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Abstract. This paper introduces a new obfuscation called obfuscation of en-
crypted blind signature. Informally, Alice is Signer and Bob is User. Bob needs
Alice to sign a message, but he does not want Alice to know what the message
is. Furthermore, Bob doesn’t want anyone to know the interactive process. So
we present a secure obfuscator for encrypted blind signature which makes the
process of encrypted blind signature unintelligible for any third party, while still
keeps the original encrypted blind signature functionality. We use schnorr’s blind
signature scheme and linear encryption scheme as blocks to construct a new
obfuscator. Moreover, we propose two new security definition: blindness w.r.t
encrypted blind signature (EBS) obfuscator and one-more unforgeability(OMU)
w.r.t EBS obfuscator, and prove them under Decision Liner Diffie-Hellman(DL)
assumption and the hardness of discrete logarithm, respectively. We also demon-
strate that our obfuscator satisfies the Average-Case Virtual Black-Box Proper-
ty(ACVBP) property w.r.t dependent oracle, it is indistinguishable secure. Our
paper expands a new direction for the application of obfuscation.
Keywords: Obfuscation, Blind signature, Indistinguishable security.

1 Introduction

Obfuscation in cryptography has been formally proposed by Barak, Goldreich et al.[1]
at the first time. Although it is a theoretical hotspot, there hasn’t been much progress in
recent years. The implementation of obfuscation mainly depends on how to construct a
secure obfuscator. Informally, obfuscator is an algorithm program which can transform
a program into a new unintelligible program while its functionality holds. Barak et al.
suggested that an obfuscator should satisfy the following three properties:

1. Functionality: the obfuscated program has the same functionality as the original
program.

2. Polynomial Slowdown: the description length and running time of the obfuscated
program are at most polynomially larger than the original program’s.
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3. Virtual Black-Box Property(VBP): Anything that can be efficiently computed from
obfuscated program can be efficiently computed given oracle access to the original
program.

Obfuscation has profound effects on both theory and application, such as soft-
ware protection, homomorphic encryption, removing random oracles and transform-
ing private-key encryption into public-key encryption. Despite all that, Barak et al.
proved the impossibility of obfuscation even under a very weak definition. Later, more
impossible obfuscation results of natural functionalities were shown in [2][3][4][5].
Even so, cryptographic communities has been dedicating to conduct a series of explo-
rations, and they found that there still exist simple classes of functions such as point
functions[6][7][8][2][3][9] with the possibility of obfuscation.

Before 2007, several positive results of obfuscation were mainly about simple func-
tions. The obfuscation of complicated cryptographic functionality was firstly proposed
by Hohenberger et al.[10] in TCC’07. They obfuscated re-encryption and proved the
security of obfuscator in the standard model. In brief, the re-encryption functionality
is the one that takes a ciphertext for a message encrypted under Alice’s public key and
transforms it into a ciphertext for the same message under Bob’s public key. Hohenberg-
er et al. presented an improved security property called ACVBP. Following the security
definition of ACVBP[10], Hada [11] showed a secure obfuscation for encrypted signa-
ture, which generated a signature on a given message under Alice’s secret signing key
and then encrypted the signature under Bob’s public encryption key. Later, on the basis
of Honhenberger’s results, Nishanth Chandran et al. [12] refined the delegation of ac-
cess of re-encryption functionality, and demonstrated the security of collusion-resistant
obfuscation. These are the only known three obfuscations of complicated cryptographic
functionality.

Blind signature has a wide range of applications in e-cash and electronic election.
A blind signature is a protocol introduced by Chaum [13] for protecting the anonymity
of signer, which was based on the RSA digital signature scheme. Unlike general digital
signature scheme, blind signature requires that the signer signs the message without
knowing the message or the resulting signatures while the user can verify it publicly.
It’s an interactive protocol between the signer and user. A blind signature must satisfy
the following properties:

1. Unforgeability: Adversary can not produce a legal blind signature on message after
interacting with signer.

2. Blindness: The signatures of two given messages are computationally indistin-
guishable even under a set of known message-signature pairs.

Afterwards, on the basis of Schnorr’s signature scheme, Okamoto[14] put forward
a blind signature scheme named Schnorr’s blind signature whose security was based on
discrete logarithm problem. Schnorr[15] then proved its security.

