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Abstract. We revisit the estimation of parameters for use in applications of the BGV homomorphic
encryption system, which generally require high dimensional lattices. In particular, we utilize the BKZ-
2.0 simulator of Chen and Nguyen to identify the best lattice attack that can be mounted using BKZ
in a given dimension at a given security level. Using this technique, we show that it should be possible
to work with lattices of smaller dimensions than previous methods have recommended, while still
maintaining reasonable levels of security. As example applications we look at the evaluation of AES
via FHE operations presented at Crypto 2012, and the parameters for the SHE variant of BGV used
in the SPDZ protocol from Crypto 2012.

1 Introduction

Estimating parameters for lattice-based cryptographic systems is a major problem. Such systems are be-
coming increasingly of interest since, to the best of our knowledge, they offer resistance to attacks that arise
from the future development of a quantum computer; and in addition can offer functionality not found in
traditional public key systems. This problem of parameter estimation becomes more pronounced when one
considers the lattice-based schemes underlying Fully Homomorphic Encryption (FHE) [7]. This is particu-
larly tricky as the lattice dimension in such schemes needs to be very large, so large in fact that it is unclear
whether our existing methods for parameter estimation even apply. It is to this task that the current paper
is focused.

The traditional measure of security of a lattice is the estimated root Hermite value δB (see later for a
definition), for a lattice basis B output by a lattice basis reduction algorithm. In the literature one sees
statements such as a δB of 1.05 as being “not secure”, but a value of δB of 1.005 as being “secure”. These
values are given, and evidence is presented for the correctness of such statements, when in the context of
relatively low lattice dimension. It is then assumed that such statements also hold when applied to large
dimensional lattices, since the overall lattice dimension is not assumed to affect the difficulty of lattice
reduction too much. However, such an extrapolation is clearly not valid; lattice basis reduction will be
harder in higher dimension. Hence, it is not realistic to expect the same value of δB to be achieveable in high
dimension as it is in low dimension.

In various works on FHE, for example [8], a method to produce parameter estimates which extrapolates
the run time of existing lattice basis reduction implementations is used. This extrapolation is needed so as
to obtain security estimates for high dimensional lattices, which are out of the reach of existing software. In
particular this line of approach follows from the analysis of Lindner and Peikert [10], where an extrapolation
of the performance of the Block Korkine Zolotarev (BKZ) [14] algorithm in NTL is performed. This itself
poses some problems as the implementation of BKZ within NTL is very old (dating from the 1990’s in
some respects) and does not take into account the various optimizations and improvements which have been
introduced over the years.
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It turns out that on one hand the analysis in Lindner and Peikert extrapolates the run times of an
implementation which does not use modern techniques, whilst on the other hand we show that the parameter
estimates are too conservative. This could be explained by the fact that Lindner and Peikert look at a
decoding attack, as opposed to our examination of a distinguishing attack. The decoding attack is slightly
more powerful than the distinguishing attack. The decoding attack could benefit from the application of
extreme pruning techniques, and the type of analysis conducted here, but it is unclear how one could
analytically analyse the application of extreme pruning to decoding.

The BKZ algorithm, as one would implement it today, has a number of parameters which one can set
to obtain different run-times and output qualities. Such parameters include the block size β, the number
of rounds R of BKZ one runs (where each round consists of d − β applications of finding short vectors in
β dimensional projected lattices), and so-called pruning parameters for the search in the projected lattices.
Fortunately, in [2], Chen and Nguyen present a simulation algorithm for their improved variant of BKZ. This
simulation algorithm allows one to estimate the output quality of a lattice produced by the BKZ algorithm
when performing R rounds with block size β. They also provide an estimate for the number of basic operations
needed to perform each search, for varying values of the block size β. The term basic operation is deliberately
fuzzy, but in this paper we shall take it to mean the number of nodes visited in all of the searches in the
projected lattices.

Using the simulation algorithm in [2] one obtains the following “standard” method of determining the
hardness of a given set of lattice security parameters. One first estimates the value of δB one would need to
obtain so as to break the system, one then uses the BKZ simulator to determine how many operations this
would require, and then one can deem the parameters to be secure or not. However, this in itself implies
that the parameters have already been chosen, which have probably been done via appealing to the above
rule of thumb in relation to “secure” values of δB , and by extrapolation of the runtime of existing software.

We start this work with the idea of achieving a more rational method of obtaining suitable parameters for
lattice-based systems in high dimension; with a special focus on FHE systems. We will still be utilizing the
simulation algorithm of [2], but in a way to generate parameters as opposed to testing them. In FHE systems
the underlying hard problem is essentially the bounded distance decoding problem associated to LWE based
lattices. This in effect has three parameters the dimension n (i.e. the ring dimension when considering ring-
LWE based schemes such as the BGV system [1]), the modulus q and the distance between a lattice vector
and the target vector. In LWE systems, this last quantity is essentially given by the standard deviation r
chosen in the Gaussian sampling of the error vector. For fixed n we know that as the ratio r/q becomes
larger the problem becomes harder to solve.

