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Abstract

In this work, we present the first definitions and constructions for functional encryption sup-
porting randomized functionalities. The setting of randomized functionalities require us to revisit
functional encryption definitions by, for the first time, explicitly adding security requirements
for dishonest encryptors, to ensure that they cannot improperly tamper with the randomness
that will be used for computing outputs. Our constructions are built using indistinguishability
obfuscation.

1 Introduction

Originally, encryption was thought of as a way to encrypt “point to point” communication. How-
ever, in the contemporary world with cloud computing and complex networks, it has become clear
that we need encryption to offer more functionality. To address this issue, the notion of functional
encryption (FE) has been developed [SW05, GPSW06, BW07, KSW08, BSW11, O’N10]. In a
functional encryption for a family F , it is possible to derive secret keys Kf for any function f ∈ F
from a master secret key. Given an encryption of some input x, that user can use its secret key Kf

to obtain f(x), and should learn nothing else about x beyond f(x).
A driving force behind functional encryption research has been to understand what class

of functions can be supported by functional encryption. This remarkable line of research has
progressed to now encompass all functions describable by deterministic polynomial-size circuits
[SS10, GVW12, GKP+13, CIJ+13, GGH+13]. We continue this line of research to move even beyond
deterministic polynomial-size circuits: specifically, we consider the case of randomized functional-
ities. Indeed, not only are randomized functionalities strongly motivated by real-world scenarios,
but randomized functionalities present new challenges for functional encryption. Techniques devel-
oped in the context of functional encryption for deterministic circuit do not directly translate into
techniques for randomized circuits. To understand the basic technical problem, below we give an
illustrative example.

Let us illustrate the desiderata for functional encryption for randomized functions by considering
an example of performing an audit on an encrypted database through random sampling. Suppose
there is a bank that maintains large secure databases of the transactions in each of its branches.
There is an auditor Alice who would like to gain access to a random sample of database entries
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from each branch in order to manually audit these records and check for improper transactions.
We note that random sampling of transactions for manual analysis is quite common during audits.
There are two primary concerns:

• The auditor wants to ensure that cheating in a branch is caught with reasonable probability.

• The organization wants to ensure that a malicious auditor cannot learn undesirable informa-
tion (e.g., too much about a particular customer) from the encrypted databases. In particular,
it wants to ensure that a malicious auditor cannot gain access to arbitrarily chosen parts of
the database, but rather is limited to seeing only a randomly selected sample for each branch.

If we try to solve this problem naively using functional encryption, by giving the auditor a
secret key SKf that lets it obtain a random subset of an encrypted database CT, we are faced with
the question: where does the randomness come from? Clearly, the randomness cannot be specified
in the ciphertext alone since then a cheating encrypter (bank branch) could influence it. It cannot
be specified in the decryption key alone as well: then auditor would get the same (or correlated)
sample from the databases of different branches. (We also stress that since functional encryption
does not guarantee function privacy, randomness present in the function f , even if chosen by a
trusted party, would be known to Alice.)

Even if the randomness was chosen by an XOR of coins built into the decryption key and
the ciphertext, this would allow malicious encryptors, over time, to ensure correlations among the
random coins used by the auditor when inspecting different databases (or the same database after
updates to it). Such correlations could potentially be used to eventually learn completely the coins
embedded in the decryption key (based on the auditor’s actions in response to planted improprieties
in databases). Another option is to use a pseudorandom function (PRF) whose key is inbuilt in the
decryption key. However again, since functional encryption does not guarantee function privacy,
the PRF key could be completely leaked to a malicious auditor (rendering all guarantees about the
sample looking “random” invalid).

This scenario also illustrates the importance of dealing with dishonest encryptors in the context
of functional encryption for randomized functionalities, because of the influence they can have on the
choice of coins used in computing the output. Indeed, this issue of dishonest encryptors was never
considered explicitly in previous work on functional encryption, to the best of our knowledge. This
is perhaps because in the context of deterministic functionalities, the issue of dishonest encryptors
seems very related to simple correctness, which is not the case in the current work.

Defining functional encryption for randomized functionalities. To avoid the problems
sketched in the examples above, we define functional encryption for randomized functionalities
using the simulation paradigm: We want that an adversary, given SKf and an honestly generated
encryption of x, be simulatable given only f(x; r) where r is true randomness that is completely
unknown to the adversary. At the same time, consider an adversary that can generate dishonest
ciphertexts ĈT and learn from outside the output of decrypting ĈT using a secret key SKg (that is
unknown to the adversary). We want such an adversary to be simulatable given only g(x̂; r), where
x̂ is an input that is information-theoretically fixed by ĈT and r is again true randomness that is
unknown to the adversary. Note that a crucial feature of our definition is that if a party uses a secret
key SKf on a particular ciphertext CT, it will always get back f(x; r) for the same randomness
r. In other words, the user cannot repeatedly sample the functionality to obtain multiple outputs
for different random coins. This allows users of our definition to more tightly control how much
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information an adversary or user learns. However, given two distinct ciphertexts CT1 and CT2 both
encrypting x, a malicious user possessing SKf should obtain exactly two independent samples of
the output of the function: f(x; r1) and f(x; r2).

Application to differentially private data release. A natural application of functional en-
cryption would be to provide non-interactive differentially private data release with high levels of
accuracy. Consider a scenario where a government would like to allow researchers to carry out
research studies on different hospital patient record databases, but only if the algorithm that ana-
lyzes the patient data achieves a sufficient level of differential privacy. Without using cryptography,
methods for allowing the hospitals to publish differentially private data that would allow for mean-
ingful and diverse research studies must incur very high accuracy loss [DNR+09]. An alternative
would be to have a government agency review a specific research algorithm f , and if the algorithm
guarantees sufficient privacy, to issue a secret key SKf that the researcher could use to obtain the
output of her algorithm on any hospital’s encrypted patient records. Note that in such a setting,
the hospital patient record could be encrypted and stored without any noise addition. The noise
could be added by the algorithm f after computing the correct output. Such a setting would ensure
very high accuracy (essentially the same as the interactive setting where the hospitals store data
in clear and answer the researcher queries after adding noise in an online fashion).

Note however, to achieve differential privacy, such an algorithm f must be randomized. Fur-
thermore, typical differentially private algorithms require that the randomness used to compute the
output must be correctly and freshly sampled each time and be kept secret (or else the differential
privacy could be completely compromised). By realizing functional encryption that would allow
such randomized function evaluation, we would simultaneously remove the need for the hospital
to participate in any study beyond simply releasing an encrypted database, and remove the need
for the researcher to share his hypothesis and algorithm with any entity beyond the government
regulatory body that issues secret keys.

1.1 Our Results

We show how to formalize the definition sketched above, generalizing the simulation-based defini-
tions given in [BSW11, O’N10, CIJ+13], and then show how to build functional encryption schemes
supporting arbitrary randomized polynomial-size circuits assuming indistinguishability obfuscation
for circuits and one-way functions.

