
Indistinguishability Obfuscation
from Semantically-Secure Multi-linear Encodings

Rafael Pass∗ Karn Seth† Sidharth Telang‡

February 10, 2014§

Abstract

We define a notion of semantic security of multi-linear (a.k.a. graded) encoding schemes: roughly
speaking, we require that if an algebraic attacker (obeying the multi-linear restrictions) cannot
statistically tell apart two constant-length sequences ~m0, ~m1 in the presence of some other elements
~z, then encodings of these sequences should be computationally indistinguishable. Assuming the
existence of semantically secure multi-linear encodings and the LWE assumption, we demonstrate
the existence of indistinguishability obfuscators for all polynomial-size circuits.

We rely on the beautiful candidate obfuscation constructions of Garg et al (FOCS’13), Brakerski
and Rothblum (TCC’14) and Barak et al (ePrint’13) that were proven secure only in idealized generic
multi-linear encoding models, and develop new techniques for demonstrating security in the standard
model, based only on semantic security of multi-linear encodings (which trivially holds in the generic
multi-linear encoding model).

∗Cornell University, Cornell NYC Tech. Email: rafael@cs.cornell.edu. Work supported in part by a Alfred P.
Sloan Fellowship, Microsoft New Faculty Fellowship, NSF Award CNS-1217821, NSF CAREER Award CCF-0746990,
NSF Award CCF-1214844, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under contract FA8750-11-2-
0211. The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
US Government.
†Cornell University. Email: karn@cs.cornell.edu.
‡Cornell University. Email: sidtelang@cs.cornell.edu.
§The version is essentially identical to the e-Print version from November 27, 2013, except for a somewhat revised

introduction.

0

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation details
(making it hard to “reverse-engineer”), while preserving the functionality (i.e, input/output behavior)
of the program. Precisely defining what it means to “scramble” a program is non-trivial: on the one
hand, we want a definition that can be plausibly satisfied, on the other hand, we want a definition that
is useful for applications.

A first formal definition of such program obfuscation was provided by Hada [Had00]: roughly speak-
ing, Hada’s definition—let us refer to it as strongly virtual black-box—is formalized using the simulation
paradigm. It requires that anything an attacker can learn from the obfuscated code, could be simulated
using just black-box access to the functionality.1 Unfortunately, as noted by Hada, only learnable func-
tionalities can satisfy such a strong notion of obfuscation: if the attacker simply outputs the code it is
given, the simulator must be able to recover the code by simply querying the functionality and thus the
functionality must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work of Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+01]. Their central result shows that even if we
consider a more relaxed simulation-based definition of program obfuscation—called virtual black-box
(VBB) obfuscation—where the attacker is restricted to simply outputting a single bit, impossibility
can still be established (assuming the existence of one-way functions). Their result is even stronger,
demonstrating the existence of families of functions such that given black-box access to fs (for a randomly
chosen s), not even a single bit of s can be guessed with probability significantly better than 1/2, but
given the code of any program that computes fs, the entire secret s can be recovered. Thus, even quite
weak simulation-based notions of obfuscation are impossible.

But weaker notions of obfuscation may be achievable, and may still suffice for (some) applications.
Indeed, Barak et al. [BGI+01] also suggested two such notions:

• The notion of indistinguishability obfuscation, first defined by Barak et al. [BGI+01] and explored
by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], roughly speaking requires that
obfuscations O(C1) and O(C2) of any two equivalent circuits C1 and C2 (i.e., whose outputs agree
on all inputs) from some class C are computationally indistinguishable.

• The notion of differing-input obfuscation, first defined by Barak et al. [BGI+01] and explored by
Boyle, Chung and Pass [BCP13] and by Ananth, Boneh, Garg, Sahai and Zhandry [ABG+13]
strengthens the notion of indistinguishability obfuscation to also require that even if C1 and C2

are not equivalent circuits, if an attacker can distinguish obfuscations O(C1) and O(C2), then
the attacker must “know” an input x such that C1(x) 6= C2(x), and this input can be efficiently
“extracted” from A.

In a very recent breakthrough result, Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b] pro-
vided the first candidate constructions of indistinguishability obfuscators for all polynomial-size circuits
so-called, based on so-called multi-linear (a.k.a. graded) encodings—for which candidate constructions
were recently discovered in the ground-breaking work of Garg, Gentry and Halevi [GGH13a], and more
recently, alternative constructions were provided by Coron, Lepoint and Tibouchi [LCT+13].

The obfuscator construction of Garg et al proceeds in two steps. They first provide a candidate
construction of an indistinguishability obfuscator for NC1 (this construction is essentially assumed to
be secure); next, they demonstrate a “bootstrapping” theorem showing how to use fully homomorphic
encryption (FHE) schemes [Gen09] and indistinguishability obfuscators for NC1 to obtain indistinguisha-
bility obfuscators for all polynomial-size circuits.

1Hada actually considered a slight distributional weakening of this definition.

1

Further constructions of obfuscators for NC1 were subsequently provided by Brakerski and Roth-
blum [BR13] and Barak, Garg, Kalai, Paneth and Sahai [BGK+13]—in fact, these constructions achieve
even stronger notions of virtual-black-box obfuscation in idealized “generic” multi-linear encoding mod-
els. Additionally, Boyle, Chung and Pass [BCP13] present an alternative bootstrapping theorem, show-
ing how to employ on extractability obfuscation for NC1 to obtain differing-input (and thus also in-
distinguishability) obfuscation for both circuits and Turing machines. (Ananth et al [ABG+13] also
provide Turing machine differing-input obfuscators, but start instead from differing-input obfuscators
for polynomial-size circuits.)

In parallel with the development of candidate obfuscation constructions, several surprising applica-
tions of both indistinguishability and extractability obfuscations have emerged: for instance, in the works
of Garg et al [GGH+13b], Sahai and Waters [SW13], Hohenberger, Sahai and Waters [HSW13], Boyle,
Chung and Pass [BCP13], Boneh and Zhandry [BZ13], Garg, Gentry, Halevi and Raykova [GGHR13],
Bitansky, Canetti, Paneth and Rosen [BCPR13], Boyle and Pass [BP13]. Most notable among these
is the work of Sahai and Waters [SW13] (and the “punctured program” paradigm it introduces) which
shows that for some interesting applications of virtual black-box obfuscation (such as turning private-key
primitives into public-key one), the weaker notion of indistinguishability obfuscation suffices. Addition-
ally, as shown by Goldwasser and Rothblum [GR07], indistinguishability obfuscators provide a very
nice “best-possible” obfuscation guarantee: if a functionality can be VBB obfuscated, then any indistin-
guishability obfuscator for this functionality is VBB secure.

1.1 Towards “Provably-Secure” Obfuscation

But despite these amazing developments, the following question remains wide open:

Can the security of general-purpose obfuscations be reduced to some “natural” intractability
assumption?

Note that while the construction of indistinguishability obfuscation of Garg et al is based on some
intractability assumption, the assumption is very tightly tied to their scheme—in essence, the assumption
stipulates that the scheme is a secure indistinguishability obfuscator. Rather, we are here concerned
with the question of whether some general assumption (that is interesting in its own right, and is not
“tailored” to the scheme) can be used to obtain indistinguishability obfuscation. More importantly, we
are interested in reducing the security of the obfuscation to some simpler assumption—that is, we are
not interested in assumptions that “directly” (without any security reduction that deals with arbitrary
nuPPT attackers) imply security of the obfuscation.

The VBB constructions of Brakerski and Rothblum [BR13] and Barak et al [BGK+13] give us
more confidence in the plausible security of their obfuscators, in that they show that at least “generic”
attacks—that treat multi-linear encoding as if they were “physical envelopes” on which multi-linear
operations can be performed—cannot be used to break security of the obfuscators. But at the same
time, non-generic attacks against their scheme are known—since general-purpose VBB obfuscation is
impossible! Thus, it is not clear to what extent security arguments in the generic multi-linear encoding
model should make us more confident that these constructions satisfy e.g., a notion of indistinguishability
obfuscation. (We mention that the question of to what extent one can capture such “real-world” security
properties from security proofs in the generic model through a “meta-assumption” was raised, but not
investigated, in [BGK+13]; see Remark 1.) In particular, one way to interpret the results of [BR13,
BGK+13] is that the assumption “any scheme that is secure in the generic multi-linear encoding model
is secure in the standard model” is false; not only is it false, but it fails for a natural scheme.

In light of this, a natural weakening of this assumption may instead be “any indistinguishability
property that holds in the generic generic multi-linear encoding model also holds in the the standard
model”; if we only care about obtaining indistinguishability obfuscation, such an assumption would also

2

suffice. Looking ahead, as we show in Theorem 3, such an assumption is false even if we only care
about indistinguishability of a constant number of elements (in the presence of auxiliary elements).
Furthermore, even if this assumption were to be true2, it would not help us in addressing the above
question since the assumption directly implies indistingiushability security of obfuscations (that are
secure against generic attacks), without any security reduction. Of course, there is a security proof
required to prove security in the generic group model, but it only deals with “idealized” generic attackers;
for such attackers, the security reduction does not have to “commit” to the code it outputs but can
instead adaptively “program” answers to algebraic queries based on what the queries are. Rather, what
we are interested in is a security argument that applies to arbitrary nuPPT attackers; what makes this
particularly challenging is that now the security reduction must output a fully specified code before it
knows how the attacker plans to use it.

In this work, we address the above question. We stipulate a new, but in our eyes natural, assumption
regarding multi-linear encodings—the existence of, so-called, semantically-secure multi-linear encodings,
and show how to construct indistinguishability obfuscators for NC1 (which then can be bootstrapped up
to general circuits) based on this assumption, using a non-trivial security reduction—looking ahead, we
show how to demonstrate indistinguishability obfuscation by relying on a hybrid argument that enables
us to transition from the obfuscation of one program to another; we rely on our assumption to prove
indistinguishability of each of the consecutive hybrids. As we shall explain shortly, this assumption can
be viewed as a “generalized DDH” or “uber-assumption”, as in [BBG05], in the context of multi-linear
maps.3

1.2 Obfuscation From Semantically-secure Multi-linear Encodings

Semantically-secure Multi-linear encodings (or The “Generalized DDH Assumption”) Recall
that a multi-linear (a.k.a. graded) encoding scheme [GGH13a, GGH+13b] enables anyone that has access
to a public parameter pp and encodings ExS = Enc(x, S), EyS = Enc(y, S′) of ring elements x, y under
the sets S, S′ ⊂ [n] to efficiently :4

• compute an encoding Ex·yS∪S′ of x · y under the set S ∪ S′, as long as S ∩ S′ = ∅;

• compute an encoding Ex+yS of x+ y under the set S as long as S = S′;

• compute an encoding Ex−yS of x− y under the set S as long as S = S′.

(Given just access to the public-parameter pp, generating an encoding to a particular element x may not
be efficient; however, it can be efficiently done given access to the secret parameter sp.) Additionally,
given an encoding ExS where the set S is the whole universe [n]—called the “target set”—we can efficiently
check whether x = 0 (i.e., we can “zero-test” encodings under the target set [n].) In essence, multi-linear
encodings enable computations of certain restricted set (determined by the sets S under which the
elements are encoded) of arithmetic circuits, and finally determine whether the output of the circuit is
0.

Towards explaining our notion of semantical security, let us first consider a DDH-like assumption
for multi-linear encodings: Consider sampling n random elements ~z, and lets m0 be the product of the

2A reasonable variant of it, which we refer to as the “Uber-Uber Assumption” is to demand that “any indistinguishability
property that holds in a statistical sense in the generic group model also holds computationally in the standard model”.
See Section 1.2 for more details.

3We thank Shai Halevi for pointing out the connection with [BBG05].
4Just as [BR13, BGK+13], we here rely on “set-based” graded encoding; these were originally called “generalized”

graded encodings in [GGH13a]. Following [GGH+13b, BGK+13] (and in particular the notion of a “multi-linear jigsaw
puzzles” in [GGH+13b]), we additionally enable anyone with the secret parameter to encode any elements (as opposed to
just random elements as in [GGH13a]).

3

elements in ~z, and m1 be just a random element. A DDH-like assumption would require that encodings
of m0 and m1 under the “target” set S are indistinguishable, given encodings of ~z under sets ~T , if S is
not the disjoint union of the sets in ~T ; that is, distinguishing an encoding of the product of all elements
in ~z is indistinguishable from the encoding of a uniform element, as long as the encodings are made
under sets that prohibit “legally” obtaining the product of the elements.

We here consider a “generalized DDH-type” assumption in the multilinear setting, similar in spirit
to the “uber-assumption” of [BBG05] (which was considered in the context of bilinear maps), where
we not only care about products of all the elements in ~z but also more complicated relations among
the elements and sets they are encoded under: we consider elements ~z, m0, m1 that come from any
efficient distribution D that makes it impossible to tell apart m0 and m1 in the presence of ~z using
“legal” algebraic operations respecting the sets (but otherwise being computationally unbounded). More
precisely, our notion of single-message semantic security for multi-linear encodings requires that for
every S, ~T pair, every “valid” distribution D over m0,m1, ~z—where a distribution D is valid if no
(even computationally unbounded) algebraic attacker (obeying the set-restrictions)5 can distinguish
whether it gets access to {Enc(m0, S),Enc(~z, ~T)} or {Enc(m1, S),Enc(~z, ~T)} (that is, the elements are
statistically6 indistinguishable by algebraic attackers)—we have that encodings {Enc(m0, S),Enc(~z, ~T)}
and {Enc(m1, S),Enc(~z, ~T)} are computationally indistinguishable (by standard nuPPT attackers).

In our setting, we will require a slight strengthening of the above notion to a constant-message
settings, where m0, m1, and S are replaced by constant-length vectors ~m0, ~m1, ~S. In the remainder
of the paper, we simply refer to constant-message semantically-secure encodings as semantically-secure
multi-linear encodings. (For our purposes, it will in fact suffice to consider an entropic notion of semantic
security, where we only require security to hold as long as D samples ~m0, ~m1 and ~z with some high-
entropy; for simplicity of exposition, we define and prove out results in the worst-case setting, but we
explain in Remark 1 why our analysis also goes through if we assume the existence of just entropically
secure multi-linear encodings.)

Note that (randomized) multi-linear encoding scheme in the generic multi-linear encoding model of
[BGK+13] are trivially semantically secure. In essence, the assumption of semantic security, stipulates
that for the particular task of distinguishing encodings of a constant number of elements (computation-
ally unbounded) generic attacks cannot be (significantly) beaten.

Let us point out that one may consider an even stronger “uber-uber generalized DDH” assumption,
which requires that also encodings of polynomial-length (as opposed to constant-length) sequences of
messages ~m0, ~m1 cannot be distinguished (unless the elements can be generically distinguished by un-
bounded attacker). Such an assumption essentially states that any indistinguishability property that
statistically holds against generic attackers, also holds computationally against a nuPPT attacker that
sees the actual encodings. The constructions of [BR13, BGK+13] indeed satisfy such a statistical notion
of security (w.r.t. to generic attackers) and thus it “directly” follows that these construction satisfy in-
distinguishability obfuscation under this assumption.7 Whereas we are not aware of any attacks against
such an “uber-uber” assumption, our focus here is on an assumption that is as close as possible to a
“DDH-type” assumption (and consequently as weak as possible), and thus we focus on indistinguisha-
bility of only a constant number of elements. More importantly, as mentioned above, towards the goal
of reducing the security of obfuscation to some assumption, we are not interested in assumptions that

5Even more precisely, we allow the attacker to be computationally unbounded while make polynomially many (or
even subexponentially many) algebraic zero-test queries. And to make the assumption as we as possible, we require
indistinguishability to hold point-wise.