In this paper, we firstly use Schnorr’s blind signature scheme and linear encryption
scheme[16] as blocks to construct a secure obfuscator for blind signature, which is
complete and verifiable. In order to prove the security of the obfuscator, we propose
two new security definitions, Blindness w.r.t encrypted blind signature(EBS) obfuscator
and one-more unforgeability (EBS) obfuscator, to prove Theorem 5. The main method



is constructing different adversaries to break the hardness assumption under security
definition of ACVBP w.r.t dependent oracle, the scheme is insecure if any adversary
succeeds. The specific progress refers to section 5. We also prove that the OMU w.r.t
EBS functionality implies OMU w.r.t EBS obfuscator under the assumption that EBS
obfuscator satisfies ACVBP w.r.t dependent oracle set. Obviously, we have OMU w.r.t
EBS obfuscator. At last, we present the security proof of EBS obfuscator. i.e., the EBS
obfuscator satisfies ACVBP w.r.t dependent oracle. Thus, we illustrate that under the
ACVBP w.r.t dependent oracle, generating a blind signature on a message and then
encrypting the signature are functionally equivalent to encrypt the sign key and then
generate a blind signature on the message.

The paper is organized as follows: Section 2 gives preliminaries which contain three
parts; Section 3 proposes new security definitions with respect to the basis of theorem’s
proof; Then section 4 constructs the secure obfuscator for special EBS functionality and
section 5 gives the proof .

2 Preliminaries

In this section, we present the basic security definition and the hardness assumption that
our proofs rely on.

2.1 Bilinear Maps

Set BMsetup be an initialization algorithm: on input security parameter 1k, outputs
the bilinear map parameters as pq, g,G,GT , eq, where G,GT are groups of prime order
q P Θp2kq, g is a generator of G and e is an efficient bilinear mapping from G ˆ G to
GT . The mapping e satisfies the following two property:

– Bilinear: For all g P G and a, b P Zq, epga, gbq “ epg, gqab.
– Non-degenrate: If g generates G, then epga, gbq ‰ 1.

2.2 Complexity Assumptions

Definition 1. (DL Assumption) For every PPT machine D, every polynomial pp¨q, all
sufficiently large n P N, and every z P t0, 1uploypnq,

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–

p “ pq,G,GT , e, gq Ð S etupp1nq;
a Ð Zq; b Ð Zq; r Ð Zq; s Ð Zq; : decision “ 1
decision Ð Dpp, pga, gbq, pgr`s, pgaqr, pgbqsq, zq.

fi

fl´

Pr

»

–

p “ pq,G,GT , e, gq Ð S etupp1nq;
a Ð Zq; b Ð Zq; r Ð Zq; s Ð Zq; t Ð Zq; : decision “ 1
decision Ð Dpp, pga, gbq, pgt, pgaqr, pgbqsq, zq.

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ppnq



2.3 The Definition of General Security

In this subsection we review the security definition of public-key encryption(PKE)
scheme and digital blind signature(DBS) scheme. S etup is an algorithm that gener-
ates a parameter, on security parameter 1n, which is used commonly by multiple users
in a pair of PKE and DBS schemes.

A probabilistic public key cryptosystem PKE is a probabilistic polynomial time
Turing machine Π that

(1)EKG: on inputs p generates a pair of pubic-secret key ppk, skq and outputs the
description of two algorithms, E and D such that

(2)E is a probabilistic encryption algorithm: for some constants p , public key pk
and a plaintext m, returns the ciphertext c, let MS pp, pkq be the message space defined
by pp, pkq.

(3)D is a deterministic decryption algorithm: for some constants p, secret key sk
and ciphertext c, returns the plaintext m.

Definition 2. (Indistinguishability of Encryptions against CPAs) A PKE scheme pEKG,
E,Dq satisfies the indistinguishability if the following condition holds: For every PPT
machine pair pA1, A2q(adversary), every polynomial pp¨q, all sufficiently large n P N,
and every z P t0, 1upolypnq,

2 ¨ Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð EKGppq;
pm1,m2, hq Ð A1pp, pk, zq; b Ð t0, 1u; c Ð Epp, pk,mbq;
d Ð A2pp, pk, pm1,m2, hq, c, zq;
b “ d.

fi

ffi

ffi

fl

´ 1 ď
1

ppnq

where we assume that A1 produces a valid message pair m1 and m2 P MS pp, pkq and
a hints h.