The starting point for our construction is the functional encryption scheme of [GGH+13] for
polynomial-size deterministic circuits. In that scheme, in essence the secret key SKf is built upon
obfuscating the function f using an indistinguishability obfuscator [BGI+01]. We show how to
modify this construction to achieve our notion of functional encryption for randomized function-
alities by building upon the recently introduced idea of punctured programming [SW13]. In par-
ticular, we embed a psuedo-random function (PRF) key into the obfuscated program, which is
executed on the ciphertext, to obtain the randomness used to derive the output. We adapt ideas
from [DDN91, Sah99] to ensure that valid ciphertexts are unique. The core of our argument of
security is to show that indistinguishability obfuscation guarantees the secrecy of the random coins
derived by this method.

Our results immediately imply the application to differential privacy: Consider two “neighbor-
ing” databases x0 and x1. Differential privacy guarantees that the statistical distance between
the distributions of outputs of the mechanism f for these two databases is at most eε, a small
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(but non-negligible) quantity. Now consider an adversary’s view given an encryption of x0. By
our simulation-based notion of security, the adversary’s view can be simulated given only f(x0; r)
where r is true (secret) randomness. This view is eε close to the view that would be generated
given only f(x1; r), by differential privacy of f . Finally we apply our definition to show that this
view is negligibly close to the real adversary’s view given an encryption of x1. Thus, our functional
encryption scheme when applied to f yields a computationally differentially private mechanism.

1.2 Subsequent Work

In this work, we consider functional encryption for single-input functions. In a recent work, Gold-
wasser, Goyal, Jain, and, Sahai[GGJS13] study the problem of (multi-input) functional encryption
for n-ary functions (for arbitrary n ≥ 1). In such a scheme, a party who owns a secret key SKf
for an n-ary function f can jointly decrypt n independently computed encryptions of x1, . . . , xn
to learn f(x1, . . . , xn). We note that the techniques used in the present paper to handle random-
ized functionalities are relevant to the multi-input setting as well. In particular, Goldwasser et al.
[GGJS13] build on our techniques to extend their results for multi-input functional encryption to
the case of (n-ary) randomized functions. We refer the reader to [GGJS13] for details.

1.3 Organization

The rest of this paper is organized as follows. We start by presenting the formal definitions for
functional encryption for randomized functionalities (Section 2). Next, we recall the definitions for
various cryptographic primitives used in our construction (Section 3). We then present our con-
struction of functional encryption for randomized functionalities (Section 4) and prove its security
in the selective model (Section 5). Finally, we discuss how to extend our results to achieve full
security (Section 6).

2 Functional Encryption for Randomized Functions

In this section, we present definitions for functional encryption for randomized functions (or rand-FE
for short). We start by presenting the syntax for rand-FE and then proceed to give the security
definitions for the same.

Syntax. Throughout the paper, we denote the security parameter by 1κ. Let X = {Xκ}κ∈N,
R = {Rκ}κ∈N and Y = {Yκ}κ∈N be ensembles where each Xκ, Rκ and Yκ is a finite set. Let
F = {Fκ}κ∈N be an ensemble where each Fκ is a finite collection of randomized functions. Each
function f ∈ Fκ takes as input a string x ∈ Xκ and randomness r ∈ Rκ and outputs f(x; r) ∈ Yκ.

A functional encryption scheme FE for randomized functions F consists of four algorithms
(rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec):

• Setup rFE.Setup(1κ) is a PPT algorithm that takes as input the security parameter κ and
outputs the public key MPK and the master secret key MSK.

• Encryption rFE.Enc(x,MPK) is a PPT algorithm that takes as input a message x and the
public key MPK and outputs a ciphertext CT.
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• Key Generation rFE.Keygen(f,MSK) is a PPT algorithm that takes as input a function
f ∈ F and the master secret key MSK and outputs a secret key SKf .

• Decryption rFE.Dec(CT,SKf ) is a deterministic algorithm that takes as input a ciphertext
CT, the public key MPK and a secret key SKf and outputs a string y ∈ Yκ.

Definition 2.1 (Correctness). A functional encryption scheme FE for randomized function family
F is correct if for every polynomial n = n(κ), every ~f ∈ Fnκ and every ~x ∈ X nκ , the following two
distributions are computationally indistinguishable:

1. Real:
{
rFE.Dec

(
CTi,SKfj

)}n,n
i=1,j=1

, where:

• (MPK,MSK)← rFE.Setup(1κ)

• CTi ← rFE.Enc(xi,MPK) for i ∈ [n]

• SKfj ← rFE.Keygen(fj ,MSK) for j ∈ [n]

2. Ideal: {fj (xi; ri,j)}n,ni=1,j=1 where ri,j ← Rκ

Remark. We note that unlike the case of deterministic functions where it suffices to define
correctness for a single ciphertext and a single key, in the case of randomized functions, it is essential
to define correctness for multiple ciphertexts and functions. To see this, consider the scenario where
a secret key SKf corresponding to a function f is implemented in such a way that it has some “fixed”
randomness r hardwired in it. Now, upon decrypting any ciphertext CT← rFE.Enc(x,MPK) with
SKf , one would obtain the output f(x; r) w.r.t. the same randomness r. Note that this clearly
incorrect implementation of SKf would satisfy the correctness definition for a single ciphertext and
a single key, but will fail to satisfy our definition given above.

2.1 Security for Functional Encryption

We now present our security definitions for rand-FE. We first observe that existing security defini-
tions for functional encryption only consider the malicious receiver setting, in that they intuitively
guarantee that an adversary who owns a secret key SKf corresponding to a function f cannot
learn anymore than f(x) from an encryption of x. In this work, we are also interested in achieving
security against malicious senders. In particular, we would like to guarantee that an adversarial en-
cryptor cannot force “bad” outputs on an honest receiver.1 As discussed earlier, this is particularly
important when modeling randomized functions.

We consider a a unified adversarial model that simultaneously captures malicious receivers and
malicious senders. Following prior works, we consider two notions of security, namely, simulation-
based security (or SIM-security, in short) and indistinguishability-based security (or IND-security,
in short). We present our security definitions for the selective model, where the adversary must
decide the challenge messages up front, before the system parameters are chosen. (However, they
can be modified in a natural manner to full security.) Further, for simplicity of notation, we omit
explicit reference to auxiliary input to the adversary from our definitions.

1Note that this models an active adversary in contrast to the malicious receiver case, where the adversary is
semi-honest.
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Simulation Based Security. We first present a simulation-based security definition for rand-FE.
We extend the existing SIM-security notion for FE to also provide security against adversarial
senders. To understand the main idea behind our definition, let us consider an honest receiver who
owns a secret key SKf corresponding to a function f . Then, in order to formalize the intuition
that an adversarial sender cannot force “incorrect” outputs on this honest receiver, we allow the
adversary to make decryption queries for arbitrary ciphertexts2 w.r.t. the secret key SKf . In the
ideal world, the simulator must be able to“extract” the plaintext x from each decryption query and
compute as output f(x; r) for some true randomness r. We then require that the decryption query
in the real world yields an indistinguishable output.

We now proceed to give our formal definition. For simplicity, below we define security w.r.t.
black-box simulators, although we note that our definition can be easily extended to allow for non-
black-box simulation. Our definition is parameterized by q that denotes the number of challenge
messages.