6As we shall see in Theorem 3 it is cruicial that we here consider statistical indistinguishability by algrebraic attackers.
7In fact, any obfuscation that 1) only releases encodings of elements, and 2) satisfies statistical indistinguishability

obfuscation against generic attackers, as the schemes of [BR13, BGK+13] do, is secure by definition under this “uber-uber”
assumption. We thank Sanjam Garg for pointing this out.

4

“directly” imply security of the scheme, without any type of security reduction w.r.t., nuPPT attackers.8

Obfuscation from Semantically Secure Multi-linear encodings Our central result shows how to
construct indistinguishability obfuscators for NC1 based on the existence of semantically-secure multi-
linear encodings.

Theorem 1 (Informally stated). Assume the existence of semantically secure multi-linear encodings.
Then there exists indistinguishability obfuscators for NC1.

As far as we know, this is the first result presenting indistinguishability obfuscators for NC1 based
on any type of assumption with a “non-trivial” security reduction w.r.t. arbitrary nuPPT attackers (as
opposed to restricted “generic” attackers).

If additionally assuming the existence of a leveled FHE [RAD78, Gen09] with decryption in NC1—
implied e.g., by the LWE assumptions [BV11, BGV12]—this construction can be bootstrapped up to
obtain indistinguishability obfuscators for all polynomial-size circuits by relying on the technique from
[GGH+13b].

Theorem 2 (Informally stated). Assume the existence of semantically secure multi-linear encodings and
a leveled FHE with decryption in NC1. Then there exists indistinguishability obfuscators for P/poly.

On falsifiability of semantically secure multi-linear encodings Let us point out that the assump-
tion that a multi-linear encoding scheme is semantically secure is not necessarily “efficiently falsifiable”
in the terminology of Naor [Nao03], since checking whether there exists some algebraic way of telling
apart two constant-length sequences of elements (in the presence of some other elements z) is not nec-
essarily polynomial-time computable. Note, however, that the assumption that a particular scheme is
an indistinguishability obfuscator is not an efficiently falsifiable assumption either: a presumed attacker
must exhibit two functionally-equivalent circuits C1 and C2 that it can distinguish obfuscations of; but
checking whether two circuits are functionally equivalent may not be polynomial-time computable.9

On the other hand, for many applications of indistinguishability obfuscation (e.g., functional encryp-
tion [GGH+13b]) it suffices to require indistinguishability only against specific classes of distributions
of programs that (with overwhelming probability) are functionally equivalent, and for which it can be
efficiently checked that the distribution over programs belong to the class (and that that the two circuits
selected indeed are functionally equivalent).10 If we only require such a weaker “class-specific” notion
of obfuscation, the security of our construction can be based on a “class-specific” analog of semanti-
cal security that is falsifiable—that is, we only need to rely on a specific instance of the generalized
DDH-assumption. More generally, such applications of indistinguishability obfuscation can be based on
a “meta-falsfiable” variant of semantical security where the attacker not only needs to come up with a
valid message distribution (for which it can distinguish encodings) but also a mathematical proof (in
some appropriate language) that the distribution is valid.

We leave open the intruiging question of whether general-purpose (as opposed to application-specific)
indistinguishability obfuscation can be based on some falsifiable assumption; the lower-bound from
[GGSW13] regarding witness encryption (which is implied by indistinguishability obfuscation), provides
some indications of why basing indistinguishability obfuscation on a falsifiable assumption may be hard.

8As mentioned above, while the works of [BR13, BGK+13] do provide security proofs, these proof only consider generic
attackers; our focus is on security reductions that apply to arbitrary nuPPT attackers.

9In fact, assuming the existence of indistinguishability obfuscation and one-way functions it is easy to come up a
method to sample C1 and C2 that with high probability compute different functions, yet are indistinguishable; see the
lower bound for witness encryption of [GGSW13].

10A notable exception is the construction of witness encryption from indistinguishability obfuscation of [GGH+13b].

5

1.3 Construction Overview

Following the original work of Garg et al (as well as subsequent works), our construction proceeds in
three steps:

• We view the NC1 circuit to be obfuscated as a branching program BP (using Barrington’s Theorem
[Bar86])—that is, the program is described by m pairs of matrices (Bi,0, Bi,1), each one labelled
with an input bit inp(i), and the program is evaluated computing by for each i ∈ [m], choosing
one of the two matrices (Bi,0, Bi,1), based on the input, computing the product, and finally based
on the product determining the output—there is a unique “accept” (i.e., output 1) matrix, and a
unique “reject” (i.e., output 0) matrix.

• The branching program BP is randomized using Kilian’s technique [Kil88] (roughly, each pair
of matrices is appropriately multiplied with the same random matrix R while ensuring that the
output is the same), and then “randomized” some more—each individual matrix is multiplied by
a random scalar α. Let us refer to this step as Rand.

• Finally the randomized matrices are encoded using multi-linear encodings with the sets selected
appropriately. We here rely on a (simple version) of the straddling set idea of [BGK+13] to
determine the sets.11 We refer to this step as Encode.

(The original construction as well as the subsequent works also consisted of several other steps, but
for our purposes these will not be needed.) The obfuscated program is now evaluated by using the
multi-linear operations to evaluate the branching program and finally appropriately use the zero-test to
determine the output of the program. Let us refer to this construction as the “basic obfuscator”.

Roughly speaking, the idea behind the basic obfuscator is that the multi-linear encodings intuitively
ensure that any distinguisher (attacker) getting the encoding needs to multiply matrices along paths
that corresponds to some input to the branching program (the straddling sets are used to ensure that
the input is used consistently in the evaluation)12; the scalars α ensure that a potential distinguisher
without loss of generality can use a single “multiplication-path” and still succeed with roughly the same
probability, and finally, Kilian’s randomization steps ensures that if a distinguisher only operates on
matrices along a single path that corresponds to some input x (in a consistent way), then its output
can be perfectly simulated given just the output of the circuit on input x. (The final step relies on
the fact that the output of the circuit uniquely determines product of the branching program along the
path, and Kilian’s randomization then ensures that the matrices along the path are random conditioned
on the product being this unique value.) Thus, if a distinguisher can tell apart obfuscations of two
programs BP0, BP1, there must exist some input on which they produce different outputs. The above
intuitions can indeed be formalized w.r.t. generic attackers (that only operate on the encodings in
a legal way, respecting the set restrictions), relying on arguments from [BR13, BGK+13]. However,
although security w.r.t. generic attackers will be useful to us (as we shall see shortly), we are interested
in proving security w.r.t. all polynomial-size attackers.

Towards this, we will add an additional program transformation steps before the Rand and Encode
steps. Roughly speaking, we would like to have a method Merge(BP0, BP1, b) that “merges” BP0 and
BP1 into a single branching program that evaluatesBPb; additionally, we require thatMerge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) only differ in a constant number of matrices. We achieve this merge procedure
by connecting together BP0, BP1 into a branching program of double width and adding two “switch” ma-
trices in the beginning and the end, determining if we should go “up” or “down”. Thus, to switch between

11Although we have not verified all the details, it seems that we could have also relied on the simpler encoding method
from [GGH+13b, BR13] where each matrix is encoded with different singleton set, but using straddling sets somewhat
simplifies the analysis.

12The encodings, however, still permit an attacker to add elements within matrices.

6

Merge(BP0, BP1, 0) (which is functionally equivalent to BP0) and Merge(BP0, BP1, 1) (which is func-
tionally equivalent to BP1) we just need to switch the “switch matrices”. More precisely, given branching
programs BP0 and BP1 described respectively by pairs of matrices {(B0

i,0, B
0
i,1), (B1

i,0, B
1
i,1)}i∈[m], we

construct a merged program Merge(BP0, BP1, b) described by {(B̂0
i,0, B̂

0
i,1)}i∈[m] such that

B̂0
i,b = B̂1

i,b=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last matrices are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

It directly follows from the construction that Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ only
in the first and the last matrices (i.e., the “switch” matrices). Furthermore, it is not hard to see that
Merge(BP0, BP1, b) is functionally equivalent to BPb.

Our candidate obfuscator is now defined as iO(B) = Encode(Rand(Merge(BP, I, 0))), where I is
simply a “dummy" program of the same size as BP .13

The idea behind the merge procedure is that to prove that obfuscations of two programs BP0, BP1

are indistinguishable, we can come up with a sequence of hybrid experiments that start with iO(BP0)
and end with iO(BP1), but between any two hybrids only changes a constant number of encodings,
and thus intuitively we may rely on semantic security of multi-linear encodings to formalize the above
intuitions. At a high level, our strategy will be to matrix-by-matrix, replace the dummy branching
program in the obfuscation of BP0 with the branching program for BP1. Once the entire dummy
branching program has been replaced by BP1, we flip the “switch" so that the composite branching
program now computes the branching program for BP1. We then replace the branching program for
BP0 with BP1, matrix by matrix, so that we have two copies of the branching program for BP1. We
now flip the “switch" again, and finally restore the dummy branching program, so that we end up with
one copy of BP1 and one copy of the dummy, which is now a valid obfuscation of BP1. In this way, we
transition from an obfuscation of BP0 to an obfuscation of BP1, while only changing a small piece of the
obfuscation in each step. (On a very high-level, this approach is somewhat reminiscient of the Naor-Yung
“two-key” approach in the context of CCA security [NY90] and the “two-key” bootstrapping result for
indistinguishability obfuscation due to Garg et al [GGH+13b]—in all these approaches the length of the
scheme is artificially doubled to facilitate a hybrid argument. It is perhaps even more reminiscient of the
Feige-Shamir “trapdoor witness” approach for constructing zero-knowledge arguments [FS90], whereby
an additional “dummy” trapdoor witness is introduced in the construction to enable the security proof.)

More precisely, consider the following sequence of hybrids.

• We start off with iO(BP0) = Enc(Rand(Merge(BP0, I, 0)))

• We consider a sequence of hybrids where we gradually change the dummy program I to become
BP1; that is, we consider Encode(Rand(Merge(BP0, BP

′, 0))), where BP ′ is “step-wise” being
populated with elements from BP1.

• We reach Encode(Rand(Merge(BP0, BP1, 0))).

• We turn the “switch” : Encode(Rand(Merge(BP0, BP1, 1))).
13This description oversimplifies a bit. Formally, the Rand step needs to depends on the field size used in the Encode

steps, and thus in our formal treatment we combine these two steps together.

7

• We consider a sequence of hybrids where we gradually change the BP0 to become BP1; that is,
we consider Encode(Rand(Merge(BP ′, BP1, 1))), where BP ′ is “step-wise” being populated with
elements from BP1.

• We reach Encode(Rand(Merge(BP1, BP1, 1))).

• We turn the “switch” back: Encode(Rand(Merge(BP1, BP1, 0))).

• We consider a sequence of hybrids where we gradually change the second BP1 to become I; that
is, we consider Encode(Rand(Merge(BP1, BP

′, 0))), where BP ′ is “step-wise” being populated with
elements from I.

• We reach Encode(Rand(Merge(BP1, I, 0))) = iO(BP1).

By construction we have that if BP0 and BP1 are functionally equivalent, then so will all the hybrid
programs–the key point is that we only “morph” between two branching programs on the “inactive”
part of the merged branching program. Furthermore, by construction, between any two hybrids we
only change a constant number of elements. Thus, if some distinguisher can tell apart iO(BP0) and
iO(BP1), it must be able to tell apart two consecutive hybrids. But, by semantic security it then follows
that some algebraic attacker can tell apart the encodings in the two hybrids. Roughly speaking, we
can now rely on indistinguishable security of the basic obfuscator w.r.t. to just generic attackers to
complete the argument.

There is a catch with the final step though. Recall that to rely on Kilian’s simulation argument it
was crucial that there are unique accept and reject matrices. For our “merged” programs, this is no
longer the case (the output matrix is also a function of the second “dummy” program). We overcome
this issue by noting that the first column of the output matrix actually is unique, and this is all we
need to determine the output of the branching program. Consequently it suffices to release encodings
of the just first column (as opposed to the whole matrices) of the last matrix pair in the branching
program, and we can still determine the output of the branching program. As we show, for such a
modified scheme, we can also simulate the (randomized) matrices along an “input-path” given just the
first column of the output matrix. This concludes the description of our indistinguishability obfuscator.

1.4 On the Impossibility of Extractable Security

A natural question is whether there are reasonable qualitative strengthenings of semantical security that
can be used to achieve stronger notions of obfuscation, such as differing-input (a.k.a. extractability)
obfuscation. We here consider such a strengthening: roughly speaking, extractable semantic security
(or the “extractable uber assumption”) of multi-linear encodings strengthens the notion of semantic
security by requiring that if an attacker A can distinguish between encodings of a constant number of
elements, then there exists an efficient algebraic strategy that distinguishes the elements; that is, the
algebraic operations needed to distinguish the elements can be efficiently “extracted out”. Our second
key result shows that, assuming the existence of a leveled FHE with decryption in NC1, there do not
exist extractable semantically secure multi-linear encodings–that is, the “Extractable Uber Assumption”
is false for every multi-linear encoding scheme.

Theorem 3. [Informally stated] Assume the existence of a leveled FHE with decryption in NC1. Then
no multi-linear encodings can satisfy extractable semantic security.

Interestingly, this impossibility result is demonstrated by relying on our construction of indistin-
guishability obfuscators, showing that if the underlying multi-linear encodings satisfy the extractable
notion of semantic security, the overall construction will satisfy a “too strong” notion of obfuscation.

8

Let us mentioned that we do not view Theorem 3 as an indication of the impossibility of “plain”
semantical security for multilinear encodings as the notions of extractable and “plain” semantical security
are qualitatively very different. (Indeed, extractability assumptions have recently been shown to be
problematic is various different contexts [HT98, BCCT11, BCPR13, BP13, GGHW13].)

1.5 Outline of the Paper

We provide some preliminaries in Section 2. We define semantical security of multi-linear (aka graded)
encodings in Section 3. Our construction of an indistinguishability obfuscator is provided in Section 4
and its proof of security is found in Section 5. We finally present the impossibility result for extractable
semantical security in Section 6.

2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. Let Z denote the integers,
and Zp the integers modulo p. Given a string x, we let x[i], or equivalently xi, denote the i-th bit of
x. For a matrix M , we let M [i, j] denote the entry of M in the ith row and jth column. We use ek to
denote the vector that is 1 in position k, and 0 in all other positions. The length of ek is generally clear
from the context. We use Iw×w to denote the identity matrix with dimension w × w.

By a probabilistic algorithm we mean a Turing machine that receives an auxiliary random tape as
input. If M is a probabilistic algorithm, then for any input x, M(x) represents the distribution of
outputs of M(x) when the random tape is chosen uniformly. An oracle algorithm MO is a machine M
that gets oracle access to another machine O, that is, it can access O’s functionality as a black-box.

By x← S, we denote an element x is sampled from a distribution S. If F is a finite set, then x← F
means x is sampled uniformly from the set F . To denote the ordered sequence in which the experiments
happen we use semicolon, e.g. (x← S; (y, z)← A(x)). Using this notation we can describe probability
of events. For example, if p(·, ·) denotes a predicate, then Pr[x ← S; (y, z) ← A(x) : p(y, z)] is the
probability that the predicate p(y, z) is true in the ordered sequence of experiments (x ← S; (y, z) ←
A(x)). The notation {(x ← S; (y, z) ← A(x) : (y, z))} denotes the resulting probability distribution
{(y, z)} generated by the ordered sequence of experiments (x ← S; (y, z) ← A(x)). We define the
support of a distribution supp(S) to be {y : Pr[x← S : x = y] > 0}.

