number of cells) to prevent a random number from being generated by a
single feedback polynomial. The Decoding Logic is responsible for managing
the internal PRNG clock and the trn bit, providing the correct signal to the
different internal modules.

For a better understanding of the functioning of J3Gen, we review here the
sample of execution provided in [21]. The parameter configuration chosen for
this example is: n = 16, m = 8 and [ = 15. The value n = 16 for the LFSR
size is selected due to compatibility reasons with EPCG2 (although larger
values of n are also considered in [22]). The selected feedback polynomials
(m = 8) should remain secret as they can be considered as the secret key of
the system. In [21], the LFSR states for 32 shift cycles are detailed, providing
32 output bits. Two true random values are used, which are set to trn, =0
and trny = 1. The system starts with p;(z) and outputs [ = 15 bits until
the TRNG module transfers trn; = 0 to the Decoding Logic module. Then,
po(x) is selected, and another [ = 15 bits are generated, until the next (after
[ shift cycles) trn is obtained. As trny, = 1, the Decoding Logic rotates the
Polynomial Selector one position at shift 31, and another position at shift
32. Eventually, two 16-bit pseudorandom numbers are generated; for the
first one, pi(x) is used 15 cycles and py(x) 1 cycle, while for the second one,
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Figure 1: Block Diagram of J3Gen.

po(z) is used 14 cycles, and then ps(z) and py(x) are used for 1 cycle each
(ps will be also used 14 cycles for the next 16-bit pseudorandom number).

2.2. Security Strength

In [22] the authors equates the security strength of J3Gen with a key
length, where each possible key corresponds to a possible feedback polynomial
combination (which must be kept secret). Thus, for n = 16 and m = 8, it
would mean a key size of roughly 73 bits; i.e. 8(= m) selected feedback
polynomials out of 2,048 possible primitive polynomials of degree 16(= n).
Apart from the parameters n and m, the polynomial update cycle [ has also
a major impact on the security level. For example, with n = 32 and m = 16,
for [ = 31, the authors compute that there will be up to 4 possible solutions
for each system of equations, i.e. up to 4 possible feedback polynomials
could be involved in the generation of such a sequence. If [ = 25, then the
possible solutions are up to 16,384, for [ = 21 the possible solutions increase
up to 4,194,304, and so on until [ = 1, the extreme case, where all 67 million
primitive feedback polynomials would be equally probable.

3. Cryptanalysis of the J3Gen

This section analyzes the security of J3Gen, describing two procedures
which enable: i) to retrieve the feedback polynomials, and i) to reconstruct
the sequence. These cryptanalyses have been carried out for [ = n — 1
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and [ = 1, respectively. The former is the value selected for the execution
sample in [21], and the latter is pointed out as the most secure option by the
designers [22].

3.1. Case l =n — 1: retrieving the feedback polynomials

This first analysis shows that the security evaluation carried out by the
authors (see Sec. 2.2) presents some flaws. According to the given data, it
can be inferred that the number of possible feedback polynomials involved in
the generation of a 16-bit pseudorandom number is estimated to be 22—,
However, we show here that this number can be reduced dramatically to just
2"l As a consequence, the case [ = n — 1 becomes particularly vulnerable
and the feedback polynomials can be retrieved. This problem gets much
worse when the adversary makes use of known characteristics of the feedback
polynomials.

3.1.1. Cryptanalysis Description

The knowledge of 2n output values of a sequence s generated with a n-
degree feedback polynomial enables the definition of a linear equation system
of n equations to retrieve such a polynomial:

Snil Sp ... 81 4

Son Sopn—1 ° Sp Cn

J3Gen prevents us from obtaining these values by changing the feedback
polynomial after [ rounds, with [ < n. However, analyzing how DLFSR-based
PRNGs work, it can be noticed that for [ = n — 1 there is only one unknown
bit left to define this linear equation system. Thus, an adversary just needs
to try with the two possibilities; i.e. 0 and 1, and checks if there exists a valid
solution (only two feedback polynomials are involved). Figure 2 sketches, for
a polynomial p,(x), how the corresponding matrices are defined. When a
feedback polynomial is selected by the Polynomial Selector, its initial state
is known, as it corresponds with the following n outputs. If this feedback
polynomial is used now to generate | = n — 1 outputs, we will then know a
total of 2n — 1 bits.

We have just shown that a feedback polynomial p,(z) could be retrieved
from 2n — 1 outputs of J3Gen. However, if these 2n — 1 bits are taken at
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Figure 2: Sketch of the linear equation system definition.



Given a sequence s of length S > n +{

fori=1to(S—(n+1)+1)
Take n + 1 bits of s: h = sj...8;4n+i—1
Set hoy, = j with 7 = 0,1 and solve the linear equation systems.