Definition 2.2 (SIM-security for rand-FE). A functional encryption scheme FE for the randomized
function family F is said to be q-SIM-secure if there exists a simulator S = (S1, S2, S3) such
that for every PPT adversary A = (A1, A2, A3), the outputs of the following two experiments are
computationally indistinguishable:

Experiment REALFEA (1κ):
(~x, st1)← A1(1

κ) where ~x ∈ X qκ
(MPK,MSK)← rFE.Setup(1κ)
CT∗i ← rFE.Enc(xi,MPK) for i ∈ [q]

({f}, st2)← A2(MPK, ~CT
∗
, st1)

SKf ← rFE.Keygen(fj ,MSK) ∀ f ∈ {f}

α← A
O1(MSK,·), O2({SKf},·)
3 (st2)

Output (~x, {f} , {g} , {y}, α)

Experiment IDEALFEA (1κ):
(~x, st1)← A1(1

κ) where ~x ∈ X qκ
(MPK, ~CT

∗
, st′)← S1(1

κ)

({f}, st2)← A2(MPK, ~CT
∗
, st1)

α← A
O′1(·), O′2({f},·)
3 (st2)

Output (~x, {f} , {g′} , {y′}, α)

where,

• In the real experiment, O1(MSK, ·) denotes the key generation oracle rFE.Keygen(·,MSK) and
O2({SKf}, ·) denotes a decryption oracle that takes as input ciphertexts CT such that CT 6=
CT∗i and returns rFE.Dec(CT, SKf ) for all f ∈ {f}. Further, {g} denotes the set of key queries
made by A3 and {y} denotes the set of responses of O2 to the decryption queries of A3.

• In the ideal experiment, O′1(·) denotes the simulator algorithm S2(st
′, ·) that has oracle access

to the ideal functionality KeyIdeal(~x, ·). The functionality KeyIdeal accepts key queries g′ and
returns g′(xi, ri) for every xi ∈ ~x and randomly chosen ri ∈ Rκ. Similarly, O′2({f}, ·) denotes
the simulator algorithm S3(st

′, ·) that has oracle access to ideal functionality DecryptIdeal({f}, ·).
The functionality DecryptIdeal accepts input queries x and returns fi(x; ri) for every fi ∈ {f},
and randomly chosen ri ∈ Rκ. Further, {g′} denotes the set of queries made by S2 to KeyIdeal
and {y′} denotes the set of response of DecryptIdeal to the queries of S3.

2This is similar in spirit to the standard chosen-ciphertext security notion for public-key encryption.
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Indistinguishability Based Security. We now present an indistinguishability-based security
definition for rand-FE. Similar to the SIM-security case, our definition models both corrupted
senders and receivers, and extends the existing IND-security notions for functional encryption.
Unlike the SIM-security case, here we do not consider any parameter to bound the number of
message queries.

Definition 2.3 (IND-secure rand-FE). A functional encryption scheme FE is IND Secure if for
every PPT adversary A = (A1, A2, A3), the distributions INDFE0 (1κ, A) and INDFE1 (1κ, A) are com-
putationally indistinguishable, where INDFEb (1κ, A) is defined as follows :

Experiment INDFEA (1κ):
(~x0, ~x1, st1)← A1(1

1κ) where |~x0| = |~x1|
(MPK,MSK)← rFE.Setup(1κ)
CT∗[i]← rFE.Enc(xb[i],MPK) ∀ xb[i] ∈ ~xb
({f}, st2)← A2(MPK, ~CT

∗
, st1)

SKf ← rFE.Keygen(f,MSK) ∀ f ∈ {f}
Output A

O1(MSK,·),O2({SKf},·)
3 (st2)

In the above experiment, O1(MSK, ·) denotes the key generation oracle rFE.Keygen(·,MSK) and
O2({SKf}, ·) denotes a decryption oracle that takes as input ciphertexts CT and returns rFE.Dec(CT, SKf )
for all f ∈ {f}. We require that:

• Every key query g made by A3 to O1 is such that for every i, the output distributions g(x0[i])
and g(x1[i]) are computationally indistinguishable.

• Every decryption query CT made by A3 to O2 is such that for every i, CT 6= CT∗[i].

3 Preliminaries

In this section, we present definitions for various cryptographic primitives that we shall use in
our construction of functional encryption for randomized functions. We assume familiarity with
standard semantically secure public-key encryption and strongly unforgeable signature schemes
and omit their formal definition from this text. Below, we recall the notions of indistinguishability
obfuscation, puncturable pseudorandom functions, non-interactive witness indistinguishable proof
systems and perfectly binding commitment schemes.

3.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation that was defined by Barak et al.
[BGI+01]. Intuitively speaking, we require that for any two circuits C1 and C2 that are “functionally
equivalent” (i.e., for all inputs x in the domain, C1(x) = C2(x)), the obfuscation of C1 must
be computationally indistinguishable from the obfuscation of C2. Below we present the formal
definition following the syntax of [GGH+13].

Definition 3.1. (Indistinguishability Obfuscation) A uniform PPT machine iO is called an indis-
tinguishability obfuscator for a circuit class {Cκ} if the following holds:
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• Correctness: For every κ ∈ N, every C ∈ Cκ, every input x in the domain of C, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1

• Indistinguishability: For every κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ, if C0(x) = C1(x)
for all inputs x, then for all PPT adversaries A, we have:

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Very recently, Garg et al. [GGH+13] gave the first candidate construction for an indistinguisha-
bility obfuscator iO for the circuit class P/poly.

3.2 Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [BW13, BGI13, KPTZ13],
where the PRF is defined on all input strings except for a set of size polynomial in the security
parameter. Below we recall their definition, as given by [SW13].

Syntax A puncturable family of PRFs is defined by a tuple of algorithms (Key, Eval, Puncture)
and a pair of polynomials n(·) and m(·) :

• Key Generation Key(1κ) is a PPT algorithm that takes as input the security parameter κ
and outputs a PRF key K

• Punctured Key Generation Puncture(K,S) is a PPT algorithm that takes as input a PRF
key K, a set S ⊂ {0, 1}n(κ) and outputs a punctured key KS

• Evaluation Eval(K,x) is a deterministic algorithm that takes as input a key K (punctured
key or PRF key), a string x ∈ {0, 1}n(κ) and outputs y ∈ {0, 1}m(κ)

Definition 3.2. A family of PRFs Key, Eval, Puncture is puncturable if it satisfies the following
properties :

• Functionality preserved under puncturing. Let K ← Key(1κ), KS ← Puncture(K,S).
Then, for all x /∈ S, Eval(K,x) = Eval(KS , x).

• Pseudorandom at punctured points. For every PPT adversary (A1, A2) such that A1(1
κ)

outputs a set S ⊂ {0, 1}n(κ) and x ∈ S, consider an experiment where K ← Key(1κ) and
KS ← Puncture(K,S). Then∣∣Pr[A2(KS , x,Eval(K,x)) = 1]− Pr[A2(KS , x, Um(κ)) = 1]

∣∣ ≤ negl(κ)

where U` denotes the uniform distribution over ` bits.

As observed by [KPTZ13, BW13, BGI13], the [GGM86] construction of PRFs from one-way
functions easily yield puncturable PRFs.

Theorem 3.3 ([GGM86, KPTZ13, BW13, BGI13]). If one-way functions exist, then for all poly-
nomials n(κ) and m(κ), there exists a puncturable PRF family that maps n(κ) bits to m(κ) bits.
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Remark. We note that in the above construction, the size of the punctured key KS grows linearly
with the size of the puncture set S.