2.1 Obfuscation

We recall the definition of indistinguishability obfuscation due to [BGI+01].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is an indistinguishability
obfuscator for a class of circuits {Cn}n∈N if the following conditions are satisfied

• Correctness: There exists a negligible function ε such that for every n ∈ N, for all C ∈ Cn, for
all inputs x ∈ {0, 1}n, we have

Pr[C ′ ← iO(Cn) : C ′(x) = Cn(x)] = 1− ε(n).

• Security: For every pair of circuit ensembles {C0
n}n∈N and {C1

n}n∈N such that for all n ∈ N, for
every pair of circuits C0

n, C
1
n ∈ Cn such that C0

n(x) = C1
n(x) for all x ∈ {0, 1}n the following holds:

For every nuPPT adversary A there exists a negligible function ε such that for all n ∈ N,

|Pr[C ′ ← iO(C0
n) : A(C ′) = 1]− Pr[C ′ ← iO(C1

n) : A(C ′) = 1]| ≤ ε(n)

9

2.2 Branching programs for NC1

We recall the notion of a branching program.

Definition 2 (Matrix Branching Program). A branching program of width w and length m for n-bit
inputs is given by a sequence:

BP = {inp(i), Bi,0, Bi,1)}mi=1,

where each Bi,b is a permutation matrix in {0, 1}w×w and inp(i) ∈ [n] is the input bit position examined
in step i. Then the output of the branching program on input x ∈ {0, 1}n is as follows:

BP (x)
def
=

{
1, if (

∏m
i=1Bi,x[inp(i)]) · e1 = e1.

0, otherwise

The branching program is said to be oblivious if inp : [m] → [n] is a fixed function, independent of the
function being evaluated.

The above definition differs slightly from the definition of matrix branching programs generally used,
which have the slightly stronger requirement that

∏n
i=1Bi,x[inp(i)] = Iw×w when BP (x) is accepting,

and
∏n
i=1Bi,x[inp(i)] = Preject for some fixed permutation matrix Preject 6= Iw×w when BP (x) is rejecting.

More generally,

Definition 3. The branching program is said to have fixed accept and reject matrices Paccept and Preject

if, for all x ∈ {0, 1}n,
m∏
i=1

Bi,x[inp(i)] =

{
Paccept when BP (x) = 1

Preject when BP (x) = 0

We now have the following theorem due to Barrington:

Theorem 4. ([Bar86]) For any depth d and input length n, there exists a length m = 4d, a labeling
function inp : [m] → [n], an accepting permutation Paccept with Paccept · e1 = e1, and a rejecting
permutation Preject with Preject · e1 = ek where k 6= 1 such that, for every fan-in 2 boolean circuit C of
depth d and n input bits, there exists an oblivious matrix branching program BP = {inp(i), Bi,0, Bi,1}mi=1,
of width 5 and length m that computes the same function as the circuit C.

In particular, every circuit in NC1 has a polynomial length branching program of width 5. Further, two
circuits of the same depth d will have the same fixed accepting and rejecting permutations Paccept and
Preject, and a fixed labelling function inp : [m]→ [n].

3 Semantically Secure Graded Encoding Schemes

In this section we define what it means for a graded encoding scheme to be semantically secure. We
start by recalling the notion of graded encoding schemes due to Garg, Gentry and Halevi [GGH13a].

3.1 Graded Encoding Schemes

Graded (multi-linear) encoding schemes were originally introduced in the work of Garg, Gentry and
Halevi [GGH13a]. Just as [BR13, BGK+13], we here rely on “set-based” graded encoding; these were
originally called “generalized” graded encodings in [GGH13a]. Following [GGH+13b, BGK+13] and the
notion of “multi-linear jigsaw puzzles” from [GGH+13b], we additionally enable anyone with the secret
parameter to encode any elements (as opposed to just random elements as in [GGH13a]).

10

Definition 4 ((k,R)-Graded Encoding Scheme). A (k,R)-graded encoding scheme for k ∈ N and ring
R is a collection of sets {EαS : α ∈ R,S ⊆ [k]} with the following properties

• For every S ⊆ [k] the sets {EαS : a ∈ R} are disjoint.

• There are associative binary operations ⊕ and 	 such that for every α1, α2 ∈ R, S ⊆ [k], u1 ∈ Eα1
S

and u2 ∈ Eα2
S it holds that u1 ⊕ u2 ∈ Eα1+α2

S and u1 	 u2 ∈ Eα1−α2
S where ‘+′ and ‘−′ are the

addition and subtraction operations in R.

• There is an associative binary operation ⊗ such that for every α1, α2 ∈ R, S1, S2 ⊆ [k] such that
S1 ∩ S2 = ∅, u1 ∈ Eα1

S1
and u2 ∈ Eα2

S2
it holds that u1 ⊗ u2 ∈ Eα1·α2

S1∪S2
where ‘·’ is multiplication in

R.

Definition 5 (Graded Encoded Scheme). A graded encoding scheme E is associated with a tuple of
PPT algorithms, (InstGenE ,EncE ,AddE ,NegE ,MultE , isZero)E which behave as follows:

• Instance Generation: InstGenE takes as input the security parameter 1n and multi-linearity param-
eter 1k, and outputs secret parameters sp and public parameters pp which describe a (k,R)-graded
encoding scheme {EαS : α ∈ R,S ⊆ [k]}. We refer to EαS as the set of encodings of the pair (α, S).
In this work we consider graded encoding schemes where R is Zp and p is a prime exponential in
n.

• Encoding: EncE takes as input the secret parameters sp, an element α ∈ R and set S ⊆ [k], and
outputs a random encoding of the pair (α, S).

• Addition: AddE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 + α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Negation: NegE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈ Eα2

S2
, and

outputs an encoding of the pair (α1 − α2, S) if S1 = S2 = S and outputs ⊥ otherwise.

• Multiplication: MultE takes as input the the public parameters pp and encodings u1 ∈ Eα1
S1
, u2 ∈

Eα2
S2
, and outputs an encoding of the pair (α1 ·α2, S1∪S2) if S1∩S2 = ∅ and outputs ⊥ otherwise.

• Zero testing: isZeroE takes as input the public parameters pp and an encoding u ∈ ES(α), and
outputs 1 if and only if α = 0 and S is the universe set [k].

Whenever it is clear from the context, to simplify notation we drop the subscript E when we refer to the
above procedures (and simply call them InstGen,Enc, . . .).

Note that the above procedures allow algebraic operations on the encodings in a restricted way.
Given the public parameters and encodings made under the sets ~S, one can only perform algebraic
operations that are allowed by the structure of the sets in ~S. We call such operations ~S-respecting and
formalize this notion as follows:

Definition 6 (Set Respecting Arithmetic Circuits). For any ring R, k ∈ N and ~S ∈ (2[k])n, we say that
an arithmetic circuit C (i.e. gates perform only ring operations {+,−, ·}) of input size n is ~S-respecting
if it holds that

• We tag every input wire of C with the corresponding set in ~S. The ith input wire is tagged with
~S[i].

• For every + and − gate in C, if the tags of the two input wires are the same set S then the output
wire of the gate is tagged with S. Otherwise the output wire is tagged with ⊥.

11

• For every · gate in C, if the tags of the two input wires are sets S1 and S2 and S1 ∩ S2 = ∅ then
the output wire of the gate is tagged with S1 ∪ S2. Otherwise the output wire is tagged with ⊥.

• It holds that the output wire is tagged with the universe set [k].

The following lemma is a simple corollary of the efficient procedures described in Definition 5. It
states that given the public parameters and some encodings made under the sets ~S, one can efficiently
zero test the result of any ~S respecting arithmetic circuit on the elements underlying the encodings.

Lemma 5 (Correctness). Let E be a graded encoding scheme. There exists a PPT Eval such that for
any k, n,m ∈ N, Eval takes as input the public parameters pp ∈ InstGen(1n, 1k) that describe a (k,R)-
graded encoding scheme, a sequence of encodings of some ring elements under some sets {ui}mi=1 where
ui ∈ Eαi

Si
, αi is a ring element and Si ⊆ [k], and any ~S = {Si}mi=1-respecting arithmetic circuit C, and

outputs 1 if and only if C({αi}mi=1) = 0.

3.2 Semantical Security—A generalized DDH Assumption

We now turn to defining semantical security of graded encoding schemes. Towards explaining our
notion of semantical security, let us first consider a DDH-like assumption for multi-linear encodings:
Consider sampling n random elements ~z, and lets m0 =

∏
i∈[n] zi be the product of the elements in

~z, and m1 = z′ be just a random element. A DDH-like assumption would require that encodings of
m0 and m1 under the “target” set S = [n] are indistinguishable, given encodings of ~z under sets ~T ,
if S is not the disjoint union of the sets in ~T (that is, the set-restrictions prohibit “legally” multi-
plying all the elements of ~z). That is, {Enc(z1, T1),Enc(z2, T2), . . .Enc(zn, Tn),Enc(

∏
i∈[n] zi, S)} and

{Enc(z1, T1),Enc(z2, T2), . . .Enc(zn, Tn),Enc(z′, S)} are indistinguishable.
We here consider a generalized version of such a DDH-like assumption—similar in spirit to the

“uber-assumption” of [BBG05]—where we do not only care about products of all the elements in ~z but
also more complicated relations among the elements and sets they are encoded under. More precisely,
we consider elements ~z, m0, m1 that come from any (efficient) distribution D that makes it impossible
to tell apart m0 and m1 in the presence of ~z using “legal” algebraic operations (but otherwise being
computationally unbounded). For any such distribution we require that “semantical security” holds:
encodings of m0 and m1 should be indistinguishable (in the presence of encodings of ~z).

As mentioned before, we focus on a constant-message settings, where m0,m1, and S are replaced by
constant-length vectors ~m0, ~m1, ~S. (On the other hand, for our purposes, it will suffice to consider an
entropic notion of semantic security, where we only require security of the graded encoded scheme to
hold as long as D samples ~m0, ~m1 and ~z with some high-entropy.)

We start by formally defining an algebraic adversary. Such an adversary, when given a set of
encodings, is restricted to only the public efficient procedures of the graded encoding scheme. That is,
it can only homomorphically evaluate certain algebraic operations on the encoded elements (restricted
by the sets under which the encodings are made), and can check whether an element encoded under the
universe set is zero or not. We formalize this restriction by considering adversaries that interact with
the following oracle.

Definition 7 (OracleM). LetM be an oracle which operates as follows:

• M gets as initial input a ring R, k ∈ N and list L of m pairs {(αi, Si)}mi=1, α ∈ R and S ⊆ [k].

• Every oracle query to M is an arithmetic circuit C : Rm → R. When queried with C, M checks
whether C is a ~S-respecting arithmetic circuit where ~S = {Si}mi=1. If not,M outputs ⊥. Otherwise,
M computes C on {αi}mi=1 and outputs 1 if and only if the output of C is zero, and outputs 0
otherwise.

12

We next formalize what it means for a distribution over (~m0, ~m1, ~z) to be valid with respect to the
sets (~S, ~T). Intuitively, we say that a distribution is valid if no computationally unbounded algebraic
adversary (that is restricted to polynomially many queries) can distinguish the encodings of (~m0, ~z) and
(~m1, ~z), under the sets (~S, ~T). To make our assumption as weak as possible (and thus the notion of a
valid distribution as strong as possible), we require this property to hold point-wise.14 We define such
a distribution through the notion of a (~S, ~T)-respecting message sampler.

Definition 8 (Respecting Message Sampler). Let E be a graded encoding scheme, q(·), k(·) and µ(·)
be polynomials, c ∈ N be a constant and {(~Sn, ~Tn)}n∈N be an ensemble where ~Sn is a sequence of c sets
and ~Tn is a sequence of q(n) sets ⊆ [k]. We say that a nuPPT M is a (q, k, c, {(~Sn, ~Tn)}n∈N)-respecting
message sampler if

• M takes as input the public parameters of a graded encoding scheme pp ∈ InstGen(1n, 1k(n)) which
describes a ring R and outputs

– a pair of sequences of c ring elements, ~m0 and ~m1 and

– a sequence of q(n) ring elements ~z.

• For every (computationally unbounded) oracle machine A that makes at most polynomially many
oracle queries15 (called the algebraic adversary) there exists a negligible function ε such that for
every security parameter n ∈ N,

Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(pp) : AM(pp, ~p0)(1n) 6= AM(pp, ~p1)(1n)] ≤ ε(n)

where ~pb = {(mb[i], Si)}ci=1, {(z[i], Ti)}
q(n)
i=1 .

We now define what it means for a graded encoding scheme to be semantically secure. Roughly
speaking, we require that for any sets (~S, ~T), and any (~S, ~T)-respecting message sampler, encodings
of (~m0, ~z) and (~m1, ~z) under the sets (~S, ~T) are indistinguishable, when (~m0, ~m1, ~z) is sampled by the
message sampler.

Definition 9 (Semantic Security). We say a graded encoding scheme E is semantically secure if for
every every polynomials q(·) and k(·), constant c ∈ N, every ensemble {(~Sn, ~Tn)}n∈N where ~Sn ⊆ [k(n)]c

and ~Tn ⊆ [k(n)]q(n), every (q, k, c, {~Sn}n∈N)-respecting message sampler M and nuPPT adversary A,
there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[Output0(q, k, c, A,M, n, (~Sn, ~Tn)) = 1]− Pr[Output1(q, k, c, A,M, n, (~Sn, ~Tn)) = 1]| ≤ ε(n)

where Outputb(q, k, c, A,M, n, (~Sn, ~Tn)) is A’s output in the following game.

• Run (sp, pp)← InstGen(1n, 1k(n)).

• M takes as input the public parameters pp and outputs ~m0, ~m1 and ~z.
14It is easy to see that the DDH distribution mentioned above is valid in this respect. Any zero-test query is of the

form a · m + p(~z) where p(·) is of degree at most n − 1. If a = 0, the answer to the query is independent of whether
m = m0 or m = m1. On the other hand, if a 6= 0, then in both cases the query is a non-zero polynomial of degree at
most n evaluated at a random point; by the Schwartz-Zippel lemma, with very high probability (proportional to the field
size), both these polynomials will evaluate to a non-negative value. It finally follows by a union bound that as long as the
number of zero-test queries is polynomial (or even subexponential), with overwhelming probability, all zero-test queries
will be answered in the same way no matter whether m = m0 or m = m1.

15Our proofs work even if the algebraic adversary A makes subexponentially many oracle queries.

13

• Encode each element of ~mb and ~z with the corresponding set in ~Sn and ~Tn. That is, compute the
following encodings

~ub ← {Enc(sp, ~m0[i], ~Sn[i])}ci=1, {Enc(sp, ~z[i], ~Tn[i])}q(n)i=1

• A takes as input ~ub and outputs a bit b′ ∈ {0, 1}

In other words, semantical security means that if encodings can be distinguished by a nuPPT
attacker, then the element can be statistically distinguished using polynomially many algebraic queries.16

4 Construction of an Indistinguishability Obfuscator

In this section, we describe our construction of an indistinguishability obfuscator iO. We will prove its
security in Section 5, based on the security notions defined above.

As in previous works [GGH+13b, BR13, BGK+13], the strategy for our construction will be to con-
vert an NC1 circuit into an oblivious matrix branching program, apply Kilian’s randomization technique
to the matrices, and then encode these matrices using the graded encoding scheme. The encoding will
be using a so-called “straddling set system" (as in [BGK+13]) that will enforce that any arithmetic
circuit operating on these encodings can be decomposed into a sum of terms such that each term can be
expressed using only encodings that come from one branch of the branching program (more specifically,
from the path through the branching program corresponding to evaluating a particular input x to the
branching program).

The biggest change from previous work is that before randomizing and encoding the branching
program, we double its width by chaining a dummy branching program to it that computes the constant
1, and then add a branch at the very start that chooses whether to use the true program or the dummy,
based on a “switch".