If there exist a valid solution, then store it as a candidate.
end

Select the feedback polynomials among the candidates.

Figure 3: Procedure to retrieve the J3Gen Feedback Polynomials

random, with high probability, fewer than n —1 bits will have been generated
with the same feedback polynomials and the system will have no solution,
or this will be wrong. To overcome this problem, if more outputs of J3Gen
are available, the adversary only has to shift one position after another, and
test if the defined system has a valid solution. If so, the polynomial is stored
as a candidate. A maximum of n (if trn = 1) shifts will be needed before
finding a correct solution. Finally, the adversary will have to pick up the
correct feedback polynomials among the possible candidates. For this last
task, different alternatives are possible, which will be commented with an
example in the next subsection. Given a J3Gen generated sequence s of
length S > n + [ bits, and let s; be the k-th bit of s, Figure 3 collects more
formally the different steps of this cryptanalysis.

This general procedure can be further optimized when certain informa-
tion about the feedback polynomials is known. For example, in J3Gen the
feedback polynomials are primitive. We know then that the number of
non-zero terms is odd, with Cy = C,, = 1. Thus, n — 2 equations, de-
rived from just 2n — 2 outputs, can be used to recover coefficients C; with
i €[l:(n—2)], while C,,—; will be the odd parity bit of such coefficients.
This way, a submatrix R = S(,_2)x(n—2) With the first (n — 2) rows and
columns of the previously defined S, «, can be used to solve the liner equa-
tion system, while the (n — 1)-th and n-th rows of this matrix represent two
spare equations that will be only included when required; that is, i.) when
rank(R)=rank(R|O)=n — 4 or ii.) when rank(R)=rank(R|O)=n — 3. In the
first case, we need to include both equations ((n — 1) and n), while in the
second case, we include firstly the (n — 1)-th row , and only if the rank does
not change (i.e. rank(R)=rank(R|O)=n — 3), the n-th row is included.



3.1.2. Cryptanalysis of the given J3Gen example

To illustrate the cryptanalysis, we apply it on the example described
above (Section 2.1): n = 16, m = 8, | = 15 and the primitive feedback
polynomials of Table 1. Figure 4 shows the results of the cryptanalysis on
a bitstring s of length S = 176 bits. There are 14 different candidates; 7 of
them correspond with actual used feedback polynomials, while the other 6 are
“false positives”. It is easy to note, however, that the frequency of appearance
of genuine polynomials is much higher than that of “false positives”; when a
candidate is found for an specific output, the probability of this being genuine
is roughly 75%. Table 2 shows the average number of correct polynomials
between the candidates for different lengths S, and the number of them which
are correct among the most frequent ones (chosen candidates). These results
are obtained with the Monte-Carlo method for 1000 repetitions. They show
that 128 bits are enough to recover 5 of the 8 feedback polynomials. These
results can still be improved if the method to discard the “false positives”
(i.e. to choose among the candidates) is refined. For example, one could take
into account the output when the candidate is obtained, as genuine solutions
appear roughly every n outputs, and/or if two solutions are found for the
same output (output 140 in Figure 4). In this case, only one of them can be
correct and therefore the other can be ruled out directly.

Finally, note that this cryptanalysis does not require that the given
outputs being consecutive. An adversary, with several outputs of length
S, 82....8", can perform n independent analysis to retrieve one or several
polynomials with each of them (provided that S* > 1+ n).

Table 1: Primitive Feedback Polynomials

p(r) 1o +a° + 2% o’ + ot 2’

pa(x) s 1+ at +2° + 28 + 27 2!t + 2!

p3(x) 1+ ao+ a3+ a2t + 2%+ 28+ 27 + 2t + 216
pa(x) i 1+ 23 + 2% + 28 + 210 + 21 4 216

ps(x) 1 1+ 2% + 28 + 2t + 210

po(z) : 1+ 2% + 25 + 210 4 oM 4 213 4 216

pr(z) i 1+ a2t 4+ 25 + 28 + 219 + 21t + 216

ps() 14+ a+a® +a* +2° + 2% + 2 4 2! + 210
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Table 2: Average Retrieved Polynomials

S Correct polynomials v/w = v correct polynomials
among the candidates | among the w most frequent ones
31 0.2 02/1
32 0.23 02/1
48 1.3 1.2/2
64 2.4 2.1/3
80 3.4 3.2/4
96 4.4 3.7/5
112 5.3 4.6/6
128 5.7 5 /7
144 6 5.5/8
160 5.9 54/8
176 6.7 6 /8
192 7.2 6.5/8
208 7.5 6.5/8
224 7.5 6.6/8
240 7.6 6.6/8

3.1.3. Discussion for different values of the parameters

The cryptanalysis can be applied for any value of m. It only affects
the number of outputs S that the cryptanalysis needs to recover all of the
polynomials; (n + m - [) bits could be enough to recover up to m feedback
polynomials. Each polynomial that is retrieved reduces the equivalent key
size.