3.3 Non-Interactive Witness Indistinguishable Proofs

In this section, we present the definition for non-interactive witness-indistinguishable (NIWI) proofs.
We emphasize that we are interested in proof systems, i.e., where the soundness guarantee holds
against computationally unbounded cheating provers.

Syntax. Let R be an efficiently computable relation that consists of pairs (x,w), where x is called
the statement and w is the witness. Let L denote the language consisting of statements in R. A
non-interactive proof system for a language L consists of a setup algorithm NIWI.Setup, a prover
algorithm NIWI.Prove and a verifier algorithm NIWI.Verify, defined as follows:

• Setup NIWI.Setup(1κ) is a PPT algorithm that takes as input the security parameter 1κ and
outputs a common reference string crs.

• Prover NIWI.Prove(crs, x, w) is a PPT algorithm that takes as input the common reference
string crs, a statement x along with a witness w. (x,w) ∈ R; if so, it produces a proof string
π, else it outputs fail.

• Verifier NIWI.Verify(crs, x, π) is a PPT algorithm that takes as input the common reference
string crs and a statement x with a corresponding proof π. It outputs 1 if the proof is valid,
and 0 otherwise.

Definition 3.4 (NIWI). A non-interactive witness-indistinguishable proof system for a language L
with a PPT relation R is a tuple of algorithms (NIWI.Setup,NIWI.Prove,NIWI.Verify) such that the
following properties hold:

• Perfect Completeness: For every (x,w) ∈ R, it holds that

Pr[NIWI.Verify(crs, x,NIWI.Prove(crs, x, w)) = 1] = 1

where crs ← NIWI.Setup(1κ), and the probability is taken over the coins of NIWI.Setup,
NIWI.Prove and NIWI.Verify.

• Statistical Soundness: For every adversary A, it holds that

Pr[NIWI.Verify(crs, x, π) = 1 ∧ x /∈ L | crs← NIWI.Setup(1κ); (x, π)← A(crs)] = negl(1κ)

• Witness Indistinguishability: For any triplet (x,w0, w1) such that (x,w0) ∈ R and
(x,w1) ∈ R, the distributions {crs,NIWI.Prove(crs, x, w0)} and {crs,NIWI.Prove(crs, x, w1)}
are computationally indistinguishable, where crs← NIWI.Setup(1κ).

Recently, it was shown by Sahai and Waters [SW13] that NIWI proofs can be constructed from
indistinguishability obfuscation and one-way functions.
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3.4 Commitment Schemes

A commitment scheme Com is a PPT algorithm that takes as input a string x and outputs
C ← Com(x). A perfectly binding commitment scheme must satisfy the perfect binding and com-
putational hiding properties :

• Perfectly Binding : This property states that two different strings cannot have the same
commitment. More formally, ∀x1 6= x2, s1, s2 Com(x1; s1) 6= Com(x2; s2)

• Computational Hiding For all strings x0 and x1 (of the same length), for all PPT adver-
saries A, we have that :

|Pr[A(Com(x0)) = 1]− Pr[A(Com(x1) = 1)]| ≤ negl(κ)

Remark. We note that it is in fact sufficient to use a standard 2-round statistically binding
scheme in our construction in Section 4. Note that such a commitment scheme can be based on
one way functions. For simplicity of exposition, however, we will present our construction using a
non-interactive perfectly binding scheme.

4 Our Construction

Let F denote the family of all PPT functions. We now present a functional encryption scheme FE
for F . Our scheme provides the following security guarantees:

1. For any a priori bounded q = poly(κ), FE is q-SIM-secure in the selective model. In this case,
the size of the secret keys in FE grows linearly with q. It follows from [BSW11, BO13] that
such a dependence on q is, in fact, necessary.

2. FE is poly(κ)-IND-secure in the selective model for any unbounded number of message queries
q. In this case, the size of the secret keys is independent of q.

Note that poly(κ)-IND-security follows from 1-SIM-security by a simple hybrid argument. Therefore,
it suffices to prove SIM security. For simplicity of exposition, we will in fact only consider 1-SIM-
security. We remark that our construction and proof easily extends to q-SIM-security where q is a
fixed poly(κ). Later, in Section 6, we discuss how to achieve full security (as opposed to selective
security) for our scheme.

Notation. Let (NIWI.Setup, NIWI.Prove, NIWI.Verify) be a NIWI proof system. Let Com be a
perfectly binding commitment scheme. Let iO be an indistinguishability obfuscator for all efficiently
computable circuits. Let (Key, Puncture, Eval) be a puncturable family of PRF. Let (Gen, Sign,
Verify) be a strongly unforgeable one-time signature scheme. Finally, let (PKE.Setup, PKE.Enc,
PKE.Dec) be a semantically secure public-key encryption scheme.

Let c-len = c-len(1κ) denote the length of ciphertexts in (PKE.Setup, PKE.Enc, PKE.Dec) .
Let v-len = v-len(1κ) denote the length of verification keys in (Gen, Sign, Verify). We shall use a
parameter len = 2 · c-len + v-len in the description of our scheme.

We now proceed to describe our scheme FE = (rFE.Setup, rFE.Enc, rFE.Keygen, rFE.Dec).
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Setup rFE.Setup(1κ): The setup algorithm first computes a CRS crs← NIWI.Setup for the NIWI
proof system. Next, it computes two key pairs – (PK1, SK1) ← PKE.Setup(1κ), (PK2, SK2) ←
PKE.Setup(1κ) – of the public-key encryption scheme. Finally, it computes a commitment C ←
Com(0len).

The public key MPK = (crs, PK1, PK2, C) and the master secret key MSK = SK1. The
algorithm outputs (MPK,MSK).

Encryption rFE.Enc(x,MPK): To encrypt a message x, the encryption algorithm first generates
a key pair (sk, vk) ← Gen(1κ) of the one-time signature scheme. It then computes ciphertexts
c1 ← PKE.Enc(x, PK1; r1) and c2 ← PKE.Enc(x, PK2; r2). Next, it computes a NIWI proof π ←
NIWI.Prove(crs, z, w) for the NP statement z = (z1 ∨ z2) where z1 and z2 are defined as follows:

z1 := (∃x, s1, s2 such that c1 = PKE.Enc(x, PK1; s1) ∧ c2 = PKE.Enc(x, PK2; s2)) (1)

z2 := (∃s such that C = Com(c1‖c2‖vk, s) (2)

A witness wreal = (x, s1, s2) for z1 is referred to as the real witness, while a witness wtrap = s for z2
is referred to as the trapdoor witness.

The honest encryption algorithm uses the real witness wreal to compute π. Finally, it computes
a signature σ ← Sign(c1‖c2‖π, sk) on the string c1‖c2‖π using sk. The output of the algorithm is
the ciphertext CT = (c1, c2, π, vk, σ).

Key Generation rFE.Keygen(f,MSK): On input f ,the key generation algorithm first chooses a
fresh PRF key K ← Key(1κ). It then computes the secret key SKf ← iO(Gf ) where the function
Gf is described in Figure 1. Note that Gf has the public key MPK, the master secret key MSK and
the PRF key K hardwired in it.