At a high level, to show indistinguishability of obfuscations of C1 and C2, our strategy will be to
obfuscate the branching program for C1 together with the dummy, and then, matrix by matrix, replace
the dummy branching program with the branching program for C2. Once the entire dummy branching
program has been replaced by C2, we flip the “switch" so that the composite branching program now
computes the branching program for C2. We then replace the branching program for C1 with C2, matrix
by matrix, so that we have two copies of the branching program for C2. We now flip the “switch" again,
and finally restore the dummy branching program, so that we end up with one copy of C2 and one copy
of the dummy.

In this way, we transition from an obfuscation of C1 to an obfuscation of C2, while only changing a
small piece of the obfuscation in each step, namely a single level of the underlying branching program.
We will later show, in the following section, that each step of the transitions must be indistinguishable
based on our hardness assumption. In particular, we show that no algebraic adversary can distinguish
between two hybrids, and thus the two distributions should be computationally indistinguishable based
on our assumption.

4.1 Merging Branching Programs

We now describe a method Merge for combining two branching programs together to create a composite
branching program of double width, in a way that enables switching by changing only a small number
of matrices.

16As we show in Section 6, restricting to statistical indistinguishability (as opposed to computational indistinguishability)
by algebraic attackers is crucial.

14

Construction 1 (Merging branching programs). Let BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i),

B1
i,0, B

1
i,1}mi=1 be oblivious matrix branching programs, each of width w and length m for n input bits.

(We assume that the same labelling function inp : [m]→ [n] is used for each of BP 0 and BP 1.)
Define branching programs B̂P 0 = {inp′(i), B̂0

i,0, B̂
0
i,1}

m+2
i=1 and B̂P 1 = {inp′(i), B̂1

i,0, B̂
1
i,1}

m+2
i=1 , each of

width 2w and length m+ 2 on l input bits, where:

inp′(i)
def
=


1, when i = 1

inp(i− 1), when 2 ≤ i ≤ m+ 1

1, when i = m+ 2

and, for all levels except the first and the last, B̂P 0 and B̂P 1 agree, given by:

B̂0
i,b = B̂1

i,b
def
=

(
B0

(i−1),b 0

0 B1
(i−1),b

)
for all 2 ≤ i ≤ m+ 1 and b ∈ {0, 1}

and the first and last levels are given by:

B̂0
1,b = B̂0

m+2,b = I2w×2w for b ∈ {0, 1}

B̂1
1,b = B̂1

m+2,b =

(
0 Iw×w

Iw×w 0

)
for b ∈ {0, 1}

We define Merge so that Merge(BP 0, BP 1, 0) = B̂P 0 and Merge(BP 0, BP 1, 1) = B̂P 1.

We will show that B̂P 0 and B̂P 1 are matrix branching programs that compute the same functions
as BP 0 and BP 1 respectively, with the additional feature that B̂P 0 and B̂P 1 differ from each other in
only two levels, namely the first and the last. Further, since inp′ does not depend on the function being
computed, B̂P 0 and B̂P 1 are oblivious matrix branching programs.

Accordingly, with respect to Merge(BP 0, BP 1, b) we will often use the phrase active branching
program to refer to BP b.

Claim 6. For BP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 and BP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1 each of width w and

length m on n input bits, define B̂P 0 and B̂P 1 as above. Then, for each b ∈ {0, 1}, x ∈ {0, 1}n,
m+2∏
i=1

B̂b
i,x[inp′(i)] =

(∏m
i=1 B

b
i,x[inp(i)] 0

10
∏m

i=1 B
1−b
i,x[inp(i)]

)

Proof. We observe that B̂P 0 and B̂P 1 agree on each level except the first and last, that is,

B̂0
i,b = B̂1

i,b =

(
B0

(i−1),b 0

0 B1
(i−1),b

)
∀ i : 2 ≤ i ≤ m+ 1, b ∈ {0, 1}

Then we have, for any x ∈ {0, 1}n,
m+1∏
i=2

B̂0
i,x[inp′(i)] =

m+1∏
i=2

B̂1
i,x[inp′(i)] =

m+1∏
i=2

(
B0

(i−1),x[inp′(i)] 0

0 B1
(i−1),x[inp′(i)]

)

=
m∏
i=1

(
B0
i,x[inp(i)] 0

0 B1
i,x[inp(i)]

)

=

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)

15

Where the change of indices in the second step follows because inp′(i) = inp(i− 1) when 2 ≤ i ≤ m+ 1.
We now consider the two case for b ∈ {0, 1}.
Case 1: (b = 0)
In this case,

m+2∏
i=1

B̂0
i,x[inp′(i)] = I2w×2w ·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
· I2w×2w

=

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1B
1
i,x[inp(i)]

)
as required.
Case 2: (b = 1)
In this case,

m+2∏
i=1

B̂1
i,x[inp′(i)] =

(
0 Iw×w

Iw×w 0

)
·

(∏m
i=1 B

0
i,x[inp(i)] 0

0
∏m

i=1 B
1
i,x[inp(i)]

)
·
(

0 Iw×w
Iw×w 0

)

=

(
0

∏m
i=1 B

1
i,x[inp(i)]∏m

i=1 B
0
i,x[inp(i)] 0

)
·
(

0 Iw×w
Iw×w 0

)

=

(∏m
i=1 B

1
i,x[inp(i)] 0

0
∏m

i=1B
0
i,x[inp(i)]

)
as required.

Claim 7. For all BP 0 and BP 1 each of width w and length m on n input bits, for each b ∈ {0, 1}, for
all x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = BP b(x)

Proof. LetBP 0 = {inp(i), B0
i,0, B

0
i,1}mi=1 andBP 1 = {inp(i), B1

i,0, B
1
i,1}mi=1. Define B̂P 0 = Merge(BP 0, BP 1, 0)

and B̂P 1 = Merge(BP 0, BP 1, 1) as above. We observe that for any x ∈ {0, 1}n,

Merge(BP 0, BP 1, b)(x) = 1

⇐⇒ (

m+2∏
i=1

B̂b
i,x[inp′(i)]) · e1 = e1

⇐⇒

(∏m
i=1 B

b
i,x[inp(i)] 0

0
∏m

i=1B
1−b
i,x[inp(i)]

)
· e1 = e1 (from Claim 6)

⇐⇒ (
m∏
i=1

Bb
i,x[inp(i)]) · e1 = e1

⇐⇒ BP b(x) = 1

Thus Merge(BP 0, BP 1, b)(x) = BP b(x).

The following claim illustrates some useful properties of the Merge procedure that we will use later.
Firstly it notes that changing the bit Merge gets as input changes only the “switch” matrices in the first
and last level of the program Merge outputs. Secondly, changing one level of a program Merge gets as
input changes the output program in one level only. Finally, the first column of the output matrix of
the widened program output by Merge depends only on the first column of the output matrix of the
active program. The claim follows by observing the definition of Merge.

16

Claim 8. Let BP0 and BP1 be length m, width w branching programs, with input length n.

• Merge(BP0, BP1, 0) and Merge(BP0, BP1, 1) differ in only 4 matrices, the matrices corresponding
to the first and last level.

• Let BP ′1 be a length m branching program that differs from BP1 in only the ith level for some
i ∈ [m]. Then for both b ∈ {0, 1}, Merge(BP0, BP1, b) and Merge(BP0, BP

′
1, b) also differ only in

the ith level. A similar statement holds for branching programs BP ′0 that differ from BP0 in only
one level.

• For any b ∈ {0, 1}, let BP = Merge(BP0, BP1, b), and Pout
BP (·) and Pout

BPb(·) be the functions
computing the output matrices on a given input for BP and BPb respectively. Then for every
input x ∈ {0, 1}n,

col1(Pout
BP (x)) = extend(col1(Pout

BPb(x)))

where extend extends a length w vector by appending w zeroes to the end.

4.2 Randomizing Branching Programs

We now describe Kilian’s randomization technique [Kil88] for a branching program, adapted to our
setting, by defining a process Rand that randomizes the matrices of a branching program BP . We will
decompose the randomization into two parts, RandB and Randα, defined below, and define Rand as their
composition.

Definition 10 (RandB). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then the process RandB(BP, p) samples m
random invertible matrices R1, R2, . . . , Rm ∈ Zw×wp uniformly and independently, and computes

B̃i,b = R(i−1) ·Bi,b ·R−1i for every i ∈ [m], and b ∈ {0, 1}

where R0 is defined as Iw×w, and
t = Rm · e1

RandB then outputs
({B̃i,b}i∈[m],b∈{0,1}, t, p)

Definition 11 (Randα). Let ({B̃i,b}i∈[m],b∈{0,1}, t, p) be the output of RandB(BP, p) as defined above.
On this input, Randα({B̃i,b}i∈[m],b∈{0,1}, p) samples 2m non-zero scalars {αi,b ∈ Zp : i ∈ [m], b ∈ {0, 1}}
uniformly and independently, and outputs

({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Definition 12 (Rand). Let BP = {inp(i), Bi,0, Bi,1}mi=1 be a branching program of width w and length
m, with length-n inputs. Let p be a prime exponential in n. Then we define Rand(BP, p) to be:

Rand(BP, p) = (Randα(RandB(BP, p)))

= ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)

Where ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) are as computed in the executions of Randα and RandB.

17

Execution of a randomized branching program: To computeBP (x) from the output of Rand(BP, p),
given some input labelling function inp : [m]→ [n], and x ∈ {0, 1}n, we compute

Out(x) = (
m∏
i=1

αi,x[inp(i)] · B̃i,x[inp(i)]) · t

Where Out ∈ ZwP is a w× 1 vector. The intermediate multiplications cause each R−1i to cancel each Ri,
and R0 = Iw×w, so the above computation can also be expressed as:

Out(x) = (

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)]) · e1

When BP (x) = 1, we have that

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (
m∏
i=1

αi,x[inp(i)]) · e1

When BP (x) = 0, we have that

m∏
i=1

αi,x[inp(i)] ·Bi,x[inp(i)] · e1 = (
m∏
i=1

αi,x[inp(i)]) · ek

for k 6= 1. Hence, to compute BP (x), we compute Out(x) and output 0 if Out(x)[1] = 0, and 1 otherwise.

Simulating a randomized branching program: Previous works ([BGK+13, BR13]) followed [Kil88]
to show how to simulate the distribution of any single path corresponding to an input x using just BP (x).
However, the simulator required that branching programs have unique accept and reject matrices Paccept

and Preject.
We would also like a theorem, along the lines of [Kil88], that shows that any single path through

a randomized branching program BP corresponding to an input x can be simulated knowing just the
accept/reject behavior of BP on x (i.e. by knowing whether BP (x) = 1).

In our setting, however, branching programs only meet the relaxed requirement that the output
matrix Pout(x) computed by evaluating BP on input x satisfies Pout(x) · e1 = e1 ⇐⇒ BP (x) = 1.
There can thus be multiple accept and reject matrices, and the particular accept or reject matrix
output by BP can depend both on x and on the specific implementation of BP (and not simply its
accept/reject behavior). In contrast, in previous works, because Paccept and Preject were unique, knowing
just the accept/reject behavior of BP on x also determines Pout(x).

What we will show is that, for the particular randomization scheme chosen above, we can simulate
any single path through a randomized branching program BP corresponding to an input x without
knowing the exact accept/reject matrix Pout(x), but rather just knowing the first column pout(x) =
col1(Pout(x)).

This will be sufficient for our applications, because the class of branching programs we randomize
will have the property that there are fixed columns paccept and preject ∈ Zwp such that for all x ∈ {0, 1}n,
if BP (x) = 1 then col1(Pout(x)) = paccept, and if BP (x) = 0 then col1(Pout(x)) = preject. In the case of
such programs, col1(Pout(x)) is determined solely by BP (x), and not the particular implementation of
BP . Thus, for these programs, we can simulate given only BP (x).

Before we show this theorem, we define notation for a path through a branching program corre-
sponding to an input x.

18

Definition 13 (projx). Let inp : [m] → [n] be an input labelling function, and, for any x ∈ {0, 1}n,
define projx, relative to inp, such that for any branching program BP with labelling function inp, for any
prime p ∈ N, and for any ({B̃i,b}i∈[m],b∈{0,1}, t)← RandB(BP, p)

projx({B̃i,b}i∈[m],b∈{0,1}, t) = ({B̃i,x[inp(i)]}i∈[m], t),

that is, projx selects the elements from ({B̃i,b}i∈[m],b∈{0,1}, t) used when evaluating input x.

We now show a version of Kilian’s theorem, adapted to our construction.

Theorem 9. There exists an efficient simulator KSim such that the following holds. Let BP =
{inp(i), Bi,0, Bi,1}i∈[m] be a width-w branching program of length m on n bit inputs, and p a prime
exponential in n. Let x ∈ {0, 1}n be an input to BP , and let bi = x[inp(i)] for each i ∈ [m]. Let
Pout(x) =

∏m
i=1Bi,bi denote the matrix obtained by evaluating BP on x, and let pout(x) = col1(Pout(x))

denote the first column of this output. Let projx(RandB(BP, p)) be defined respecting the labelling func-
tion inp. Then KSim(1m, p, pout(x)) is identically distributed to projx(RandB(BP, p)).

Proof. We begin by defining KSim(1n, p, BP (x)) as follows:

• For each i, KSim selects B̃i,bi to be a uniformly random invertible matrix in Zw×wp .

• KSim selects t ∈ Zwp solving

(
∏
i∈[m]

B̃i,bi) · t = pout(x) (1)

where bi = x[inp(i)] for each i.

• KSim outputs {{B̃i,bi}i∈[m], t}

We want to show that the distribution output by KSim matches the real distribution of {{B̃i,bi}i∈[m], t}
in the output of RandB(BP, p). But from [Kil88], we have the following:

Claim 10. The distribution of {{B̃i,bi}i∈[m], Rm} can be exactly sampled given Pout(x), by sampling
{B̃i,bi}i∈[m], Rm to be uniformly random and independent invertible matrices in Zw×wp subject to

(
∏
i∈[m]

B̃i,bi) ·Rm = Pout(x) (2)

The above claim implies the following:

Claim 11. The distribution of {{B̃i,bi}i∈[m], Rm} can be sampled by independently choosing each B̃i,bi
uniform and invertible, and fixing Rm solving equation (2).

Proof. This follows because for every choice of invertible B̃i,bi , there exists Rm solving equation (2)
given by

Rm = (
∏
i∈[m]

B̃i,bi))
−1 · Pout(x) (3)

Further, every solution to equation (2) can be represented as invertible B̃i,bi , and an Rm solving
equation (3). Thus choosing a random solution to equation (2) corresponds to independently choosing
each B̃i,bi uniformly and invertible, and fixing Rm solving equation (3).

19

From the above argument, we have that the distribution of projx(Rand(BP, p)) is exactly the same
as the distribution produced by independently choosing each B̃i,bi uniform and invertible, fixing Rm
solving equation (3), setting t to be the first column of Rm, and outputting {{B̃i,bi}i∈[m], t}. But note
that each column coli(Rm), i ∈ [w] is the unique solution to

(
∏
i∈[m]

B̃i,bi) · coli(Rm) = coli(Pout(x))

Thus we have that each B̃i,bi is independent, uniform, and invertible, and, using i = 1, t is the unique
solution to

(
∏
i∈[m]

B̃i,bi) · t = pout(x)

and, in particular, that t is determined by only the first column of Pout(x). Thus, we see that the
distribution of projx(RandB(BP, p)) is exactly the same as that output by KSim.

4.3 Choosing a Set System

In this section we will describe how to choose a collection of sets under which to encode a randomized
branching program using the graded encoding scheme. Our selection of sets will closely follow [BGK+13],
in that we use straddling set systems. However, one difference is that while they use dual input branching
programs, we restrict our attention to single-input schemes.