A digital blind signature DBS also contains three algorithms:
(1)S KG: generates a pair of pubic-secret key ppk, skq on input p.
(2)pS ,Uq is a probabilistic interactive signing algorithm: for some constants p ,

secret key sk and l-bit plaintext m “ m1m2 ¨ ¨ ¨ml P MS pp, pkq, the execution of algo-
rithm S pskq (by signer), and algorithm Uppk,mq (by user) for message m generates the
signature σ, where MS pp, pkq is the message space defined by pp, pkq.

(3)V is a deterministic verification algorithm: for some constants p, public key pk,
message m and signature σ, if σ is the valid signature of m, it accepts; Otherwise returns
K.

The security of a blind signature scheme includes one-more unforgeability and
blindness.

Definition 3. (Blindness) A blind signature scheme DBS “ pS KG, pS ,Uq,Vq is called
blind if for any efficient algorithm A3, all sufficiently large n P N, and every z P
t0, 1upolypnq, there exists

2 ¨ Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq;
b Ð t0, 1u; pσ0, σ1q Ð Aă¨,Uppk,mbqą

1,ă¨,Uppk,m1´bqą
1

3 pp, pk, zq;
b˚ Ð A3pσ0, σ1q;
b “ b˚.

fi

ffi

ffi

fl

´ 1 ď
1

ppnq



where A3 is the malicious Signer and U is the honest user. If σ0 “K or σ1 “K, then
the Signer is not informed about the other signature.

Note that we use Xă¨,Ypy0qą
1,ă¨,Ypy1qą

1
to define the process that X invokes arbitrarily

ordered executions with Ypy0q and Ypy1q, but interacts with each algorithm only once.

Definition 4. (One-more Unforgeability) A DBS scheme pS KG, pS ,Uq,Vq is unfor-
getable if for any efficient algorithm A4(the malicious user), every polynomial pp¨q,
all sufficiently large n P N, and every z P t0, 1upolypnq, there exist

Pr

»

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq;

ppm˚1 , σ
˚
1 q, . . . , pm

˚
k`1, σ

˚
k`1qq Ð A!S p,sk"

k

4 pp, pk, zq;
i f m˚i ‰ m˚j f or i ‰ j;
Vpp, pk,m˚i , σ

˚
i q “ Accept f or all i; then return 1.

fi

ffi

ffi

fl

ď
1

ppnq

where S p,sk is the signing oracle (circuit) .

Note that we use X!Y"k
to define the process that X samples access to Y for at most k

times.

3 Construct the Secure Obfuscator for Special EBS Functionality

This section presents a secure obfuscator for the blind signature and proves the security
based on the generalized ACVBP definition.

3.1 Schnorr’s Blind Signature

We use Schnorr’s blind signature scheme[14] as a block to build the EBS functionality.
The specific process is as follows:

S KG(p)

1. Parses p “ pq,G,GT , e, gq.
2. Selects g1 P G and x P Zq randomly.
3. Outputs the secret key sk “ gx

1 and public key pk “ pg1, ggx
1q, where y “ ggx

1 .

S ign(p, sk,m)

1. Parses p “ pq,G,GT , e, gq.
2. Signer selects k P Zq randomly and computes t “ gk mod p, then sends t to User.
3. User selects α, β P Zq randomly and computers ω “ tgαyβ mod p, then computes

c “ Hpm||ωq and c1 “ c´ β mod q, sends c1 to Signer.
4. Signer computes u “ k ´ c1 ¨ sk mod q, and sends u to User.
5. User computes v “ u` α mod q.
6. User outputs signature σ “ pc, vq.

Veri f y(p, pk,m, σ)

1. Parses p “ pq,G,GT , e, gq, pk “ pg1, ggx
1q, m “ m1,m2, . . . ,mn, and σ “ pc, vq.

2. Computes gvyc “ ω.
3. Accepts if Hpm||ωq “ c; otherwise outputs K.



3.2 Linear Encryption Scheme

Boneh’s linear encryption scheme[16] is another block to build the EBS functionality.
The detail is as follows:

EKG(p):

1. Parses p “ pq,G,GT , e, gq.
2. Selects a P Zq and b P Zq randomly.
3. Outputs the secret key ske “ pa, bq and public key pke “ pga, gbq.