Gf (CT)

1. Parse CT = (c1, c2, π, vk, σ).

2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step. Here
z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

4. Compute x← PKE.Dec(c1, SK1).

5. Compute r ← Eval(K, c1‖c2‖vk).

6. Output y = f(x; r).

Figure 1: Functionality Gf

The algorithm outputs SKf as the secret key corresponding to f .

Size of Function Gf . In order to prove that FE is q-SIM-secure, we require the function Gf to
be padded with zeros such that |Gf | = |Sim.Gf |, where the “simulated” functionality Sim.Gf is
described later in Figure 2. In this case, the size of SKf grows linearly with q.
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Note, however, that such a padding is not necessary to prove poly(κ)-IND-security for FE .
Indeed, in this case, the size of the secret keys SKf is independent of the number of message queries
made by the adversary.

Decryption rFE.Dec(CT, SKf ): On input CT, the decryption algorithm computes and outputs
SKf (CT).

This completes the description of FE . We prove the correctness of FE in Appendix B.

Theorem 4.1. Assuming indistinguishability obfuscation for all polynomial-time computable cir-
cuits and one-way functions, the proposed scheme FE is 1-SIM-secure in the selective model.

5 Proof of Security

We now prove that the proposed scheme FE is 1-SIM-secure. As already mentioned, our security
proof easily extends to q-SIM-security, for any a priori fixed q = poly(κ).

We first construct an ideal world adversary aka simulator S in Section 5.1. Next, in Section 5.2,
we prove indistinguishability of the outputs of the real and ideal world experiments via a hybrid
argument.

5.1 Description of Simulator

We describe a simulator S = (S1, S2, S3) that makes black-box use of a real world adversary
A = (A1, A2, A3).

Algorithm S1. S1 first performs a simulated setup procedure. Namely, it first computes a CRS
crs← NIWI.Setup(1κ) for the NIWI proof system and two key pairs – (PK1, SK1)← PKE.Setup(1κ)
and (PK2, SK2)← PKE.Setup(1κ) – for the public-key encryption scheme. Next, it chooses a key
pair for the signature scheme - (sk∗, vk∗)← Gen(1κ). Then, it computes the commitment C in the
following manner:

• First compute c∗1 ← PKE.Enc(~0, PK1) and c∗2 ← PKE.Enc(~0, PK2).

• Next, compute C ← Com(c∗1‖c∗2‖vk∗). Let s denote the randomness used to compute C.

S1 constructs a proof π∗ by using the trapdoor witness s, i.e., π∗ ← NIWI.Prove(crs, y, s), where the
statement y = (c∗1, c

∗
2, vk

∗, PK1, PK2, C). Finally, it computes a signature σ∗ ← Sign(c∗1‖c∗2‖π∗, sk∗).
It sets MPK = (crs, PK1, PK2, C) and the challenge ciphertext CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗).

Algorithm S2. S2 simulates the key generation oracle for adversary A3. Whenever A3 makes a
key query for a function f , S2 performs the following sequence of steps:

1. Query the ideal functionality KeyIdeal on input f . Let y be the output of KeyIdeal .

2. Compute a PRF keyK ← Key(1κ) and then compute a punctured keyK ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

3. Compute the secret key SKf ← iO(Sim.Gf ) where the functionality Sim.Gf is described in
Figure 2. Sim.Gf has the public key MPK, master secret key MSK, the punctured key K ′, the
challenge ciphertext CT∗ and the output value y hardwired in it.
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4. Return SKf to A3.

Sim.Gf (CT)

1. Parse CT = (c1, c2, π, vk, σ).

2. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

3. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step. Here
z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

4. If (c1‖c2‖vk = c∗1‖c∗2‖vk∗) output y and stop.

5. Compute x← PKE.Dec(c1, SK1).

6. Compute r ← Eval(K ′, c1‖c2‖vk).

7. Output y = f(x; r).

Figure 2: Functionality Sim.Gf

Algorithm S3. S3 simulates the decryption oracle for the adversary A3. Let {f} denote the
challenge functions chosen earlier by A2. Now, whenever A3 makes a decryption query CT =
(c1, c2, π, vk, σ), S3 performs the following sequence of steps:

1. If Verify(σ, c1‖c2‖π, vk), then output ⊥ and stop, otherwise continue to the next step.

2. If NIWI.Verify(crs, z, π) = 0, then output ⊥ and stop, otherwise continue to the next step.
Here z = (c1, c2, vk, PK1, PK2, C) is the statement corresponding to π.

3. Compute x← PKE.Dec(c1, SK1).

4. Query DecryptIdeal with input x. Let ~y denote the set of values output by DecryptIdeal.

5. Return ~y to A3.

Remark. Here we assume that the adversary does not make the same decryption query twice.
Note that when the adversary makes the same decryption query more than once, then the simulator
can simply “reuse” a previously computed output. For convenience of notation, we omit this from
our description.

5.2 Indistinguishability of the Outputs

We now describe a series of hybrid experiments H0, . . . ,H11, where H0 corresponds to the real world
and H11 corresponds to the ideal world experiment. In Appendix A, we prove that for every i, the
output of Hi is computationally indistinguishable from the output of Hi+1.

Hybrid H0: This is the real experiment.
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Hybrid H1: This experiment is the same as H0 except in the manner in which the key queries
of the adversary are answered. Let CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗) denote the challenge ciphertext.

Whenever the adversary makes a key query f , we perform the following steps:

1. Compute a PRF keyK ← Key(1κ) and then compute a punctured keyK ′ ← Puncture(K, c∗1‖c∗2‖vk∗).

2. Compute r ← Eval(K, c∗1‖c∗2‖vk∗) and y = f(x; r).

3. Compute the secret key SKf ← iO(Sim.Gf ) where the functionality Sim.Gf is described in
Figure 2. Note that Sim.Gf has the public key MPK, master secret key MSK, the punctured
key K ′, the challenge ciphertext components c∗1, c

∗
2, vk

∗ and the output value y (as computed
above) hardwired in it.

4. Return SKf to A3.

Hybrid H2: This experiment is the same as H1, except that we now answer the key queries of A3

in the same manner as the simulator S2.

Hybrid H3: This experiment is the same as H2, except that the setup algorithm computes the
commitment C in the following manner: let CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗) denote the challenge cipher-

text. Then, C ← Com(c∗1‖c∗2‖vk∗).

Hybrid H4: This experiment is the same as H3, except that we modify the challenge ciphertext
CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗). Specifically, the proof string π∗ is now computed using the trapdoor

witness s where s is the randomness used to compute the commitment C.

Hybrid H5: This experiment is the same as H4, except that in the challenge ciphertext CT∗ =
(c∗1, c

∗
2, π
∗, vk∗, σ∗), the second ciphertext c∗2 is an encryption of zeros, i.e., c∗2 ← PKE.Enc(~0, PK2).

Hybrid H6: This experiment is the same as H5, except that for every key query f , the secret key
SKf is computed as SKf ← iO(Sim.G′f ) where Sim.G′f is the same as function Sim.Gf except that:

1. It has secret key SK2 hardwired instead of SK1.

2. It decrypts the second component of each input ciphertext using SK2. More concretely, in
Step 5 of Sim.G′f , plaintext x is computed as x← PKE.Dec(c2, SK2).