There is also no significant changes in the cryptanalysis when n > 16,
other than the size of the linear equation systems and the number of shifts
to define these. In [22], the authors opt for m = 16 and n = 32 as the
best implementation in terms of security and hardware complexity. This
configuration is supposed to provide an equivalent key of 372 bits (16 out of
67,108,864 primitive polynomials of degree 32). Nevertheless, 528 output bits
could be enough to recover all of the 16 feedback polynomials, and we find
that an adversary with an output sequence of 1152 bits is able to recover all
of these polynomials in the half of the cases. Figure 5, based on simulations
and statistical analysis, shows an approximation of the average number of
polynomials that are retrieved for different lengths of given outputs, and how
the equivalent key size reduces when these polynomials are disclosed.
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Figure 5: Cryptanalysis results for m = 16, n = 32 and | = 31.

Apart from the cases | = n — 2 and [ = n — 3 with primitive feedback
polynomials, which are essentially a particular case of the analysis described
above (with one or none of the spare equations), this cryptanalysis could
be also adapted to different values of [ with a complexity significantly lower
than that estimated by the authors [22]: 2"~ possibilities instead of 22("=1.
However, this still leads to an ever-increasing computational complexity when
n—I[ increases, as the number of possibilities also does. Therefore, in this case,
we suggest to consider other strategies. In the next section for example, we
describe a different approach to cryptanalyze the case when n—1 is maximum

(1=1).

3.2. Case l = 1: reconstructing the output sequence

This section analyzes the J3Gen outputs for the case when [ = 1, which
is suggested as the most secure choice. This analysis, as just mentioned, is
different to the previous one and much more powerful. While the results
in the previous case were probabilistic, we show here that the generated
sequence can be reconstructed in a deterministic way. The analysis exploits
a design fault in J3Gen that renders useless the randomness provided by
trn; when [ = 1, the m feedback polynomials are applied consecutively, i.e.
p1(x), p2(x),...; pm(z), p1(x), p2(x),...]. Indeed, if trn = 0, the following
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output bit is computed by using the next feedback polynomial p;y;(z) and
then another trn is obtained. If trn = 1, the system generates two output
bits, by using p;;1(x) and p;,2(x) respectively, and then another bit trn is
drawn. Thus, the true random bit ¢rn does no provide any randomness to
the process, and each feedback polynomial will be periodically applied with
period m. This fact makes it possible to apply a cryptanalysis such as that
applied to programmable cellular automata (PCA) [28] and DLFSR [27],
considering the output sequence s as an interleaved sequence composed by
decimated sequences (cf. [29] for theory on interleaved sequences).

3.2.1. Cryptanalysis Description

Let s be the output binary sequence produced by the J3Gen generator
where the generic term s(t) = wvo(t) is the least significant bit of the state
v(t) = (vp—1(t), ..., v1(t), vo(t)) of the LFSR at time instant ¢. The linear
span of this random sequence can be defined as follows:

Definition 3 (Linear Span). The linear span (or linear complexity, notated
LC') of a binary sequence s is defined as the length of the shortest LESR that
can generate such a binary sequence.

Let us also define the sequence wy as a decimation of the sequence s by
taking one term out of m; that is,

wo(t) = s(t-m) for t > 0. (2)

The following equation holds between the states of the LFSR,

v((t+1)-m) =wv(t-m)M, (3)
where: _
M =] 4, (4)

A; being a n x n matrix whose characteristic polynomial is the feedback
polynomial p;(x) of the LFSR. Thus, it can be written that

wo(t) = s(t-m) = m(M" - v(0)), ()

where 7 is a linear map of a n-dimensional vector space over GF(2) that
transforms (v, _1(t), ..., v1(t),vo(t)) into vo(t).
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The term wy(t +n) can be written [27, 28] as a linear combination of the
previous n terms, and consequently the linear span of the sequence wy is at
most n. The same reasoning applies to any of the other decimated sequences
w; whose generic terms are defined as:

wi(t) =s(t-m+j), 0<j<(m—1). (6)

In this way, the sequence s can be obtained by interleaving m different
sequences w;, where each of them has a linear span LC' < n. Thus, the linear
span of s is upper bounded as LC(s) < n-m, which means that the sequence s
can be reconstructed from the knowledge of at most 2n-m bits. Consequently,
for n = 16 and m = 8, the binary sequence produced by J3Gen can be
reconstructed from just 256 consecutive bits (or 16 pseudorandom numbers),
using an equivalent LESR of 128 stages. In the case of n = 32 and m = 16,
the output sequence can be rebuilt by using 1,024 consecutive bits (or 64
pseudorandom numbers). Note that such sequences can be reconstructed
without the knowledge of the feedback polynomials.