Enc(p, pke,m)

1. Parses p “ pq,G,GT , e, gq.
2. Selects r P Zq, s P Zq randomly.
3. Computes pc1, c2, c3q “ ppgaqr, pgbqs, gr`smq.
4. Outputs c “ pc1, c2, c3q.

Veri f y(p, ske, c)

1. Parses p “ pq,G,GT , e, gq, ske “ pa, bq, and c “ pc1, c2, c3q.
2. Outputs m “ c3{pc

1{a
1 {c1{b

2 q.

Theorem 1. [16] Under DL assumption, the linear encryption scheme satisfies the in-
distinguishability.

3.3 The Obfuscator for the EBS Functionality

EBS functionality consists of the blind signature scheme and encryption scheme above.
We construct a circuit Cp,sk,pke which contains a common parameter p, the signing secret
key sk and the public encryption key pke. Note that the important point of obfuscation
is how to rerandomize the Enc to make the two results scalar homomorphic. Here, we
use the ReRand algorithm, given a cipertext pc1, c2, c3q and public key pke “ pga, gbq,
to rerandomize the ciphertext pc1, c2, c3q as following: pc1pgaqr

1

, c2pgbqs1 , c3gr1`s1q Ð

ReRandpp, pke, pc1, c2, c3qq, where r1, s1 P Zq are random parameters.

Given a circuit Cp,sk,pke , the detail of our obfuscator for the EBS Functionality
Ob fEBS is as below:

1. Extracts pp, sk, pk, pkeq, where sk “ gx
1 ,pk “ ggx

1 and pke “ pga, gbq.
2. Parses p “ pq,G,GT , e, gq .
3. Signer runs Encpp, pke, skq Ñ pc1, c2, sk1q “ ppgaqr, pgbqs, gr`sgx

1q to obtain a new
signing secret keysk1 “ gr`sgx

1, computes the corresponding public signing key
pk1 “ pg1, ggr`sgx

1q, where y1 “ ggr`sgx
1 , and sends pc1, c2q to User.

4. Signer selects a random parameter k P Zq, then sends t “ gk to User.
5. Randomly chooses α, β P Zq, User counts ω1 “ tgαpy1qβ, c1 “ Hpm||ω1q, and

c2 “ c1 ´ β, then transmits c2 to Signer.
6. Signer gives User u1, where u1 “ k ´ c2 ¨ sk1.



7. User gets pc1, v1q=pHpm||ω1q, u1 ` αq.
8. User computes c3 “ c1{a

1 c1{b
2 c1, rerandomizes the ciphertext pc1, c2, c3q as C1 “

pc11, c
1
2, c

1
3q Ð ReRandpp, pke, pc1, c2, c3qq

(Note:pc11, c
1
2, c

1
3q “ ppg

aqr`r1 , pgbqs`s1 , c1gr`r1`s`s1 ).
9. User computes C2 Ð Encpp, pk, v1q. (We define C2 “ pc21 , c

2
2 , c

2
3q).

10. User outputs the encrypted blind signature σ “ pC1,C2q.

The output signature σ “ pC1,C2q is blind to the Signer, as Signer couldn’t recog-
nize either pc1, v1q or pα, βq. But User can verify the signature σ by following verifica-
tion algorithm Vpp, pk,m, σq:

1. Computes c1 “ c13{ppc
1
1q

1{a
pc12q

1{b
q, v1 “ c23{ppc

2
1q

1{a
pc22q

1{b
q, gv1y1c

1

“ pω, and
Hpm||pωq “ pc.

2. If pc “ c1, accepts σ “ pC1,C2q; otherwise outputs K.

Obviously, the obfuscation can be executed in polynomial time and has the same
functionality compared with the original blind signature. So we omit the two proofs
about functionality and polynomial slowdown.