Hybrid H7: This experiment is the same as H6, except that we modify the manner in which
the decryption queries of A3 are answered. For every decryption query CT = (c1, c2, π, vk, σ), we
decrypt c2 using SK2; that is, in Step 3, x← PKE.Dec(c2, SK2).

Hybrid H8: This experiment is the same as H7, except that in the challenge ciphertext CT∗ =
(c∗1, c

∗
2, π
∗, vk∗, σ∗), the first ciphertext c∗1 is an encryption of zeros, i.e., c∗1 ← PKE.Enc(~0, PK1).

Hybrid H9: This experiment is the same as H8, except that we modify the manner in which
the decryption queries of A3 are answered. For every decryption query CT = (c1, c2, π, vk, σ), we
decrypt c1 using SK1; that is, in Step 3, x = PKE.Dec(c1, SK1).
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Hybrid H10: This experiment is the same as H9, except that we change the manner in which
the key queries are answered. For every key query f , the secret key SKf is computed as SKf ←
iO(Sim.Gf ).

Hybrid H11: This experiment is the same as H10, except that we now answer the decryption
queries of A3 in the same manner as the simulator algorithm S3. That is, on receiving a decryption
query CT = (c1, c2, π, vk, σ), we first decrypt c1 using SK1 (as in the previous hybrid) to obtain
x← PKE.Dec(c1, SK1) and then query the ideal functionality DecryptIdeal with input x to receive
~y. We return ~y to A3. Note that this is the ideal experiment.

This completes the description of the hybrid experiments. We prove their indistinguishability
in Appendix A.

6 From Selective to Full Security

Our results can be extended to achieve full security by using either of the following two approaches:

1. We can use complexity leveraging to prove full security of the proposed scheme FE . Specif-
ically, by assuming indistinguishability obfuscation and one-way functions that are sub-
exponentially secure, we can simply guess the challenge messages of the adversary and then
prove security in the same manner as in Section 5. (To be more concrete, we would require
the indistinguishability obfuscation and one-way function to be secure against adversaries
running in time O(2M ), where M is the total length of the challenge message vectors.)

2. Alternatively, following [BCP13, ABG+13], we can use a modified construction based on
differing-inputs obfuscation [BGI+01] and simulation-sound non-interactive zero knowledge
[Sah99] to directly achieve full security in the standard model. We remark that the usage
of differing-inputs obfuscation in the context of functional encryption was recently explored
by Boyle et al. [BCP13] and Ananth et al [ABG+13]. Here, we use the specific approach of
[ABG+13] to achieve full security in our setting of randomized functionalities.

Very briefly, consider a scheme FE ′ which is the same as FE , except for the following modi-
fications:

• In the setup algorithm, we now choose a CRS for a simulation-sound NIZK (as opposed
to NIWI). Further, we do not need to compute the commitment C anymore.

• To encrypt a message x, we compute ciphertexts c1 and c2 as before, but now we simply
prove (via a simulation-sound NIZK) that c1 and c2 are encryptions of the same message.
The rest of the encryption algorithm is the same as before.

• Finally, a secret key SKf for a function f is computed as a differing-inputs obfuscation
(as opposed to an indistinguishability obfuscation) of the functionality Gf (defined in
the same manner as earlier).

The security of FE ′ is proven similarly to FE with the following key modifications. Intu-
itively, now to compute the challenge ciphertexts, the simulator will run the simulator of the
simulation-sound NIZK to compute simulated proofs. Further, in the key hybrid experiment
H6 where we modify the secret keys SKf to use SK2 instead of SK1, we no longer need to argue
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that Sim.Gf and Sim.G′f are functionally equivalent. Instead, we only need to argue that they
“appear” to be functionally equivalent to a computationally bounded adversary. In particular,
from the security of differing-inputs obfuscation, we can extract from an adversary that dis-
tinguishes between H5 and H6, an input ciphertext CT such that Sim.Gf (CT) 6= Sim.G′f (CT′).
Now, from the definition of Sim.Gf and Sim.G′f , it follows that CT must be different from the
challenge ciphertext and must contain c1 and c2 that are encryptions of different messages.
Thus, π in CT is an accepting proof for a false statement, which can be used to contradict
simulation-soundness of the NIZK.
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A Completing the Security Proof

Here we prove that for every i, the outputs of experiments Hi and Hi+1 (as described in Section
5.2) are computationally indistinguishable.

Lemma A.1. Assuming that iO is an indistinguishability obfuscator, hybrid experiments H0 and
H1 are computationally indistinguishable.

Proof. Note that the only difference in H0 and H1 is that in the former experiment, we output iO(Gf )
as the key corresponding to any key query f , while in the latter experiment, we output iO(Sim.Gf ).
In order to prove that these two hybrids are computationally indistinguishable, we show that for
every key query f , Gf and Sim.Gf have identical input-output behavior. Then, by security of
indistinguishability obfuscation, we would have that iO(Gf ) and iO(Sim.Gf ) are computationally
indistinguishable, which in turn would imply H0 and H1 are computationally indistinguishable.

Observation A.2. For any input CT = (c1, c2, π, vk, σ), Gf outputs ⊥ if and only if Sim.Gf outputs
⊥.

Note that both Gf and Sim.Gf output ⊥ if and only if either the signature σ does not verify or
the proof π does not verify; that is, either Verify(σ, c1‖c2‖π, vk) = 0 or NIWI.Verify(crs, y, π) = 0
where y = (c1, c2, vk, PK1, PK2, C). Let us call an input CT = (c1, c2, π, vk, σ) valid if both the
signature σ and proof π verify. Next, we prove that both Gf in H0 and Sim.Gf in H1 have the same
functionality for all valid inputs.

Claim A.3. For any valid input CT = (c1, c2, π, vk, σ), Gf (CT) = Sim.Gf (CT).

Proof. We consider two cases : c1‖c2‖vk 6= c∗1‖c∗2‖vk∗ and c1‖c2‖vk = c∗1‖c∗2‖vk∗. For the first
case, note that by the first property of constrained PRF, it follows that Eval(K, c1‖c2‖vk) =
Eval(K ′, c1‖c2‖vk) = r. Both Gf in H0 and Sim.Gf in H1 decrypt c1 using SK1 to compute x,
and then output f(x, r).

In the second case, Gf computes r ← Eval(K, c∗1‖c∗2‖vk∗), and then computes x by decrypting
c1 and outputs y′ = f(x; r). On the other hand, Sim.Gf simply outputs the hard-wired value y
when c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, note that the value y is computed identically to y′, thereby
ensuring that Gf (CT∗) = Sim.Gf (CT∗).

Using the above claims, we can now describe our reduction. Assume A3 makes ` queries. We
define hybrids H0,i, 0 ≤ i ≤ `, as follows: in H0,i, we respond to the first ` − i queries using
FE.Keygen as in H0, and respond to the last i queries as in H1.

Claim A.4. If ∃ a PPT distinguisher A that can distinguish the outputs of H0,i and H0,i+1 with
non negligible advantage, then there exists a PPT adversary B that can break the security of iO
with non-negligible advantage.