We first define straddling set systems.

Definition 14 (Straddling Set Systems [BGK+13]). A straddling set system with n entries is a collec-
tion of sets Sn = {Si,b : i ∈ [n], b ∈ {0, 1}} over a universe U , such that:⋃

i∈[n]

Si,0 =
⋃
i∈[n]

Si,1 = U

and for every distinct non-empty sets C,D ⊆ Sn, we have that if:

1. (Disjoint Sets:) C contains only disjoint sets. D contains only disjoint sets.

2. (Collision:)
⋃
S∈C S =

⋃
S∈D S

Then it must be that ∃b ∈ {0, 1} such that:

C = {Sj,b}j∈[n] , D = {Sj,(1−b)}j∈[n]

Informally, the guarantee provided by a straddling set system is that only way to exactly cover U using
elements from Sn is to use either all sets {Si,0}i∈n or all sets {Si,1}i∈n. [BGK+13] give a construction for
straddling set systems, choosing U to be [2n− 1], each Si,0 to be one of {1}, {2, 3}, . . . , {2n− 2, 2n− 1},
and each Si,1 to be one of {1, 2}, {3, 4}, . . . , {2n − 1}. They further show that this construction is a
straddling set system.

Theorem 12 (From Construction 1 in [BGK+13]). For every n ∈ N , there exists a straddling set
system Sn with n entries, over a universe U of 2n− 1 elements.

We now define the process SetSystem which takes as input the length m of a branching program,
the number of input bits n, and the input labelling function inp : [m] → [n] for a branching program.
SetSystem will output the collection of straddling set systems that we will use to encode any branching

20

program of length m on n input bits, with labelling function inp.

Execution of SetSystem(m,n, inp):
We let nj denote the number of levels that inspect the jth input bit in inp. That is,

nj = |{i ∈ [m] : inp(i) = j}|

For every j ∈ [n], SetSystem chooses Sj to be a straddling set system with nj entries over a set Uj , such
that the sets U1, . . . , Un are disjoint. Let U =

⋃
j∈[n] Uj . SetSystem then chooses St be a set disjoint

from U . We associate the set system Sj with the j’th input bit of the branching program corresponding
to inp. SetSystem then re-indexes the elements of Sj to match the steps of the branching program as
described by inp, so that:

Sj = {Si,b : inp(i) = j, b ∈ {0, 1}}

By this indexing, we also have that Si,b ∈ Sinp(i) for every i ∈ [m], for every b ∈ {0, 1}.
Let k = |U ∪ St|, and WLOG, assume that the U js and St are disjoint subsets of [k] (otherwise

SetSystem relabels the elements to satisfy this property).
SetSystem then outputs

k, {Si,b}i∈[m],b∈{0,1}, St

4.4 Obfuscating Branching Programs

In this section, we will describe a process Obf that obfuscates a given branching program BP . This
process will use Rand and SetSystem as subroutines. The output of Obf will be a randomized width-10
oblivious matrix branching program, encoded under the graded encoding scheme.

Description of Obf(BP) :

Input. Obf takes as input an oblivious permutation branching program BP = {inp(i), Bi,0, Bi,1}mi=1 of
width w and length m on n input bits.

Choosing sets. Obf runs SetSystem(m,n, inp) and receives k, {Si,b}i∈[m+2],b∈{0,1}, St.

Initializing the GES. Obf runs InstGen(1n, 1k), and receives secret parameters sp and public param-
eters pp which describe a (k,R)-graded encoding scheme. We assume the ring R is equal to Zp
for some p exponential in n.

Randomizing BP. Obf executes Rand(BP, p), and obtains its output, {{inp(i), αi,0·B̃i,0, αi,1·B̃i,1}i∈[m], t}

Output. Obf outputs:

pp, {inp(i), Enc(sp, αi,0 · B̃i,0, Si,0), Enc(sp, αi,0 · B̃i,0, Si,1)}i∈[m], Enc(sp, t, St)

We also define a generic version of Obf, which we refer to as GObf. Its output will be used to
initialize an oracleM for the idealized version of the graded encoded scheme. GObf(BP) acts exactly
as Obf(BP), except in the Output step, GObf outputs

pp, {inp(i), (αi,0 · B̃i,0, Si,0), (αi,1 · B̃i,1, Si,1)}i∈[m], (t, St)

21

4.5 Putting it all together: Obfuscating NC1 circuits

We now define our indistinguishability obfuscator iO for NC1, as follows:

Description of iO(C) :

1. iO takes as input C ∈ NC1, a fan-in 2 circuit with depth d on n input bits. iO uses Barring-
ton’s Theorem to convert C into an oblivious width 5 permutation branching program BP =
{inp(i), Bi,0, Bi,1}mi=1 of length m = 4d on n input bits.

2. iO generates a dummy width-5 branching program I = {inp(i), I5×5, I5×5}mi=1 of length m, where
each permutation matrix at each level is the identity matrix. iO then computes B̂P = Merge(BP, I, 0).

3. iO outputs Obf(B̂P), which yields the public parameter pp for the graded encoding scheme, to-
gether with the encoded branching program {inp(i),Enc(αi,0·B̃i,0, Si,0),Enc(αi,1·B̃i,1, Si,1)}i∈[m+2],Enc(t, St).

Correctness of iO: In order to compute the output of C(x) given its obfuscation iO(C), we perform
matrix multiplication on the encoded matrices using the functions Add and Mult of the graded encoding
scheme. That is, letting bi = x[inp(i)] for each i ∈ [m+2], using the Eval function guaranteed by Lemma
5, we compute the encoding of

Out(x) = (
m+2∏
i=1

αi,bi · B̃i,bi) · t

and perform isZero on the encoding of Out(x)[1] (Note we can only apply Eval and Lemma 5 if the
above computation is ~S-respecting, but we will show that it is momentarily). From the correctness of
the underlying randomized branching program, we have that C(x) = 0 ⇐⇒ Out(x)[1] = 0. Thus, iO
is correct as long as the above computation is a ~S-respecting circuit.

Note that when multiplying two matrices M1 and M2 encoded under S1 and S2 respectively, the
multiplication is ~S-respecting as long as S1 ∩ S2 = ∅. Thus it suffices to show that the sets encoding
the matrices being multiplied, namely:

S1,b1 , S2,b2 , . . . , Sm+2,bm+2 , St

are all disjoint, and that their union is [k].
Disjointness follows by observing that each of U1, U2, . . . , Un, Bt is disjoint, and further that for each

j ∈ [n], for any i, i′ such that inp(i) = inp(i′) = j, we have that bi = bi′ = x[inp(i)] and Si,bi and Si′,bi′
are both elements of the straddling set system Sinp(i), so Si,bi ∩ Si′,bi′ = ∅.

To show that the union of the sets is [k], we note that

(
m+2⋃
i=1

Si,bi) ∪ St = (
n⋃
j=1

⋃
i:inp(i)=j

Si,x[j]) ∪ St = (
n⋃
j=1

Uj) ∪ St = [k]

by construction. Thus we have that iO is correct.

5 Proof of Indistinguishability Obfuscation

Theorem 13. Assume the existence of semantically-secure multi-linear encoding schemes. Then there
exists indistinguishability obfuscators the the class of NC1 circuits.

22

Proof. We show that the obfuscator defined in Section 4 is an indistinguishability obfuscator for NC1

circuits. Consider two NC1 circuit ensembles {C0
n}n∈N and {C1

n}n∈N such that for all n ∈ N and
x ∈ {0, 1}n, C0

n(x) = C1
n(x). Assume for contradiction there exists a nuPPT distinguisher D and

polynomial p such that for infinitely many n, D distinguishes iO(C0
n) and iO(C1

n) with advantage
1/p(n). For any n ∈ N let BP0 and BP1 be the branching programs of length m = poly(n) obtained by
applying Theorem 4 to the circuits C0

n and C1
n respectively.

We organize the proof in three parts. In the first part we show that if D distinguishes between
obfuscations of C0

n and C1
n then there exists widened branching programs BP and BP ′ that differ in

only few matrices and evaluate the same function such that D distinguishes between Obf(BP) and
Obf(BP ′). Furthermore, the first column of the output matrix is the same for BP and BP ′, and
depends only on the output of the program BP (x) = BP ′(x). More concretely, there exist vectors v0
and v1 such that for all inputs x the first column of the output matrix for both BP and BP ′ is always
vBP (x).

In the second part, we apply the semantic security of the graded encoding scheme used to argue that
if D distinguishes Obf(BP) and Obf(BP ′) then there exists an algebraic adversary that does the same.
In particular, this adversary can distinguish between the oracles M(GObf(BP)) and M(GObf(BP ′)).
Finally, in the third part we show that these oracles can be simulated given oracle access to BP (resp.
BP ′) and input v0 and v1. This, together with the fact that BP and BP ′ agree on all inputs, will imply
a contradiction and hence prove the theorem.

5.1 Setting up BP and BP ′ via a Hybrid Argument

Let Hybi be a procedure that takes an input two length m branching programs P0 and P1 (with the
same labeling function) and outputs a “hybrid” length m branching program whose first i levels are
identical to the first i levels of P0 and all the other levels are identical to those of P1. Formally, let
P0 = {inp(j), Bj,0, Bj,1}j∈[m] and P1 = {inp(j), B′j,0, B

′
j,1}j∈[m].

Hybi(P0, P1) = {inp(j), Bj,0, Bj,1}ij=1, {inp(j), B′j,0, B
′
j,1}mj=i+1

For every n ∈ N we define hybrid distributions in the following way.

• We start with H0 which is the obfuscation of the circuit C0
n.

H0 = iO(C0
n) = Obf(Merge(BP0, I, 0))

• For i = 1, 2 . . .m, let
Hi = Obf(Merge(BP0,Hybi(BP1, I), 0))

We change, one level at a time, the second branching program Merge takes as input from I to
BP1.

• We have that Hm = Obf(Merge(BP0, BP1, 0)). We change the “switch” input to Merge so that
the second branching program BP1 is active.

Hm+1 = Obf(Merge(BP0, BP1, 1))

• For i = 1, 2 . . .m, let

Hm+i+1 = Obf(Merge(Hybi(BP1, BP0), BP1, 1))

We change the first program Merge takes as input from BP0 to BP1, one level at a time as before.

23

• We have that H2m+1 = Obf(Merge(BP1, BP1, 1)). We switch back so that the first program is
active (which in this case is the same as the second program BP1)

H2m+2 = Obf(Merge(BP1, BP1, 0))

• For i = 1, 2 . . .m, let
H2m+i+2 = Obf(Merge(BP1,Hybi(I,BP1), 0))

We change the second program Merge takes as input from BP1 to I, one level at a time as before.
Finally we get

H3m+2 = iO(C1
n) = Obf(Merge(BP1, I, 0))

which is the obfuscation of the circuit C1
n.

Recall that by assumption D distinguishes between {iO(C0
n)}n∈N and {iO(C1

n)}n∈N. That is, there
is a polynomial p such that for infinitely many n

|Pr[D(H0) = 1]− Pr[D(H3m+2)]| > 1/p(n)

By the above hybrid argument, D must distinguish between a pair of consecutive hybrids. That is,
there exists some i ∈ {0, 1, . . . 3m+ 1} such that

|Pr[D(Hi) = 1]− Pr[D(Hi+1)]| > 1/4mp(n)

We now show that Hi and Hi+1 can be expressed as the Obf(BP) and Obf(BP ′) respectively where
BP and BP ′ are (widened) branching programs that differ in only two levels and agree on all inputs.
Furthermore, both BP and BP ′ have the property that for all inputs x the first column of the output
matrix col1(Pout(x)) is the same for BP and BP ′, and depends only on the output of these programs
on x. More formally,

Claim 14. There exist branching programs BP and BP ′ of length m′ = m+ 2 and width 10 such that

• Hi = Obf(BP) and Hi+1 = Obf(BP ′).

• BP and BP ′ differ in at most 2 levels.

• For all x ∈ {0, 1}n, BP (x) = BP ′(x).

• Let Pout
BP (·) and Pout

BP ′(·) be the functions computing the output matrices for BP and BP ′ re-
spectively. There exist length 10 vectors v0 and v1 such that for every x ∈ {0, 1}n, col1(Pout

BP (x)) =
col1(Pout

BP ′(x)) = vBP (x)

Proof. Let v1 = extend(col1(Paccept)) and v0 = extend(col1(Preject)) where Paccept and Preject are the
accepting and rejecting matrices from Theorem 4 for branching programs of input lengths n, and extend
extends a length w vector by appending w zeroes. We consider three cases: when i is equal to m, 2m+1
and otherwise.

Case 1: i = m: By definition ofHi andHi+1, the branching programsBP andBP ′ areMerge(BP0, BP1, 0)
and Merge(BP0, BP1, 1) respectively. By Claim 8, BP and BP ′ differ in the “switch” matrices, which
make up the first and last level. Furthermore, BP and BP ′ compute BP0 and BP1 respectively which are
equivalent programs by assumption. It remains to show the fourth condition. By Claim 8, the first col-
umn of the output matrix for a widened branching program only depends on the first column of the out-
put matrix of the active program. Hence, for every input x, col1(Pout

BP (x)) = extend(col1(Pout
BP0(x))).

24

By Theorem 4, Pout
BP0(x) is either Paccept or Preject depending on the output BP0(x). Therefore, for

all inputs x such that BP (x) = 0,

col1(Pout
BP (x)) = extend(col1(Preject)) = v0

Similarly, for all inputs x such that BP (x) = 1,

col1(Pout
BP (x)) = extend(col1(Paccept)) = v1

The same argument holds for BP ′ too, in which case BP1 is active and has the same accepting and
rejecting permutations Paccept and Preject by Theorem 4. Therefore, for all inputs x,

col1(Pout
BP ′(x)) = vBP1(x)

Since BP0(x) = BP1(x) = BP (x) for all x, the claim follows.

Case 2: i = 2m+1: By definition ofHi andHi+1, the branching programs BP and BP ′ areMerge(BP1,
BP1, 0) and Merge(BP1, BP1, 1) respectively. As before, these programs differ in the first and level only.
Furthermore, both BP and BP ′ compute the same function, as the active program is the same (BP1).
Also, directly from Claim 8 and Theorem 4 we have that for all inputs x ∈ {0, 1}n,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP1(x))) = vBP1(x) = vBP (x)

Case 3: i 6= m and i 6= 2m+ 1: First, consider the subcase when i < m or i > 2m+ 1. The programs
BP and BP ′ are of the form Merge(BP0, Pi) and Merge(BP0, Pi+1) respectively where Pi and Pi+1 are
branching programs that differ only in the i + 1th level. By Claim 8, BP and BP ′ differ only in the
i + 1th level too. Furthermore, in both BP and BP ′, the active program is BP0. Hence BP and BP ′

compute the same function and similarly as the previous case, we have that for all inputs x ∈ {0, 1}n,

col1(Pout
BP (x)) = col1(Pout

BP ′(x)) = extend(col1(Pout
BP0(x))) = vBP0(x) = vBP (x)

The case when m < i < 2m+ 1 follows similarly. This concludes the proof of the claim.

This concludes the first part of the proof. At this point we have that there is a polynomial p such
that for infinitely many n there exist branching programs BP and BP ′ with the properties described
in Claim 14 such that

|Pr[D(Obf(BP)) = 1]− Pr[D(Obf(BP ′))]| > 1/4mp(n)

In the next part we show that the distinguisher D can be used to break the semantic security game of
the graded encoding scheme used by Obf.

5.2 Applying Semantic Security

Fix n ∈ N, and let BP = {inp(i), Bi,0, Bi,1}i∈[m′] and BP ′ = {inp(i), B′i,0, B
′
i,1}i∈[m′]. Let l1, l2 ∈ [m] be

the levels in which BP and BP ′ differ. All other matrices of BP and BP ′ are the same. That is, for
every i /∈ {l1, l2}, b ∈ {0, 1} we have that Bi,b = B′i,b.