In BGV it is common to fix the value of r, and hence the only parameters one can play with are q and n.
On one hand we would like q to be large so as to allow deeper circuits to be evaluated by the FHE scheme,
but a large q implies low security by the above rule of thumb. To compensate for this one also selects large
values of n, as can be seen in [8] where rings of dimension over 60000 are considered. Thus there is a tension
in selecting q and n, between the evaluation power and the security of the resulting scheme.

In this paper we adopt the following approach . We first select a security parameter sec. This is a value,
such as 80, 128 or 256, for which we feel that visiting 2sec nodes in a BKZ algorithm is infeasible. Then, for a
particular lattice dimension d (which for reasons we will explain later satisfies d ≥ n) we determine the best
δB one could obtain via a BKZ algorithm limited to visiting 2sec nodes. This step is performed by using the
BKZ 2.0 simulator from [2] called with various values of β and R on the estimated Gram-Schmidt lengths of
an LLL-reduced basis of a random, d dimensional lattice. The notion of a random lattice will be explained in
the next section. In this way the δB we obtain is not a fixed value (such as 1.005) but is in essence a function
of d and sec. We then utilize this δB value in the distinguishing attack analysis of Micciancio and Regev [11],
so as to obtain an equation linking n and q, in a way which guarantees 2sec security. This equation can then
be combined with any equation linking q and n needed to obtain evaluation of circuits of the correct depth,
so as to then obtain a given set of parameters for a given specific application and/or system.

It should be noted first and foremost that things change over time. The available computing power
increases as time passes by and new algorithms or attacks can be discovered. Furthermore, it is tricky to
make claims about the security of lattice schemes, because it is often unclear how the behaviour of attacks in
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low dimensions extrapolates to higher dimensions. This work analyses one attack, which is currently believed
to be the best generic attack against lattice-based schemes. It is currently unknown whether generic attacks
are the best attack in every setting. In structured lattices, such as ideal or symplectic lattices, there may exist
better attacks that are not yet known to the cryptographic community. Finally, in order to have confidence in
any cryptographic scheme, there should be a reasonably large margin between parameters that are trivially
broken and recommended secure ones. It is important to take this into account, especially when selecting
parameters for lattice-based schemes.

2 Lattice Background

In this section we present the basics on lattices which we will require, and in addition present our notation.
A (full rank) lattice of dimension d is the discrete subgroup of Rd generated (over Z) by a set of vectors

[b1, . . . ,bd] in Rd called the basis. It is common to represent the basis as a matrix B in which row i of the
matrix B is given by the vector bi (all vectors will be row vectors). Note that this is mathematically not
so nice as we then always deal with row vectors, but from a programming point of view it is nicer due to
being able to deal with swapping rows (i.e. basis vectors) via pointer arithmetic. Therefore, this convention
is common in the literature on lattice basis reduction. We write

L(B) = {z ·B : z ∈ Zd}.

A lattice basis is not unique and each basis is related to another via the relation B′ = Z ·B where Z ∈ GLd(Z),
i.e. Z is an integer matrix with determinant ±1. We often use the shorthand L for L(B) if the underlying
basis (which of course does not really matter) is clear.

On vectors in Cd we can define the following norms

‖x‖p =


(∑d

i=1 |xi|p
)1/p

p 6=∞

maxdi=1 |xi| p =∞.

Being a discrete structure there is a well defined quantity of a non-zero minimum of the lattice, which we
denote by

λ
(p)
1 (L) := min{‖x‖p : x ∈ L,x 6= 0}.

We can also define the successive minima λ(p)
i (L), which are defined as the smallest radius r such that the

d-dimensional ball of radius r centred on the origin contains i linearly independent lattice points. To ease
notation, and because we will be mainly working with the 2-norm, we write λi(L) = λ

(2)
i (L).

For any basis B we define the fundamental region as the set

P(B) =

 ∑
1≤i≤d

xi · bi : xi ∈ [0, 1)

 .

The d-dimensional volume, ∆(L) = Vol(P(B)), is called the fundamental volume, and can be computed via
∆(L) = |det(B)|. It is clear that this quantity is an invariant of the lattice, and does not depend on the
precise basis chosen. The dual L∗ of a lattice L is the set of all vectors y ∈ Rd such that y · xT ∈ Z for all
x ∈ L. Given a basis matrix B of L we can compute the basis matrix B∗ of L∗ via B∗ = (B−1)T. Hence we
have ∆(L∗) = 1/∆(L).