Let C be the challenger for obfuscation. Adversary B works as follows:

1. It first honestly computes (MPK, st′,CT∗).

2. For the first (`−i−1) key queries f by A3, B computes the key for f using rFE.Keygen(·,MSK).
For the last i key queries f by A3, B computes the key for f as in H1.
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3. For the (` − i)’th key query for function f , B chooses a PRF key K, computes K ′ ←
Puncture(K, c∗1‖c∗2‖vk∗) and y = f(x;Eval(K, c∗1‖c∗2‖vk∗)). It then defines programs Gf ,Sim.Gf
and sends them to C, and receives an obfuscation SKf , which it passes on to A.

4. B runs the rest of the experiment in the same manner as in H0 and H1.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H0,i, else it simulates
experiment H0,i+1. Thus, if A distinguishes the outputs with non negligible advantage, then clearly
B breaks the security of indistinguishability obfuscation with non negligible advantage.

Lemma A.5. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hybrid experiments
H1 and H2 are computationally indistinguishable.

Proof. Assume A3 makes ` key queries. We consider ` intermediate hybrids H1,i for 0 ≤ i ≤ ` where
in H1,i, we respond to the first `− i key queries of A3 as in H1, and the remaining i key queries as
in H2. We show that if there exists a PPT distinguisher A that can distinguish the outputs of H1,i

and H1,i+1 with non-negligible advantage, then there exists a PPT adversary B that can break the
security of puncturable PRFs with non-negligible advantage. The construction of B is as follows :

1. B first computes MPK,MSK,CT∗ honestly.

2. For the first (` − i − 1) key queries from A3, B responds in the same manner as in H1. For
the last i key queries, B responds as in H2.

3. For the (`−i)’th key query f , B first sends (c∗1‖c∗2‖vk∗) to the challenger C and receives (K ′, r),
where K ′ = Puncture(K, c∗1‖c∗2‖vk∗) for some PRF key K and r is either Eval(K, c∗1‖c∗2‖vk∗)
or a uniformly random string in Rκ. It then defines the function Sim.Gf as before. B sends
iO(Sim.Gf ) as the key for function f .

4. B runs the rest of the experiment in the same manner as in H1 and H2.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Note that if r was computed as Eval(K, c∗1‖c∗2‖vk∗), then B perfectly simulates experiment H1,i, else
it simulates H1,i+1. Thus, if A can distinguish the outputs of H1,i and H1,i+1 with non-negligible
advantage, then B can break security of puncturable PRFs with non-negligible advantage.

Lemma A.6. Assuming Com is a computationally hiding commitment scheme, hybrid experiments
H2 and H3 are computationally indistinguishable.

Proof. Note that the only difference between experiments H2 and H3 is that C is computed as a
commitment to 0len in the former case and (c∗1‖c∗2‖vk∗) in the latter. Then, assume that ∃ PPT
distinguisher A that can distinguish the outputs of H2 and H3 with non-negligible advantage. Using
A, we can construct a PPT algorithm B that breaks the computational hiding property of Com as
follows:

1. B first runs A1 to obtain x. It then computes (PK1, SK1)← PKE.Setup(1κ), (PK2, SK2)←
PKE.Setup(1κ), crs← NIWI.Setup and (sk∗, vk∗)← Gen(1κ).

2. Next, it computes c∗1 ← PKE.Enc(x, PK1), c
∗
2 ← PKE.Enc(x, PK2) and constructs a valid

proof π∗ using the real witness. Then it signs c∗1‖c∗2‖π∗ using sk∗ to compute σ∗. It sets
CT∗ = (c∗1, c

∗
2, π
∗, vk∗, σ∗)
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3. B sends 0len and (c∗1‖c∗2‖vk∗) to C, and receives C, which is either a commitment to 0len or
(c∗1‖c∗2‖vk∗).

4. B simulates the rest of the experiment as in H2 and H3.

5. Finally, B sends the output of the experiment to A and returns its output to C.

Now, if C is a commitment to 0len, then B perfectly simulates H2, else it simulates H3. Thus, if A
can distinguish the outputs of H4 and H5 with non-negligible advantage, then B breaks the hiding
of Com.

Lemma A.7. Assuming witness indistinguishability of NIWI, hybrid experiments H3 and H4 are
computationally indistinguishable.

Proof. In H3, we use the real witness for proving that c∗1 and c∗2 are encryptions of the same message,
while in H4, we use the trapdoor witness for proving that C is a commitment to (c∗1‖c∗2‖vk∗). Since
NIWI is witness indistinguishable, the two hybrids are computationally indistinguishable.

Lemma A.8. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hybrid experiments
H4 and H5 are computationally indistinguishable.

Proof. We show that if there exists an efficient distinguisher A that can distinguish between H4

and H5, then there exists an efficient adversary B that breaks IND-CPA security. B is defined as
follows:

1. B first receives a public key pk from IND-CPA challenger C.
2. B computes (PK1, SK1)← PKE.Setup(1κ), crs← NIWI.Setup, (sk∗, vk∗)← Gen(1κ) and sets
PK2 = pk. Next, it encrypts the challenge message x using PK1 to compute ciphertext c∗1

3. B sends (~0, x) as its challenge messages to C, and receives a ciphertext c. It sets c∗2 = c. Next,
it computes the commitment C = Com(c∗1‖c∗2‖vk∗).

4. B runs the rest of the experiment in the same manner as in H4 and H5.

5. Finally, B sends the output of the experiment to A.

6. If A outputs H4, then B outputs that c is an encryption of x. Else it outputs c is an encryption
of ~0.

Now, if c is an encryption of x, then B perfectly simulates experiment H4, else it simulates H5.
Then, clearly, if A’s output is correct, then so is B’s output. Hence, if A can distinguish the
outputs of the two experiments with non negligible advantage, then B can win the IND-CPA game
with the same advantage.

Lemma A.9. Assuming NIWI is statistically sound, iO is indistinguishability obfuscator and Com
is perfectly binding, hybrid experiments H5 and H6 are computationally indistinguishable.

Proof. As in the proof of Lemma A.1, we first argue that both Sim.Gf and Sim.G′f have identical
input-output behavior.

Observation A.10. For all inputs CT = (c1, c2, π, vk, σ), Sim.Gf (CT) = ⊥ if and only if Sim.G′f (CT) =
⊥.
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Both Sim.Gf and Sim.G′f output⊥ if and only if either Verify(σ, c1‖c2‖π, vk) = 0 or NIWI.Verify(crs, y, π) =
0 where y = (c1, c2, vk, PK1, PK2, C). Therefore, we only need to consider valid inputs. Next, we
show that any valid input must satisfy one of the two properties listed below.

Claim A.11. Any valid ciphertext CT = (c1, c2, π, vk, σ) should satisfy one of the following prop-
erties :
• c1 and c2 are encryptions of the same message

• c1‖c2‖vk = c∗1‖c∗2‖vk∗.3

Proof. Suppose, on the contrary, there exists a valid input such that it satisfies neither of the proper-
ties. Since NIWI is statistically sound, if the input is valid, then the statement y = (c1, c2, vk, PK1, PK2, C)
must have either a real witness or a trapdoor witness. Since c1 and c2 are encryptions of different
messages, a real witness does not exist. Therefore, for the input to be valid, there must exist
a trapdoor witness; that is, there exists an s such that C = Com(c1‖c2‖vk; s). However, since
C = Com(c∗1‖c∗2‖vk∗) and Com is perfectly binding, it follows that (c1‖c2‖vk) = (c∗1‖c∗2‖vk∗). Thus,
we have a contradiction.