4 The New Security Definition of the Blind Signature in the
Context of EBS

We modify the above definitions to adapt to our proposals in the context of EBS. As we
need to prove the security of blind signature in the presence of the obfuscator we pro-
posed. In this section, we allow the Signer to access the obfuscation circuit as follows:

Definition 5. (Blindness w.r.t. EBS Obfuscator) An encrypted signature scheme EBS “
pS KG, EKG, pS ,Uq,Vq w.r.t obfuscator is called blind if for any efficient algorithm A3,
all sufficiently large n P N, and every z P t0, 1upolypnq, there exists

2¨Pr

»

—

—

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq; ppke, skeq Ð EKGppq;
C1 Ð Ob f pCp,sk,pkeq;
b Ð t0, 1u; pσ0, σ1q Ð Aă¨,Uppk,mbqą

1,ă¨,Uppk,m1´bqą1

3 pp, pk, pke,C1, zq;
b˚ Ð A3pσ0, σ1q;
b “ b˚.

fi

ffi

ffi

ffi

ffi

fl

´1 ď
1

ppnq

where A3 is the malicious Signer and U is the honest user. If σ0 “K or σ1 “K, then
the Signer is not informed about the other signature.

Definition 6. (One-more Unforgeability w.r.t. EBS Obfuscator) An EBS scheme pS KG, EKG,
pS ,Uq,Vq is unforgetable if for any efficient algorithm A4(the malicious user), every
polynomial pp¨q, all sufficiently large n P N, and every z P t0, 1upolypnq, there exists

Pr

»

—

—

—

—

–

p Ð S etupp1nq; ppk, skq Ð S KGppq; ppke, skeq Ð EKGppq;
C1 Ð Ob f pCp,sk,pkeq;

ppm˚1 , σ
˚
1 q, . . . , pm

˚
k`1, σ

˚
k`1qq Ð A!S p,sk"

k

4 pp, pk, pke,C1, zq;
i f m˚i ‰ m˚j f or i ‰ j ;
Vpp, pk,m˚i , σ

˚
i q “ Accept f or all i; then return 1.

fi

ffi

ffi

ffi

ffi

fl

ď
1

ppnq



where S p,sk is the signing oracle (circuit) .

Definition 7. (ACVBP w.r.t Dependent Oracles) Let T pCq be a set of oracles dependen-
t on the circuit C. A circuit obfuscator Obf for C satisfies the ACVBP w.r.t dependent
oracle set T if the following condition holds: There exists a PPT oracle machine S
(simulator) such that, for every PPT oracle machine D (distinguisher), every polynomi-
al pp¨q, all sufficiently large n P N, and every z P t0, 1upolypnq,

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–

C Ð Cn;
C
1

Ð Ob f pCq; : b “ 1
b Ð D!C,TpCq"pC

1

, zq.

fi

fl´Pr

»

–

C Ð Cn;
C
2

Ð S!C"p1n, zq; : b “ 1
b Ð D!C,TpCq"pC

2

, zq.

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ppnq

where D!C,TpCq" means that D has sampling access to all oracles contained in T pCq
in addition to C.

5 The Security of Special EBS Obfuscator

In this section, we attribute the the security of special EBS obfuscator to DL assumption
and the random oracle model. Although our obfuscation can remove the random oracle
in theory, there still have no effective methods to do so. The reason why we prove it in
random oracle model is that the signature scheme we choose is secure in random model,
which is a inherent property of the original signature scheme.

At first, we will prove the completeness property of our special EBS obfusca-
tor. Informally, the signature is complete if for any message m, verification algorithm
Vpp, pk,m, σq always set up, i.e., the probability: PrVpp,pk,m,σq “ 1.

Lemma 1. The EBS obfuscation is complete.

Proof. Once the user receives the signature σ “ pC1,C2q, he finishes the following
proceeds in a polynomial reduction:

1. Computes c1 “ c13{ppc
1
1q

1{a
pc12q

1{b
q.

2. Computes v1 “ c23{ppc
2
1q

1{a
pc22q

1{b
q.

According to the verification algorithm, he has gv1py1qc
1

“ gu1`αggx
1c1 “ gu1`α`gx

1c1 .
As u1 “ k´c2 ¨ sk1 and c2 “ c1´β, he obtains the equation u1`α`gx

1c1 “ k`α`βsk1.
Thus, gv1y1c

1

“ gkgαgβsk1 . Since t “ gk and y1 “ gsk1 , he gets gv1y1c
1

“ tgαgβ “ ω1.
Then, the equation Hpm||ω1q “ c1 must be established. We outcome the completeness
of EBS obfuscation.