Define nuPPT M that gets BP and BP ′ as non-uniform advice and on input the public parameters
pp that describe a (Zp, k)-graded encoding scheme samples m′ random invertible 10 × 10 matrices
over Zp, {Ri}i∈[m′] and 2m′ random scalars from Zp, {αi,b}i∈[m′],b∈{0,1}. M then uses these matrices
and scalars to randomize BP and BP ′ as described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m′],b∈{0,1},
{αi,b · B̃′i,b}i∈[m′],b∈{0,1} and t. M outputs

~m0 = ({αl1,b · B̃l1,b}b∈{0,1}, {αl2,b · B̃l2,b}b∈{0,1})

25

~m1 = ({αl1,b · B̃′l1,b}b∈{0,1}, {αl2,b · B̃′l2,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m′]/{l1,l2},b∈{0,1}, t)

We observe that D(Obf(BP)) (resp. D(Obf(BP ′))) is simply the output of D when playing the
semantic security game with the message sampler M and parameterized by the bit b = 0 (resp. b = 1).
Formally, there exist polynomials q, k constant c and set ensembles {(~Sn, ~Tn)}n∈N such that for all n ∈ N

D(Obf(BP)) ≡ Output0(q, k, c,D,M, n, (~Sn, ~Tn))

and
D(Obf(BP ′)) ≡ Output1(q, k, c,D,M, n, (~Sn, ~Tn))

where ~Sn, ~Tn contain sets from SetSystem(m′, n, inp) and Outputb is as defined in Definition 9.
To see this, observe that ~m0 and ~m1 consist of a constant number of ring elements while ~z contains

polynomially many ring elements. Note that the distribution of (~m0, ~z) is identical to Rand(BP, p) and
the distribution of (~m1, ~z) is identical to Rand(BP ′, p). When these elements are encoded under sets in
SetSystem(m′, n, inp)17 then we obtain the distributions Obf(BP) and Obf(BP ′) respectively.

Recall that for infinitely many n,

|Pr[D(Obf(BP)) = 1]− Pr[D(Obf(BP ′))]| > 1/4mp(n)

Since the graded encoding scheme is semantically secure, it must be thatM is not a (q, k, c, {(~Sn, ~Tn)}n∈N)-
respecting message sampler. Therefore, there exists a polynomial p′ and algebraic adversary A such
that for infinitely many n ∈ N,

PrA,GObf [A
M(GObf(BP))(1n) 6= AM(GObf(BP ′))(1n)] > 1/p′(n)

In the remainder of the proof we show that if BP and BP ′ agree on all inputs then such an algebraic
adversary A cannot exist. Similar statements were shown in [BGK+13] and [BR13]. In particular, GObf
is a simplified version of the obfuscator of [BGK+13], which [BGK+13] shows is VBB secure against
algebraic adversaries. We will follow the structure of the proof in [BGK+13], but cannot use it in a
black-box way due to the differences in the construction and the fact that their proof only works for
branching programs that have unique accepting and rejecting output matrices. The branching programs
we consider may not have this property.

5.3 Simulating an Algebraic Adversary

We show the following claim.

Claim 15. There exists Turing machine Sim such that for every nuPPT A there exists a negligible
function ε such that the following holds. For every n ∈ N, every length m = poly(n) and width 10
branching program BP with labeling function inp : [m] → [n] and for which there exist v0, v1 ∈ {0, 1}10
such that on every input x ∈ {0, 1}n, col1(Pout(x)) = vBP (x), it holds that

PrA,GObf,Sim[(AM(GObf(BP))(1n) 6= SimBP (1n, 1m, A, inp, v0, v1))] ≤ ε(n)

Sim’s strategy will be to run A and simulate the oracleM(GObf(BP)) for A. Recall that GObf(BP)
contains the public parameters of the encoding scheme pp and a list of the ring elements in Rand(BP)
paired with the corresponding set in ~S = SetSystem(n,m, inp). M(GObf(BP)) when queried with an

17Every element is encoded with the corresponding set in SetSystem(m′, n, inp). For example, elements from αi,bB̃i,b

are encoded under the set Si,b in SetSystem(m′, n, inp)

26

arithmetic circuit C, first checks if C is ~S-respecting and then outputs the result of C on the ring
elements in Rand(BP).

Sim only has oracle access to BP and can not runM directly on GObf(BP). However, we show in
the following lemma that Sim can simulate the output of M on a single query. In particular, except
with negligible probability (over GObf(BP) and the simulation) the simulated query response will be
identical to the actual query response. Since A makes only polynomially many queries, by the Union
Bound, it follows that except with negligible probability Sim succeeds in correctly simulating all queries.
Therefore, it suffices to show the following lemma.

Lemma 16. There exists a Turing machine CSim such that for every m,n,w ∈ N, v0, v1 ∈ {0, 1}w,
labeling function inp : [m] → [n], prime number p, and ~S-respecting arithmetic circuit C where ~S =
SetSystem(m,n, inp), the following holds. For every branching program BP of length m, width w and
labeling function inp for which on every input x, col1(Pout(x)) = vBP (x) it holds that

Pr[isZero(C(Rand(BP, p))) 6= CSimBP (1m, p, C, v0, v1)] ≤ 32wm/p

The proof of the lemma follows the structure of the VBB simulation in [BGK+13], appropriately
adapted to deal with the fact that our branching programs do not have a unique output by relying on
Theorem 9.

Proof. Roughly speaking the lemma follows from the the property that ~S-respecting arithmetic circuits,
due to the straddling set systems in ~S, can only evaluate expressions that are “consistent” with some
inputs. In particular, following [BGK+13], the polynomial C evaluates can be expressed as the sum of
single-input terms where each single-input term is a function of those elements of that are consistent
with some input to the branching program. Next, we rely on Theorem 9 to show that the sum of these
single-input terms will depend only on the value of the branching program on these inputs.

The following proposition states that the function a ~S-respecting arithmetic circuit computes can
be expressed as the sum of several single-input terms. This decomposition is very similar to the one
shown in [BGK+13].18

Proposition 1. Fixm,n,w ∈ N and inp : [m]→ [n]. Let ~S = SetSystem(m,n, inp) = ({Si,b}i∈[m],b∈{0,1},

St), and let C be any ~S-respecting arithmetic circuit. There exists a set X ⊆ {0, 1}n of inputs such that

(i)
C ≡

∑
x∈X

Cx

where each Cx is a ~S-respecting arithmetic circuit, whose input wires are labelled only with sets
respecting a single input x ∈ {0, 1}n, that is, only with sets ∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

(ii) For each Cx above, for every branching program BP of width w and length m on n input bits, with
input labelling function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p)

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where px is some polynomial, and αx = (
∏
i∈[m] αi,x[inp(i)]). Furthermore, when px is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry
from t.

18The key difference is that [BGK+13] proves such a decomposition for “dual-input” branching program. Another minor
difference is that since our scheme is slightly different, the terms of the decomposition are slightly different as well.

27

The proof of Proposition 1 closely follows [BGK+13]; for completeness we provide a complete proof
in Appendix B.

Now we are ready to describe the simulator CSim. CSim gets as input 1m, prime p, a ~S-respecting
circuit C, vectors v0, v1 and has oracle access to a length m branching program BP . Let X be the set
of inputs and {px}x∈X be the single-input polynomials corresponding to the decomposition of C. For
every x ∈ X, CSim queries BP on x, samples dx ← KSim(1m, p, vBP (x)) and checks whether px(dx) = 0.
CSim outputs 1 if and only if for every input x ∈ X, px(dx) = 0.

Now we prove correctness of our simulation. First, we prove some claims that will be useful. In each
of these claims, let projx be defined with respect to the labeling function inp of the branching program
BP . The following claim states that if C(Rand(BP, p)) is always zero, then every single-input term is
always zero.

Claim 17. If Pr[C(Rand(BP, p) = 0] = 1 then for every input x ∈ X,

Pr[px(projx(RandB(BP, p))) = 0] = 1

Proof. Consider a fixed d = ({B̃i,b}i∈[m],b∈{0,1}, t) in the support of RandB(BP, p) and let Cd({αi,b}i∈[m],b∈{0,1}) =

C({αi,b · B̃i,b}i∈[m],b∈{0,1}, t). By Proposition 1, we know that

Cd({αi,b}) =
∑
x∈X

(
∏
i∈[m]

αi,x[inp(i)])px(projx(d))

and Cd is a degree m+ 2 polynomial. By assumption, C(Rand(BP, p)) is always zero (over the support
of Rand(BP, p)); hence, Cd({αi,b}) = 0 for all non-zero {αi,b}. By the Schwartz-Zippel lemma, this can
happen only if Cd is the zero polynomial. By the structure of Cd, this implies that for every x ∈ X,
px(projx(d)) = 0. This argument works for every fixed value of d, hence we have that for every x ∈ X,
Pr[px(projx(RandB(BP, p))) = 0] = 1.

The next claim states that if C(Rand(BP, p)) is not always zero, then it is zero with small probability.
Furthermore, there exists a single-input term that is zero with small probability.

Claim 18. For any ~S-respecting circuit C, if Pr[C(Rand(BP, p)) = 0] < 1 then the following holds.

1. Pr[C(Rand(BP, p)) = 0] ≤ 16wm/p

2. There exists x ∈ X such that Pr[px(projx(RandB(BP, p))) = 0] ≤ 16wm/p, where X is obtained
from the decomposition of C by Proposition 1.

Proof. We start by showing part 1.

Part 1: If Rand(BP, p) = Randα(RandB(BP, p)) can be expressed as a low-degree (≤ 2w) polynomial
on uniformly random values in Zp—namely, the α’s and the randomization matrices Ri’s—then by the
Schwartz-Zippel lemma the first part of the claim directly follows. However, there are two barriers to
applying this argument:

• RandB does not sample uniformly random matrices {Ri}i∈[m]; rather, it chooses uniformly random
invertible matrices Ri. Similarly, Randα does not sample uniformly random {αi,b}i∈[m],b∈{0,1};
rather, it chooses uniformly random non-zero αi,b.

• RandB also needs to compute inverses R−1i to Ri for every i ∈ [m] (which may no longer be
expressed as low degree polynomials in the matrices {Ri}i∈[m]).

28

To handle the second issue, consider the distribution RandBadj(BP, p) that is defined exactly as RandB(BP, p)

except that for every i ∈ [m] it uses adj(Ri) = R−1i det(Ri) instead of R−1i . Note that every entry of the
adjoint of a w×w matrix M is some cofactor of M (obtained by the determinant of the w− 1×w− 1
matrix obtained by deleting some row and column of A). Hence every entry of adj(Ri) can be ex-
pressed as a degree w polynomial in Ri. Let Randadj(BP, p) = Randα(RandBadj(BP, p)). It follows that
Randadj(BP, p) is computed by degree (at most) 2w polynomial in the matrices {Ri}i∈[m] and scalars
{αi,b}i∈[m],b∈{0,1}.

Furthermore, we show that Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]. Recall that by
Proposition 1,

C ≡
∑
x∈X

Cx

and for each Cx above and every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p) ,

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and px is a polynomial such that, when viewed as a sum of monomials,

each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry from t. Recall that for
every i ∈ [m],

B̃i,x[inp(i)] = Ri−1Bi,x[inp(i)]R
−1
i

For every i ∈ [m], replacing R−1i with adj(Ri) has the effect of multiplying each monomial in px with
the scalar det(Ri). Hence

Cx(Randadj(BP, p)) = (
∏
i∈[m]

det(Ri)) · Cx(Rand(BP, p))

Since C is the sum of such Cx terms, it holds that C(Randadj(BP, p)) = (
∏
i∈[m] det(Ri))C(Rand(BP, p)).

For every i ∈ [m], by invertibility, det(Ri) 6= 0 and hence

Pr[C(Randadj(BP, p)) = 0] = Pr[C(Rand(BP, p)) = 0]

So far, we have that Randadj(BP, p) is computed by a degree 2w polynomial in the matrices {Ri}i∈[m]

and scalars {αi,b}i∈[m],b∈{0,1}. However the first issue remains: each Ri is uniformly random invertible
and each αi,b is uniformly random non-zero, whereas we need them to be uniformly random. Con-
sider the distribution Randadj,U (BP, p) that is obtained by the computing the same polynomial on
uniformly random matrices {Ri}i∈[m] and scalars {αi,b}i∈[m],b∈{0,1} over Zp. In Claim 22, we show
that the statistical distance between Randadj(BP, p) and Randadj,U (BP, p) is at most 8wm/p. Further-
more, the support of Randadj,U (BP, p) contains the support of Randadj(BP, p). This implies that if
Pr[C(Randadj(BP, p)) = 0] < 1 then Pr[C(Randadj,U (BP, p)) = 0] < 1.

We now turn to proving the statement of the claim. Using facts shown above, we have that

Pr[C(Rand(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj(BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p)) = 0] < 1

By Proposition 1, C evaluates a m+1 degree polynomial, and Randadj,U (BP, p) is computed by a degree
2w polynomial in uniformly random values in Zp. By the Schwartz-Zippel lemma,

Pr[C(Randadj,U (BP, p)) = 0] < 1 =⇒ Pr[C(Randadj,U (BP, p) = 0] ≤ 2w(m+ 1)/p ≤ 8wm/p

We have that the statistical distance between Randadj,U (BP, p) and Randadj(BP, p) is at most 8wm/p.
Therefore, Pr[C(Rand(BP, p)) = 0] = Pr[C(Randadj(BP, p)) = 0] ≤ 16wm/p thus proving the first
part of the claim. We proceed to show part 2.

29

Part 2: By Proposition 1, for every x ∈ X, there exists a ~S-respecting arithmetic circuit Cx such that
for every ({αi,b · B̃i,b}i∈[m],b∈{0,1}, t)← Rand(BP, p),

Cx({αi,b · B̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where αx = (
∏
i∈[m] αi,x[inp(i)]) and C =

∑
x∈X Cx. In particular, px({B̃i,x[inp(i)]}i∈[m], t) = 0 iff Cx({αi,b ·

B̃i,b}i∈[m],b∈{0,1}, t) = 0 (since αi,b is non-zero).
Thus, we have that

Pr[C(Rand(BP, p))) = 0] = Pr[Cx(Randα(RandB(BP, p))) = 0] = Pr[px(projx(RandB(BP, p))) = 0]

There must exist an input x ∈ X such that Pr[Cx(Rand(BP, p))) = 0] < 1 or else Pr[C(Rand(BP, p))) =
0] = 1. By the first part of the claim, it follows that

Pr[C(Rand(BP, p))) = 0] ≤ 16wm/p,

which concludes the proof.

Now we analyze the correctness of the simulator CSim. We consider the following two cases: when
C(Rand(BP, p)) is always zero, and otherwise.

Case 1: Pr[C(Rand(BP, p)) = 0] = 1: In this case we will show that the simulation always succeeds.
If Pr[C(Rand(BP, p)) = 0] = 1 then by Claim 17, for every x ∈ X, Pr[px(projx(RandB(BP, p))) = 0] =
1. Recall that KSim(1m, p, vBP (x)) simulates projx(RandB(BP, p)) perfectly. Therefore, CSim always
outputs 1 and hence succeeds.