These conclusions are confirmed when the Massey-Berlekamp
algorithm [30] is applied on sequences generated by J3Gen with n = 16,
m = 8 and [ = 1 (feedback polynomials of Table 1). The results reveals
a linear span LC = 128 with an equivalent feedback polynomial p.,(z) =
'8 120 4 88 4 980 1 2™ 4 256 1 1. whose order, which determines the
period of the sequence, is 28, 560. Figure 6 and Figure 7 depict the linear
span profile and the repetition period respectively.

4. Security Recommendations for J3Gen

In [22] the authors suggest that the pool of feedback polynomials could
include non-primitive polynomials to increase the number of possible com-
binations and thus prevent J3Gen from a brute force attack. This certainly
would hinder the cryptanalysis described in Section 3.1, as the process to
discard candidates (last step in Figure 3) would become harder. However,
this modification needs to be done carefully, since non-primitive polynomials
produce sequences whose statistical properties are not guaranteed (must be
proved). Furthermore, the selection of these feedback polynomials should
not apply any fix rule which could leak information about the selected proto-
cols. For example, polynomials in Table 1 seem to apply that used in similar
architectures (e.g. [31]) which looks for efficient hardware implementation by
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choosing polynomials with several coefficients in common: all polynomials
share coefficients x'6, 2, 2%, 2° and 2°. This simplifies the logic circuitry
(fewer gates) to select the appropriated polynomials from the pool, but ob-
viously impacts negatively on the global security of the PRNG.

Regarding the analysis described in Section 3.2, an alternative way to ob-
tain the period of the sequence is with the computation of the matrix M (see
equation 4). This matrix can also be computed from 2n - m consecutive bits
taking only 2n bits of a decimated sequence (one out of m). The computation
of M is equivalent to the computation of the equivalent LFSR determined
by the linear span of a decimated sequence. Once the matrix is computed,
its characteristic polynomial c¢(x) gives us information about the period of
the sequence [27]. This matrix M is completely determined by the feedback
polynomials and the order in which they are applied. Thus, it is possible to
know a priori the period of the output binary sequence computing the char-
acteristic polynomial of the matrix M. The polynomials proposed in [21]
(listed in Table 1) determine a matrix M whose characteristic polynomial is:
c(z) = 210422+ " +ab P+l = (8 +a" 20+ ad 1) (2% 1) (2P +1)2.
The order of this non-primitive polynomial is 3,570. Since ¢(z) determines
the period of all decimated sequences [27, 29], the period of the interleaved
sequence s is 3,570 - m = 28,560, a much lower value than the maximum
length 65, 535 produced by a single primitive LF'SR of length 16. However, a
simple modification in the order of the polynomials may increase the repeti-
tion period of the sequence. For example, if p;(z) and ps(z) interchange their
positions, then the repetition period is maximized; the characteristic poly-
nomial of the matrix M is ¢(z) = z'® + 2+ 2B + 22 + 20+ 28+ 2"+ 241,
which is primitive and determines a period of 65,536 for the decimated se-
quences and 65,536 - 8 = 524, 288 for the interleaved sequence. However, the
pool of polynomials cannot significatively improves the upper bound of the
linear span, LC' < n-m (Section 3.2), since it does not depend on the specific
implemented polynomials but on their number and degree. Furthermore, the
linear span always will be too low compared to the repetition period. As a
consequence, we strongly advise against the use of [ = 1.

5. Conclusions

In the present work we have analyzed the security of J3Gen. J3Gen is
one of the few PRNGs described in the literature which is suitable to be im-
plemented on low-cost RFID tags, and the only one, as far as we know, that
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has shown to fulfill the randomness criteria established by the EPCglobal
Gen2 standard. However, despite its security claims, we have described here
two distinct crypanalytic attacks for the two values of the parameter [ rec-
ommended by the designers:

Il =n — 1: A probabilistic cryptanalysis based on solving linear equation sys-
tems is introduced. This analysis allows one to recover the set of feed-
back polynomials, which constitute the secret information of J3Gen.
No more than (n 4+ m - 1) output bits could be enough to accomplish
this task. In addition, cases | = n — 2 and [ = n — 3 are essentially
straight derivations of the same analysis when the feedback polynomials
are primitive.

[ =1: A deterministic cryptanalysis based on the output sequence decima-
tion is developed. This analysis shows that the entire output sequence
of J3Gn can be reconstructed by the knowledge of 2nm bit of such
sequence.

Although these analyses undoubtedly question the security of J3Gen, we
enumerated some recommendations which address these issues and could be
helpful for this or future designs.
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