Theorem 2. Under DL assumption, for the EBS obfuscator and two messages m0, m1
selected by the malicious Signer A3, the distributions of σ0 and σ1 are computationally
indistinguishable.

Proof. The blindness of EBS obfuscator follows directly from the hardness of DL as-
sumption in the group G. More formally, we show that if an adversary A3 can distin-
guish the signatures pσ0, σ1q of two message m0 and m1 under sk with non-negligible



probability, then we construct an adversary A1 that will break the DL assumption with
advantage ε as well.

At first, we analyze the result of EBS obfuscator: we get σ “ pC1,C2q “ ppgaqr`r1 ,
pgbqs`s1 , c1gr`r1`s`s1 , pgaqr

2

, pgbqs2 , v1gr2`s2q, where r, s, r1, s1, r2, s2 are all random pa-
rameters. Through the process of obfuscation above, we have c1 “ Hpm||ω1q, v1 “
k´c1 ¨ sk1`β ¨ sk1`α, where k, α, β are random and ω1 “ gkgαpy1qβ. So when the secret
key sk1 is fixed, v1 depends on the value of c1 (i.e, v1 and c1 are linearly dependent). Thus
the value of C2 relies on c1. Since C1 and C2 have the same form, we can only consider
C1 in the following work(C2 also has the same result, we omit it here). Let ps “ s ` s1,
pr “ r ` r1, so we have C1 “ pgpr, gps, gpr`psq.

A1 works as follows:

– A1 receives as input a tuple pg, pa, bq, B “ gpr,K “ gps,Wq where g is a random gen-
erator of the group G and r, s are random exponents. The goal of A1 is to determine
whether W “ gpr`ps.

– A1 picks a random generator g of group G.
– On receiving two messages m0 and m1 from A3, A1 flips a bit b randomly and sends

the signature σb :“ ppgaqpr, pgbqps, cbWq as the signature of mb to A3.
– A3 replies with a bit b˚. A1 simply outputs 1 if b “ b˚ (i.e., guessing that W “

gpr`ps); otherwise outputs a random bit(i.e., W is a random parameter).

It is easy to see that when W is random, the signature σb is independent of b and
hence the success probability of A3 is exactly 1

2 in this case. When W “ gpr`ps, the sig-
nature σb has the same distribution as the result of EBS obfuscator. According to the
assumption, the adversary A3 has advantage at least ε. That is, A1 succeeds in determin-
ing whether W “ gpr`ps with non-negligible advantage, A1 breaks the DL assumption.

Theorem 3. [15] The blind signature is one-more unforgeable if discrete logarithm is
hard.

Theorem 4. Let T pCp,sk,pkeq be S p,sk. If the EBS obfuscator satisfies ACVBP w.r.t de-
pendent oracle set T , then the one-more unforgeability(OMU) w.r.t the EBS functional-
ity implies the one-more unforgeability w.r.t EBS obfuscator.

Proof. We show that, if there exists an adversary A4 to break the OMU w.r.t Obf when
the OMU w.r.t EBS is satisfied, then it will contradict the ACVBP w.r.t dependent oracle
set T of EBS obfuscator. Let the distinguisher D has sample access to T pCp.sk,pkeq to
check whether A4 succeeds in breaking OMU w.r.t Obf.

1. Inputs a circuit C(either an obfuscated circuit or a simulated circuit) and an auxiliary-
input z.

2. Extracts pp, pk, pkeq through sampling access to Cp,pk,pke .

3. Samples access to S p,sk at most k times ppm˚1 , σ
˚
1 q, . . . , pm

˚
k , σ

˚
k qq Ð A!S p,sk"

k

4 pp, pk,
pke,C, zq to simulate pm˚k`1, σ

˚
k`1q.

4. Vpp, pk,m˚k`1, σ
˚
k`1q “ Accept for mk`1 ‰ mi where i P t1, ku.

If C is an obfuscated circuit, then the probability D outputs 1 which is equal to the prob-
ability that A4 breaks OMU w.r.t Obf, which is non-negligible by the assumption. And



if C is a simulated circuit, then the probability that D outputs 1 is negligible, otherwise,
A4 can break the OMU w.r.t EBS functionality. So the probability which ACVBP es-
tablished is non-negligible. Hence it will contradict the ACVBP w.r.t dependent oracle
set T of EBS obfuscator. Theorem is established.