Case 2: Pr[C(Rand(BP, p)) = 0] < 1: In this case, by the first part of Claim 18 we have that

Pr[isZero(C(Rand(BP, p))) = 1] ≤ 16wm/p

By the perfect simulation of KSim, we have that

Pr[CSimBP = 1] = Pr[∀x (dx ← projx(RandB(BP, p)) : px(dx) = 0)]

By second part of Claim 18 there exists input xC such that Pr[pxC (projxC (RandB(BP, p))) = 0] ≤
16wm/p. Therefore,

Pr[CSimBP = 1] ≤ Pr[pxC (projxC (RandB(BP, p))) = 0] ≤ 16wm/p

Therefore, by a union bound we have that

Pr[isZero(C(D)) = CSimBP = 0] > 1− 32wm/p

This concludes the proof of the lemma.

Remark 1. In the above proof, we can rely on a weaker entropic notion of semantic security, where
security holds only for message samplers that sample ~m0, ~m1 and ~z with high entropy. In particular, for
our proof to go through it suffices to restrict to message samplers that ensure that the the entropy of
~m0 and ~m1, conditioned on ~z is “very high”. This follows from the observation that the message sampler
considered in the above proof has this property: Recall thatM outputs ~m0 = {(αi,0·B̃i,0, αi,1·B̃i,1)}i∈l1,l2
for two levels l1, l2, where ({αi,b · B̃i,b}i∈[m′],b∈{0,1}, t) ← Rand(BP, p) for some length m′ branching
program BP . ~z contains (αi,0 · B̃i,0, αi,1 · B̃i,1), for all other levels i /∈ {l1, l2}, and t. Also recall that for
every i ∈ [m′] and b ∈ {0, 1}, B̃i,b = Ri−1Bi,bR

−1
i where {Ri}i∈[m′] are random invertible matrices (and

R0 = I5×5) and {Bi,b}i∈[m′],b∈{0,1} are the matrices of BP . It easily follows (using the same argument
as [Kil88]) that even conditioned on {αi,b, B̃i,b}i/∈{l1,l2},b∈{0,1} and the whole of Rm′ (as opposed to just
t), B̃l1,0 is a random invertible matrix, and thus ~m0 has at least the entropy of a random invertible
matrix, conditioned on ~z. The same argument applies to ~m1.

30

5.4 Achieving Obfuscation for Arbitrary Programs

[GGH+13b] show that any indistinguishability obfuscation scheme for NC1 can be bootstrapped into
an indistinguishability obfuscation scheme for all poly-sized circuits using FHE. That is, they prove the
following theorem.

Theorem 19 ([GGH+13b]—informally stated). Assume the existence of indistinguishability obfuscators
iO for NC1 and a leveled Fully Homomorphic Encryption scheme with decryption in NC1. Then there
exists an indistinguishability obfuscator iO′ for arbitrary poly-sized circuits.

Applying their construction to our indisinguishability obfuscator yields an indistinguishability ob-
fuscator for arbitrary polynomial size circuits:

Theorem 20. Assume the existence of semantically secure multi-linear encodings and a leveled Fully
Homomorphic Encryption scheme with decryption in NC1. Then there exists an indistinguishability
obfuscators for arbitrary poly-sized circuits.

6 Impossibility of Extractable Semantic Security

In this section we consider a stronger notion of extractable semantic security of multi-linear encodings,
which strengthens the notion of semantic security by requiring that if an attacker A can distinguish
between encodings of a constant number of elements, then there exists an efficient algebraic strategy
that distinguishes the elements; that is, the algebraic operations needed to distinguish the elements can
be efficiently “extracted out”. (Recall that, in contrast, in the definition of “plain” semantic security,
we allow the algebraic strategy to be computationally unbounded). We here show that, assuming the
existence of a leveled FHE with decryption in NC1, there do not exist extractable semantically secure
multi-linear encodings.

We formally define the notion of extractable semantical security in identically the same way as Def-
initions 8 with the only difference being that the algebraic attacker in Definition 9 (i.e., the definition
of respecting message samplers) is restricted to be nuPPT (as opposed to being computationally un-
bounded). We refer to such a notion as a computationally respecting sampler. Furthermore, we no
longer require a point-wise notion of indistinguishability: That is, we require that for every nuPPT
oracle machine A, there exists a negligible function ε such that for every security parameter n ∈ N,

|Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(pp) : AM(pp, ~p0)(1n) = 1]−
Pr[(sp, pp)← InstGen(1n, 1k(n)), (~m0, ~m1, ~z)←M(pp) : AM(pp, ~p1)(1n) = 1]| ≤ ε(n)

where ~pb = {(mb[i], Si)}ci=1, {(z[i], Ti)}
q(n)
i=1 .

We now have the following theorem.

Theorem 21. Assume the existence of a leveled Fully Homomorphic Encryption scheme with decryption
in NC1. Then no graded encoding scheme satisfies extractable semantic security.

Proof. Consider any graded encoding scheme E . To show that E is not extractable semantically secure
we need to show that there exists a computationally respecting message samplerM and PPT adversary
A such that A distinguishes between encodings of (~m0, ~z) and (~m1, ~z) where (~m0, ~m1, ~z)←M .

OurM will sample obfuscations of the following circuit family, that was shown to be unobfuscatable
in the virtual black box setting [BGI+01]. Let (Gen,Enc,Dec,Eval) be a semantically secure fully
homomorphic encryption scheme with ciphertext size N(·); for simplicity of exposition, let us first
assume that it is an “unleveled” FHE. For each security parameter n, consider the class of circuits

Cn = {Cn,a,b,v,pk,sk,â}a,b∈{0,1}n,v∈{0,1},(pk,sk)∈Gen(1n),â∈Enc(pk,a)

31

taking N(n)-bit inputs, where

Cn,a,b,v,pk,sk,â =


(pk, â) if x = 0

b if x = a

v if Dec(sk, x) = b

0 otherwise

ThenM(pp) operates as follows, given public parameters pp to a graded encoding scheme, containing
the security parameter n and the description of the ring Zp:

• M samples (pk, sk) ← Gen(1n) and a, b ← {0, 1}n uniformly at random, and computes â =
Enc(pk, a).

• M generates branching programs BP 0 and BP 1 corresponding to Cn,a,b,0,pk,sk,â and Cn,a,b,1,pk,sk,â
respectively, and computes B̂P 0 = Merge(BP 0, BP 1, 0) and B̂P 1 = Merge(BP 0, BP 1, 1), each of
width 10 and length m. Recall, from Claim 8, that B̂P 0 and B̂P 1 differ only in levels 1 and m,
and that B̂P 0 and B̂P 1 are functionally equivalent to BP 0 and BP 1 respectively.

• M samples m random invertible matrices over Z10×10
p , {Ri}i∈[m] and 2m random scalars from

Zp, {αi,b}i∈[m],b∈{0,1}. M then uses these matrices and scalars to randomize B̂P 0 and B̂P 1 as
described by Rand(·, p) to obtain {αi,b · B̃i,b}i∈[m],b∈{0,1}, {αi,b · B̃′i,b}i∈[m],b∈{0,1} and t.

• M outputs
~m0 = ({α1,b · B̃1,b}b∈{0,1}, {αm,b · B̃m,b}b∈{0,1})

~m1 = ({α1,b · B̃′1,b}b∈{0,1}, {αm,b · B̃′m,b}b∈{0,1})

~z = ({αi,b · B̃i,b}i∈[m]/{1,m},b∈{0,1}, t)

Note that (~m0, ~z) is identically distributed to Rand(B̂P 0) and similarly (~m1, ~z) is identically
distributed to Rand(B̂P 1).

Now we will show a PPT adversary A that distinguishes between encodings of (~m0, ~z) and (~m1, ~z)
when encoded under sets (~S, ~T) ← SetSystem(m,N, inp), where inp is the labelling function for the
branching programs BP 0 and BP 1. Note that given encoding of one of (~m0, ~z) and (~m1, ~z), A in fact
receives either Obf(B̂P 0) or Obf(B̂P 1). Let us refer to this input to A as O.

A evaluates O on input 0 to receive (pk, â), and then simply homomorphically evaluates O on the
ciphertext â in order to generate a valid encryption of the hidden value b, and then feeds this new
ciphertext back into O to reveal the secret bit v, and then outputs v. Thus A succeeds in distinguishing
(~m0, ~z) and (~m1, ~z) with probability 1. Additionally, note that since O is a constant-width branching
program, O can be computed by a NC1 circuit, thus for this argument it suffices to use a leveled FHE.

To show M is computationally (~S, ~T)-respecting, we need to show that no nuPPT algebraic ad-
versary A′ can distinguish the oracles M(GObf(B̂P 0) and M(GObf(B̂P 1). Recall that by Claim 15,
the output of A′M(GObf(B̂P 0) (resp. A′M(GObf(B̂P 1)) can be simulated with only oracle access to BP0

(resp. BP1), or equivalently, to Cn,a,b,0,pk,sk,â (resp. Cn,a,b,1,pk,sk,â). In fact this simulation can be made
efficient using the techniques introduced in [BGK+13] (i.e. by modifying BP0 and BP1 to be dual-input
branching programs and correspondingly changing SetSystem); for completeness we recall the details in
Appendix C. Let this efficient simulator be Sim.

However, we now argue that Sim can be used to break the semantic security of the FHE scheme.
Recall that the circuits Cn,a,b,0,pk,sk,â and Cn,a,b,1,pk,sk,â differ only on inputs x for which Dec(sk, x) = b
(on these inputs Cn,a,b,0,pk,sk,â(x) = 0, whereas Cn,a,b,1,pk,sk,â(x) = 1). Since b was randomly chosen

32

from an exponentially large set of values, to find such an input with noticeable probability, Sim must
query one of the circuits on input a with noticeable probability, otherwise his view is independent of
b. However, if the original ciphertext â is an encryption of 0 instead of a, then the view of Sim is
unconditionally independent of a, and thus Sim can only query a with negligible probability. Thus Sim
can be used to distinguish between encryptions of 0 and a.

Thus, M must be a computationally (~S, ~T)-respecting distribution. Together with the earlier dis-
cussion that a PPT adversary A can distinguish between (~m0, ~z) and (~m1, ~z) with probability 1, we
have that no graded encoding scheme can satisfy extractable semantic security.

Let us end this section by remarking that we do not view Theorem 3 as an indication of the
impossibility of “plain” semantical security for multilinear encodings as the notions of extractable and
“plain” semantical security are qualitatively very different. (Indeed, extractability assumptions have
recently been shown to be problematic is various different contexts [HT98, BCCT11, BCPR13, BP13,
GGHW13].)

7 Acknowledgments

We are very grateful to Kai-Min Chung for many helpful conversations. We are also very grateful to
Sanjam Garg, Craig Gentry and Shai Halevi for many helpful comments; in particular, we thank Shai
for pointing out the connection between semantical security for multilinear encoding and the “uber”
assumption for bilinear maps of [BBG05].

References

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry. Differing-
inputs obfuscation and applications. 2013.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In STOC, pages 1–5, 1986.

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Ronald Cramer, editor, Advances in Cryptology ÃćâĆňâĂĲ
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 440–456.
Springer Berlin Heidelberg, 2005.

[BCCT11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. Cryptology
ePrint Archive, Report 2011/443, 2011. http://eprint.iacr.org/.

[BCP13] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. Technical
report, Cryptology ePrint Archive, Report 2013/650, 2013. http://eprint. iacr. org, 2013.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. Indistinguishability obfuscation
vs. auxiliary-input extractable functions: One must fall. Technical report, Cryptology
ePrint Archive, Report 2013/641, 2013.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in Cryptology
CRYPTO 2001, pages 1–18. Springer, 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. Cryptology ePrint Archive, Report 2013/631, 2013.

33

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS, pages 309–325, 2012.

[BP13] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional
auxiliary input. 2013.

[BR13] Zvika Brakerski and Guy N Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. Technical report, Cryptology ePrint Archive, Report 2013/563,
2013. http://eprint. iacr. org, 2013.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. In FOCS, pages 97–106, 2011.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Technical report, Cryptology ePrint Archive,
Report 2013/642, 2013. http://eprint. iacr. org, 2013.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
STOC ’90, pages 416–426, 1990.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. Proc.
of FOCS 2013, 2013.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure mpc
from indistinguishability obfuscation. Technical report, IACR Cryptology ePrint Archive,
2013: 601, 2013.

[GGHW13] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input. Tech-
nical report, Cryptology ePrint Archive, Report 2013/860, 2013. 6, 2013.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Proceedings of the 45th Annual ACM Symposium on Symposium on Theory
of Computing, STOC ’13, pages 467–476, New York, NY, USA, 2013. ACM.

[GR07] Shafi Goldwasser and GuyN. Rothblum. On best-possible obfuscation. In SalilP. Vadhan,
editor, Theory of Cryptography, volume 4392 of Lecture Notes in Computer Science, pages
194–213. Springer Berlin Heidelberg, 2007.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryptology–
ASIACRYPT 2000, pages 443–457. Springer, 2000.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Technical report, Cryptology ePrint
Archive, Report 2013/509, 2013. http://eprint. iacr. org, 2013.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In Advances in Cryptology CRYPTO’98, pages 408–423. Springer, 1998.

34

[Kil88] Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 20–31. ACM, 1988.

[LCT+13] Tancrède Lepoint, Jean-Sébastien Coron, Mehdi Tibouchi, et al. Practical multilinear
maps over the integers. In CRYPTO 2013-33rd Annual Cryptology Conference Advances
in Cryptology, volume 8042, pages 476–493, 2013.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In CRYPTO, pages 96–109,
2003.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 427–437. ACM, 1990.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homomorphisms.
Foundations of Secure Computation, Academia Press, pages 169–179, 1978.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Technical report, IACR Cryptology ePrint Archive, 2013: 454,
2013.

A Technical Lemma

Claim 22. Fix m,w ∈ N, and let p ∈ N be a prime. Let D0 be the following distribution:

D0 = {{Ri}i∈[m], {αi,b}i∈[m],b∈{0,1}}

where each Ri is a uniformly random invertible matrix in Zw×wp (i.e det(Ri) 6= 0, and each αi,b is a
uniformly random non-zero scalar in Zp.

Let D1 be a distribution defined identically to D0, except with each Ri being a uniformly random (not
necessarily invertible) matrix in Zw×wp , and each αi,b a uniformly random (not necessarily non-zero)
scalar in Zp.
Then:

∆(D0,D1) ≤ 8wm/p

where ∆(D0,D1) denotes the statistical distance between distributions D0 and D1.

Proof. Note that D0 and D1 are each uniformly distributed on their respective supports, and that
supp(D0) ⊆ supp(D1). Then the statistical distance between D0 and D1 can be computed as follows:

∆(D0,D1) =
∑

d∈supp(D0)∪supp(D1)

|Pr[D0 = d]− Pr[D1 = d]|

=
∑

d∈supp(D0)

|Pr[D0 = d]− Pr[D1 = d]|+
∑

d∈supp(D1)\supp(D0)

|Pr[D1 = d]|

=
∑

d∈supp(D0)

| 1

|supp(D0)|
− 1

|supp(D1)|
|+

∑
d∈supp(D1)\supp(D0)

| 1

|supp(D1)|
|

= (|supp(D0)| · |
1

|supp(D0)|
− 1

|supp(D1)|
|) + (|supp(D1) \ supp(D0)| · |

1

|supp(D1)|
|)

= 2 · (1− |supp(D0)|
|supp(D1)|

)

35

But notice that (1 − |supp(D0)|
|supp(D1)|) can be interpreted as Pr[∃i ∈ [m], b ∈ {0, 1} : det(Ri) = 0 ∨ αi,b = 0].

For each i ∈ [m], the probability det(Ri) = 0 can be bounded by applying the Schwartz-Zippel lemma
to the det(·), which is a polynomial of degree w. Thus we have that Pr[det(Ri) = 0] ≤ w/p. Further,
each αi,b is zero with probability 1/p. Hence, applying a union bound, we have that

∆(D0,D1) = 2 · (1− |supp(D0)|
|supp(D1)|

)

≤ 2 · (2m/p+mw/p)

≤ 8wm/p

B Proof of Proposition 1

Part (i) Our proof closely follows the corresponding decomposition algorithms in [BGK+13], with the
following differences:

• [BGK+13]’s decomposition additionally shows that X is polynomial-sized, relying on some extra
features in their construction, namely dual-input branching programs, and a modified collection
of sets chosen by SetSystem.