Using the previous claim, we can now argue that both Sim.Gf and Sim.G′f have identical input-
output behavior.

Claim A.12. For all valid inputs CT = (c1, c2, π, vk, σ), both Sim.Gf and Sim.G′f have the same
functionality.

Proof. If both c1 and c2 are encryptions of the same message, then we have that PKE.Dec(c1, SK1) =
PKE.Dec(c2, SK2) = x. Therefore both programs Sim.Gf and Sim.G′f output f(x; r), where r ←
Eval(K, c1‖c2‖vk) = Eval(K ′, c1‖c2‖vk). If c1‖c2‖vk = c∗1‖c∗2‖vk∗, then both Sim.Gf and Sim.G′f
output y, where y is KeyIdeal’s response to query x. Therefore, for all valid inputs, Sim.Gf and
Sim.G′f have identical input-output behavior.

We now describe our reduction. Assume A3 makes ` key queries. Consider intermediate hybrids
H5,i 0 ≤ i ≤ `. In H5,i, we use SK1 for the first ` − i key queries, and SK2 for the remaining i
queries. Now, suppose that there exists a PPT distinguisher A that can distinguish the outputs of
H5,i and H5,i+1. Then, there ∃ an adversary B that can break the security of iO. B is constructed
as follows:

1. B generates MPK,CT∗ as in H5. It sets st′ = SK1, SK2,CT
∗.

2. For the first (` − i − 1) key queries by A, B responds as in H5. For the last i queries, B
responds as in H6.

3. For the (` − i)’th key query f , B queries KeyIdeal with f and receives y. Next, it chooses
a PRF Key K, computes punctured key K ′ ← Puncture(K, c∗1‖c∗2‖vk∗) and defines functions
Sim.Gf and Sim.G′f . B sends Sim.Gf and Sim.G′f to the obfuscation challenger C, receives
challenge obfuscation SKf , which it passes on to A2.

4. B runs the rest of the experiment in the same manner as in H5 and H6.

5. Finally, B sends the output of the experiment to A and forwards A’s response to C.
3We thank Xiang Xe for bringing to our attention the incorrect use of signatures in the proof of this lemma in the

previous version of this paper. The proof has been fixed in the revised version.
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Now, if C returns obfuscation of Gf , then B perfectly simulates experiment H5,i, else it simulates
experiment H5,i+1. Thus, if A distinguishes the outputs with non negligible advantage, then clearly
B breaks the security of indistinguishability obfuscation with non negligible advantage.

Lemma A.13. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound and Com is perfectly binding, hybrid experiments H6 and H7 are statis-
tically indistinguishable.

Proof. As shown in claim A.11, any valid ciphertext CT = (c1, c2, π, vk, σ) is such that either c1
and c2 are encryptions of the same message or c1‖c2‖vk = c∗1‖c∗2‖vk∗. However, recall that for
decryption queries, we only require that CT 6= CT∗.

If both c1 and c2 encrypt the same value, then clearly the use of either secret key is indistin-
guishable. Then, lets consider the case where c1‖c2‖vk = c∗1‖c∗2‖vk∗, yet CT 6= CT∗. In this case,
it must be that π∗‖σ∗ 6= π‖σ. Now, if π 6= π∗, then since vk = vk∗ and (c1‖c2‖π) 6= (c∗1‖c∗2‖π∗), we
have that σ is a forgery for (c1‖c2‖π). On the other hand, if π = π∗, then it must be that σ 6= σ∗.
In this case, we have that σ is a strong forgery for (c1‖c2‖π) = (c∗1‖c∗2‖π∗). We can therefore break
the security of the strongly unforgeable one time signature scheme.

Lemma A.14. Assuming (PKE.Setup,PKE.Enc,PKE.Dec) is IND-CPA secure, hybrid experiments
H7 and H8 are computationally indistinguishable.

Proof. Same as proof for Lemma A.8.

Lemma A.15. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound and Com is perfectly binding, hybrid experiments H8 and H9 are statis-
tically indistinguishable.

Proof. Same as in proof of Lemma A.13.

Lemma A.16. Assuming (Gen, Sign, Verify) is a strongly unforgeable one time signature scheme,
NIWI is statistically sound, iO is indistinguishability obfuscator and comm is perfectly binding,
hybrid experiments H9 and H10 are computationally indistinguishable.

Proof. Same as in proof for Lemma A.9

Lemma A.17. Assuming (Key,Eval,Puncture) is a puncturable family of PRFs, hybrid experiments
H10 and H11 are computationally indistinguishable.

Proof. In H10, on receiving a decryption query CT = (c1, c2, π, vk, σ), we first compute x by decrypt-
ing c1. Next, we compute a fresh PRF keyKi for each fi ∈ {f} and output {fi(x,Eval(Ki, c1‖c2‖vk))}.
On the other hand, in H11, we compute x as in H10, but then query DecryptIdeal on x to receive

{fi(x, ri)} where ri
$← Rκ. Now, if there exists an efficient adversary that can distinguish between

the outputs of H10 and H11 with non negligible probability, then there exists an efficient adversary
that can distinguish between the output of Eval from a truly random string with non negligible
probability, thereby breaking the security of a pseudorandom function.
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B Correctness of FE
Theorem B.1. If (Key,Puncture,Eval) is a PRF, then the proposed scheme FE satisfies correct-
ness.

Proof. We first prove this theorem for a single key. Fix any f ∈ Fκ, ~x ∈ X nκ . Consider the distribu-
tionReal1: {rFE.Dec(CTi,SKf )}ni=1, where (MPK,MSK)← rFE.Setup(1κ), CTi = (ci,1, ci,2, πi, vki, σi)←
rFE.Enc(xi,MPK) for i ∈ [n] and Kf ← rFE.Keygen(f,MSK). Similarly, consider the Ideal1 distri-
bution {f(xi, ri)}ni=1, where ri ← Rκ.

Claim B.2. Assuming Eval(·, ·) is a PRF, Real1 and Ideal1 distributions are computationally
indistinguishable.

Proof. Note that rFE.Dec(CTi,SKf ) = f(xi,Eval(K, ci,1‖ci,2‖vki)). Therefore, the Real1 distribu-
tion is {f(xi,Eval(K, ci,1‖ci,2‖vki))}ni=1. Suppose there exists an adversary A that can distinguish
between the distributions Real1 and Ideal1 with non-negligible advantage. Then there exists an
adversary B that can break the PRF security of Eval(·, ·). The reduction is as follows :

1. PRF challenger C chooses a bit b← {0, 1}.
2. For i = 1 to n

(a) B sends (ci,1‖ci,2‖vki) to C, and receives r. If b = 0, r = Eval(K, ci,1‖ci,2‖vki), else
r ← Rκ.

(b) B computes yi = f(xi, r).

3. B sends ~y to A, and depending on A’s guess, B outputs 0 or 1.

Clearly, if A distinguishes between the distributions Real1 and Ideal1 with non-negligible advan-
tage, then B breaks the PRF security with non-negligible advantage.

This lemma can be extended, via a hybrid argument, to prove that the Real and Ideal distri-
butions are computationally indistinguishable.
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