Theorem 5. Let T pCp,sk,pkeq be S p,sk. The EBS obfuscator satisfies ACVBP w.r.t depen-
dent oracle set T under DL assumption.

Proof. According to the EBS obfuscator we proposed, the security proof of obfuscator
containing an interactive process between Signer and User is a little different from the
previous work. We use the variant of Hada’s proof method. At first, we construct a
simulator S to simulate the behaves of the obfuscated circuit; the execution process is
as follows(Note that the value pp, pk, pkeq is easy to get through sampling access to
Cp,pk,pke . So we mainly focus on psk1, pc1, c2qq.):

1. Inputs the security parameter 1n and an auxiliary-input z.
2. Extracts pp, pk, pkeq through sampling access to Cp,pk,pke .
3. Parses p “ pq,G,GT , e, gq and pk “ pg1, ggx

1q.
4. Randomly selects Junk Ð G.
5. Computes c1, c2, c3 Ð Encpp, pke, Junkq and sets sk1 “ c3.
6. Outputs psk1, pc1, c2qq.

And then we consider the worst case that the interactive values are captured by
adversary already, i.e., the value of k, t, c2, u1, v1, ω1 are known(ω1 can get by comput-
ing gv1y1c

1

), we proved the output distribution of S is indistinguishable from the real
distribution pC1,C2q for any PPT distinguisher. In particular, when the distinguish-
er is permitted to sampling access to CS “ tCp,sk,pke , S p,sku, assume the probability
that a distinguisher D!C,S" distinguishes the two output distributions above is non-
negligible. In other word, the probability of the following formula is non-negligible.
And let z “ pk, t, c2, u1, v1, ω1q be the auxiliary-input, we have:

Real one:

Pr

»

—

—

—

—

—

—

–

p Ð S etupp1nq; ppke, skeq Ð EKGppq;
ppk, skq “ pggx

1 , gx
1q Ð S KGppq;

pc1, c2, sk1q Ð Encpp, pke, skq;
pk1 “ pg1, ggr`sgx

1q;
b Ð D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq;
b “ 1.

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Junk one:

Pr

»

—

—

—

—

—

—

—

—

–

p Ð S etupp1nq; ppke, skeq Ð EKGppq;
ppk, skq “ pggx

1 , gx
1q Ð S KGppq;

Junk Ð G;
pc1, c2, sk1q Ð Encpp, pke, Junkq;
pk1 “ pg1, ggr`sgx

1q;
b Ð D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq;
b “ 1.

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl



Third we construct an adversary pA1, A2q to break the indistinguishability of the
linear encryption scheme. A1 produces a message pair pm1,m2q “ psk, Junkq and an
associated hint h “ pk. Given a ciphertext c(of either m1 or m2), A2 distinguishes the
results of m1 and m2 by distinguisher D as follows:

1. Parses p “ pq,G,GT , e, gq and pke, cipertext c and auxiliary z “ pk, t, c2, u1, v1, ω1q.
2. Get the output m1,m2 of A1, h “ pk “ ggx

1 and c “ pc1, c2, sk1q, let pk1 “ gc3 .
3. Simulates D!C,S"ppp, pke, pk1, sk1, pc1, c2qq, pk, t, c2, u1, v1, ω1qq.
4. Outputs the result of D.

If c is a ciphertext of m1, then the probability A2 outputs 1 which is equal to the first
probability, otherwise, it is equal to the later probability. According to the Theorem
1, the difference of the two probability above is negligible which contradicts to the
assumption. Theorem is established.

6 Conclusion

A new functionality for obfuscation has been proposed in this paper under DL assump-
tion and the hardness of discrete logarithm. Following Hohenberger and Hada’s steps,
we present two new security definitions and our scheme is a further application, which
not only protects the Signer’s secret key from revealing, but also keeps the signature
blinding from the Signer. This functionality is very useful in E-Cash and E-Vote. At
the same time, our scheme resists different PPT adversaries and satisfies ACVBP w.r.t
dependent oracle property. Furthermore, we will continue to fucusing the research and
application of obfuscation.
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