• We use the definition of set-respecting circuits to slightly simplify the proof.

In order to prove the decomposition of C into the sum of Cx, we will define a recursive algorithm Decomp
that can compute this decomposition. Before we do so, however, we define some notation to help us
denote that a circuit respects a single input x ∈ {0, 1}n. For any circuit C that has its input wires
labelled with sets in ~S, let the profile of C, denoted prof(C), be a string x ∈ {0, 1, ∗}n ∪{⊥}, defined as
follows:

• x = ⊥ if for some j ∈ [n], C contains both an input wire labelled with with a set from {Si,0 :
inp(i) = j}, and an input wire labelled with a set from {Si,1 : inp(i) = j}.

• otherwise:

– x[j] = b if some input wire of C is labelled with with a set from {Si,b : inp(i) = j}, and no
input wire is labelled with a set from {Si,(1−b) : inp(i) = j}.

– x[j] = ∗ if no input wire of C is labelled with a set from either of {Si,b : inp(i) = j} or
{Si,(1−b) : inp(i) = j}.

We say that prof(C) is consistent if prof(C) 6= ⊥. We say that prof(C) is complete and consistent if
prof(C) is not ⊥, and it does not contain any ∗ characters, that is, prof(C) ∈ {0, 1}n . Notice that if
prof(C) is complete and consistent, then C’s input wires are labelled only with sets respecting a single
input x = prof(C) ∈ {0, 1}n, that is, only with sets ∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

We further define S(C) to be the label on the output wire of C.
The algorithm Decomp will take as input an arithmetic circuit C, and return a set X ⊆ {0, 1, ∗}n ∪

{⊥}, together with a set of circuits L = {Cx)}x∈X satisfying

• ∀x ∈ X, prof(Cx) = x

• C =
∑

x∈X Cx

36

We will later show that if C is ~S-respecting, then each Cx is also ~S-respecting, and further, that each
Cx has a complete and consistent profile. This implies that, when C is ~S-respecting, that X ⊆ {0, 1}n.

We define Decomp(C) recursively, as follows:

• When C is a single input wire, if C is labelled with Si,b, Decomp outputs X = {prof(C)} and the
singleton set {C}.

• When C is of the form C1 + C2, then Decomp computes X1, L1 = Decomp(C1) and X2, L2 =
Decomp(C2), and sets X = X1 ∪X2 and L = L1 ∪ L2. If L contains Cx and Cx′ with the same
profile, that is, x = x′, then Decomp replaces the two circuits with the single circuit (Cx + Cx′),
repeating this process until all the circuits in L have distinct profiles, and outputs X and L. The
case for C = C1 − C2 follows analogously, except subtracting two circuits with the same profile
rather than adding them.

• When C is of the form C1 · C2, then Decomp recursively obtains sets X1, L1 = Decomp(C1) and
X2, L2 = Decomp(C2). For each element Cx ∈ L1 and Cx′ ∈ L2, Decomp determines Cx′′ = Cx·Cx′ ,
where x′′ = prof(Cx · Cx′) and adds x′′ to X and Cx′′ to L. Decomp combines circuits with the
same profile in L as described above, so that each circuit in L has a distinct profile, and outputs
X and L.

By examining the description of Decomp, we see that the following properties hold inductively, at each
recursive level of Decomp:

• C =
∑

x∈X Cx

• The output wire of each Cx has the same label as the output wire of C, that is, S(Cx) = S(C)

• If C only makes additions and multiplications respecting ~S, then each Cx also only makes additions
and multiplications respecting ~S.

From the last two properties, we infer that if C is ~S-respecting, then each Cx is also ~S-respecting.
Further, if C is ~S-respecting, then no x ∈ X contains ‘∗′, since in order to be ~S-respecting, each Cx
must have its output wire labelled with [k], and thus must have at least one input wire labelled with
some entry of Sj , for each j ∈ [n].

We finally argue that if C is ~S-respecting, then ⊥ /∈ X. Assume for contradiction that ⊥ ∈ X, that
is, there is some ~S-respecting C⊥ output by Decomp(C). We will show that such a C⊥ cannot exist,
using the properties of the straddling set system.

Let C ′⊥ be the first sub-circuit of C⊥ that has profile ⊥. That is, all subcircuits of C ′⊥ have profiles
6= ⊥, but C ′⊥ has profile ⊥. Since C⊥ is output by Decomp, at some recursive step of Decomp, C ′⊥ must
have been added to the set of circuits L output by Decomp at that step.

Then this step must be a multiplication step, since addition (or subtraction) steps never introduce
new profiles because they only add (or subtract) circuits with the same profiles, and in the base case,
single input wires never have ⊥ as their profile. Thus, at this step, Decomp must multiply together two
circuits Cx and Cx′ such that, for some j, Cx has an input wire labelled with Si,b, and Cx′ has an input
wire labelled with Si′,1−b for i, i′ with inp(i) = inp(i′) = j.

We now use the following claim, along the lines of Claim 4 in [BGK+13]:

Claim 23. Let C be ~S-respecting. If C ′ is a sub-circuit of C and T ′ ⊆ Sj is an exact cover of S(C ′)∩Uj,
then there exists an exact cover T of S(C) ∩ Uj such that T ′ ⊆ T .

Proof. The proof is by induction. If C is of the form C1+C2, and T1 ⊆ Sj is an exact cover of S(C1)∩Uj ,
then T1 is also an exact cover of S(C) ∩ Uj , since S(C) = S(C1), and similarly for C2.

If C is of the form C1 ·C2, and T1, T2 ⊆ Sj are exact covers of S(C1)∩Uj and S(C2)∩Uj respectively,
then since S(C1) ∩ S(C2) = ∅ and since S(C) = S(C1) ∪ S(C2) then T1 ∪ T2 is an exact cover of
S(C) ∩ Uj .

37

Applying the above claim, we see that since Cx has an input wire labelled with Si,b as a “sub-circuit”,
then there exists an exact cover of S(Cx)∩Uj that contains Si,b. Similarly, there exists an exact cover of
S(Cx′)∩Uj that contains Si′,1−b. Since C ′⊥ = Cx ·Cx′ and this multiplication is ~S-respecting, there exists
an exact cover of S(C ′⊥) ∩ Uj that contains both Si,b and Si′,1−b. But then there exists an exact cover
of S(C⊥) ∩Uj that also contains both Si,b and Si′,1−b. But since C⊥ is ~S-respecting, S(C⊥) ∩Uj = Uj .
However, since Sj is a straddling set system, we know that no exact cover of Uj can contain both Si,b
and Si′,1−b. This contradicts the existence of C⊥, and so ⊥ /∈ X.

We thus have that each x ∈ X must be such that x ∈ {0, 1}n, implying that each Cx has a
complete and consistent profile. Hence we have that that X ⊆ {0, 1}n, that C ≡

∑
x∈X Cx, that

each Cx is ~S-respecting, and, from the earlier discussion, that each Cx has input wires using only sets
∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

Part (ii) Consider each circuit Cx in the decomposition described above. We will show that each Cx
can be decomposed into αx and px as defined in the proposition statement. Since Cx is an arithmetic
circuit, we can write Cx as a polynomial, and in fact, as the sum of monomials sx (possibly exponentially
many), so that Cx =

∑
sx. Since Cx is ~S-respecting, each sx is ~S-respecting also. Further, since sx

is a monomial, it can be represented as an arithmetic circuit consisting only of multiplication gates.
Further, it must have exactly m+1 input wires, 1 corresponding to each level of the branching program,
and 1 corresponding to t, since this is the only way to obtain an output wire with label [k] using only
multiplication gates.

But since Cx only has input labels from sets ∈ {Si,x[inp(i)]}i∈[m]∪{St}, so must each sx, and thus the
inputs to sx must consist of a choice of a single element from each of {αi,x[inp(i)] · B̃i,x[inp(i)]}i∈[m] ∪ {t}.
But then each sx can be written as αx · s̃x({B̃i,x[inp(i)]}i∈[m], t), where s̃x contains exactly one term
from each B̃i,x[inp(i)], and one term from t. Hence Cx =

∑
sx can also be written in the form Cx =

αx · px({B̃i,x[inp(i)]}i∈[m], t), where px =
∑
s̃x. Further, when px is viewed as a sum of monomials, each

monomial contains exactly one term from each B̃i,x[inp(i)], and from t.

C Dual Input Branching Programs

In this section, for completeness, we recall the “dual input branching program” method from [BGK+13]
and how it can be used to efficiently simulate efficient algebraic attackers.

Recall that simulating an algebraic adversary is equivalent to simulating each zero-test made by
that adversary. Recall that our simulator Sim’s strategy for doing so is to convert each zero test query
circuit C into a sum of circuits Cx, where the output of each Cx can be simulated using only black box
access to one of C0 or C1. However, there can be exponentially many Cx’s in the sum, and simulating
them all can take exponential time, which causes a blowup in the running time of Sim. We modify the
construction of the branching program as in [BGK+13] to ensure that each zero-test query circuit C
can be decomposed into the sum of at most polynomially many Cx. This allows Sim to simulate each
zero test made by A′ in at most polynomial time, thus making it efficient.

There are two main features in the modified construction. The first is the use of dual-input branching
programs, which examine two bits of the input at each level, as opposed to a single bit as in traditional
branching programs. The second is to modify the system of sets used to encode the branching program,
in a manner that guarantees that any set-respecting circuit C running on these encodings can be written
as the sum of polynomially many set-respecting circuits Cx.

C.0.1 Dual Input Branching Programs

Definition 15 (Dual Input Branching Programs [BGK+13]). An oblivious dual-input branching program
of width w and length m for n bit inputs is given by a sequence:

38

BP = {inp1(i), inp2(i), {Bi,b1,b2}b1,b2∈{0,1}}
m
i=1,

where each Bi,b1,b2 is a permutation matrix in {0, 1}w×w and inp(i), inp2(i) ∈ [n] are the input bit
positions examined in step i. Then the output of the branching program on input x ∈ {0, 1}n is as
follows:

BP (x)
def
=

{
1, if (

∏m
i=1Bi,x[inp1(i)],x[inp2(i)]) · e1 = e1.

0, otherwise

As before, the dual-input branching program is said to be oblivious if inp1 : [m]→ [n] and inp2 : [m]→ [n]
are fixed functions, independent of the function being evaluated. The dual input branching program is
also said to have fixed accept and reject matrices Paccept and Preject if, for all x ∈ {0, 1}n,

m∏
i=1

Bi,x[inp(i)] =

{
Paccept when BP (x) = 1

Preject when BP (x) = 0

Note that any branching program can be converted into a dual-input branching program with the
same width and length, since the dual-input program can always “ignore" one input bit in each pair.
Further, any dual input branching program can be simulated by a branching program with the same
width and twice the length of the dual-input branching program.

We assume the existence of a transformation toDual(·), that converts a branching program BP to
a dual input branching program BP ′ of the same width and functionality and at most a polynomial
blowup in length, satisfying the following:

• Each pair i, j of input bits is examined in at least one level of BP ′.

• The bits examined at each level of BP ′ are distinct, that is, inp1(i) 6= inp2(i) for all levels i.

• If BP1 and BP2 have the same labelling function inp, then BP ′1 and BP ′2 have the same labelling
functions inp1 and inp2.

One possible such transformation is a procedure that adds “dummy" second input bits to each level of
BP that yield the same matrices on value 0 or 1, and chooses these dummy second inputs in a consistent
manner and different from the bit already queried at that level. Following this, the transformation can
achieve the requirement that each pair of input bits is queried at least once by padding BP with n(n−1)
dummy levels consisting of just the identity matrix, such that t each pair of input bits is queried in one
of these dummy levels.

C.0.2 Dual Input Straddling Set Systems

We now describe a modified procedure DISetSystem that generates the collection of sets we will use for
encoding dual-input branching programs. This set system is identical to the one used by [BGK+13], and
gives a stronger decomposition guarantee for ~S-respecting circuits, namely that they can be represented
as the sum of polynomially many single-input terms.

Execution of DISetSystem(m,n, inp1, inp2):
We assume inpi and inp2 satisfy the properties of the output of toDual, that is, every possible pair i, j
of input bits is queried in at least one level, and inp1(i) 6= inp2(i) for all i ∈ [m]. Let nj denote the
number of levels that inspect the jth input bit in either of inp1 or inp2. That is,

nj = |{i ∈ [m] : inp1(i) = j} ∪ {i ∈ [m] : inp2(i) = j}|

39

For every j ∈ [n], DISetSystem chooses Sj to be a straddling set system with nj entries over a set Uj , such
that the sets U1, . . . , Un are disjoint. Let U =

⋃
j∈[n] Uj . DISetSystem then chooses St be a set disjoint

from U . We associate the set system Sj with the j’th input bit of the branching program corresponding
to inp. DISetSystem then re-indexes the elements of Sj to match the steps of the branching program as
described by inp, so that:

Sj = {Sji,b : inp1(i) = j or inp2(i) = j, b ∈ {0, 1}}

By this indexing, we also have that S inp1(i)
i,b ∈ Sinp1(i) and S inp2(i)

i,b ∈ Sinp2(i) for every i ∈ [m], for every
b ∈ {0, 1}. DISetSystem also defines

Si,b1,b2 = S
inp1(i)
i,b1

∪ S inp2(i)
i,b2

Let k = |U ∪ St|, and WLOG, assume that the U js and St are disjoint subsets of [k] (otherwise
DISetSystem relabels the sets to satisfy this property).

DISetSystem then outputs
k, {Si,b1,b2}i∈[m],b1,b2∈{0,1}, St

We now have the following strengthening of Proposition 1, which suffices to ensure that zero-test
queries for any efficient algebraic attacker can be efficiently simulated.

Proposition 2. Fixm,n ∈ N and inp1 : [m]→ [n], inp2 : [m]→ [n]. Let ~S = SetSystem(m,n, inp1, inp2) =
({Si,b1,b2}i∈[m],b1,b2∈{0,1}, St), and let C be any polynomial-sized ~S-respecting arithmetic circuit.

There exists a set X ⊆ {0, 1}n of inputs, such that:

(i)
C ≡

∑
x∈X

Cx

where each Cx is a ~S-respecting arithmetic circuit, whose input wires are labelled only with sets
respecting a single input x ∈ {0, 1}n, that is, only with sets ∈ {Si,x[inp(i)]}i∈[m] ∪ {St}.

(ii) For each Cx above, for every branching program BP of width w and length m on n input bits, with
input labelling function inp, every prime p, and every ({αi,b · B̃i,b}i∈m,b∈{0,1}, t)← Rand(BP, p)

Cx({αi,bB̃i,b}i∈[m],b∈{0,1}, t) = αx · px({B̃i,x[inp(i)]}i∈[m], t)

where px is some polynomial, and αx = (
∏
i∈[m] αi,x[inp(i)]). Furthermore, when px is viewed as a

sum of monomials, each monomial contains exactly one entry from each B̃i,x[inp(i)], and one entry
from t.

Furthermore, {Cx}x∈X can be determined in polynomial time given C, and X is of polynomial size.

Note that this proposition is exactly the same as Proposition 1, with the additional property that
the Cx’s can be determined in polynomial time, and that there are only polynomially many of them.

Proof.

(i) Part (i) is implied by the corresponding decomposition claim in [BGK+13].

(ii) Part (ii) follows, using Part (i) exactly as in Proposition 1, relying on the property that each Cx is
~S-respecting.

40