The classic result in lattice theory (a.k.a. geometry of numbers), is that of Minkowski, which relates the
minimal distance to the fundamental volume.

Theorem 1 (Minkowski’s Theorem). For any d dimensional lattice L we have

λ1(L) ≤
√
d ·∆(L)1/d.
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The notion of a random lattice stems from work by Goldstein and Mayer [9]. Consider lattices with a
prime determinant p. For large p the vast majority of these lattices are of the following type:

p
x1 1
...

. . .
xd−1 1

 .

Goldstein and Mayer show that lattices generated by taking p at random and taking xi independently and
uniformly at random in {0, . . . , p− 1} are in some (natural) sense random. These lattices are often studied
when considering the behaviour of basis reduction algorithms [12,5].

For such random lattices the first minimum is approximated by the Gaussian Heuristic, which states that
for a random lattice we have

λ1(L) ≈
√

d

2 · π · e
·∆(L)1/d.

Hermite showed that there is an absolute constant γd, depending only on d, such that

λ1(L) ≤ √γd · (∆(L))1/d.

The value of γd (called “Hermite’s constant”) is, however, only known for 1 ≤ d ≤ 8 and d = 24.
A specific basis B is said to have Hermite factor δdB , or root Hermite factor δB , if

‖b1‖2 = δdB ·∆(L)1/d.

The root Hermite factor of the lattice is said to be the constant δL such that

λ1(L) = δdL ·∆(L)1/d.

In lattice basis reduction algorithms we are trying to determine an output lattice basis such that δB = δL,
i.e. the first vector in the basis is the shortest vector.

By the Gaussian heuristic we have for a random lattice

δL ≈

(√
d

2 · π · e

)1/d

.

3 Estimating BKZ

In this section we provide an overview of the prior work on analysing the BKZ algorithm and then present
our results on estimating the output δB from BKZ, for a specific dimension and with an explicit limit on the
number of nodes evaluated. In later sections we will use this analysis to estimate parameters for the LWE
based systems used in FHE schemes.
BKZ Overview. Throughout the paper we assume the input basis to the BKZ algorithm has been LLL
reduced (i.e., reduced by the LLL algorithm). The BKZ algorithm, as modified in [2] and called BKZ 2.0,
is parameterized by two parameters R and β and operates as follows. The algorithm executes the following
round function R times. In each round we iterate the index i from one to d− β, and for each value of i we
take the β-dimensional projected lattice generated by the basis vectors bi, . . . ,bi+β−1 projected onto the
orthogonal space spanned by the first i− 1 basis vectors. A small vector is obtained in the projection of this
lattice, and the resulting vector is inserted into the main lattice basis at the ith position. The search for the
small vector in the projected lattice is performed by an enumeration method using a heuristic called extreme
pruning [6].
Historical Background. The line of work aimed at assessing the behaviour of basis reduction algorithms
in practice was started by Gama and Nguyen [5]. They considered this behaviour from an experimental point
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of view and tried to extrapolate it to higher dimensions (although not the astronomical dimensions required
in FHE schemes). Specifically, they analyse the behaviour of basis reduction algorithms when applied to
solving various lattice problems, such as Hermite-SVP, Approximate SVP and Unique SVP. However, since
BKZ 2.0 did not exist at the time, they analysed the original BKZ which did not use extreme pruning and
did not abort after a fixed number of rounds, but would instead run until termination.

The most interesting result from these experiments was that basis reduction algorithms output a basis
B which appeared to solve Hermite-SVP, i.e. finding a short basis vector, with Hermite Factor δdB . The
interesting part is that on average, the δB observed in practice was much smaller than theoretical worst-case
bounds obtained from analysing the reduction algorithms theoretically. It should be noted that this worst-
case behaviour was tied to the basis of the particular lattice, rather than to the lattice itself. Applying the
basis reduction algorithms to a ‘randomized’ basis of the same lattice resulted in average-case rather than
worst-case behaviour. Gama and Nguyen conjectured that the value of δB of the output basis depends mostly
on the basis reduction algorithm that was used and not on the input lattice (unless this lattice has special
structure). The value also depended on the dimension d but appeared to converge quickly as d increases.

Gama and Nguyen drew several conclusions. Most importantly, they concluded that with the basis re-
duction algorithms available at that time, δB = 1.01 was the best reachable root-Hermite factor. They also
examined the run-time of exact SVP solvers and concluded that up to dimension 60 the shortest vector
problem could be solved within an hour, whereas dimension 100 seemed out of reach. They also observed
that BKZ with block sizes much higher than 25 was not realistic in higher dimensions due to run-time
constraints. Once again, these observations were before the discovery of extreme pruning and before the
adoption of aborting BKZ after a fixed number of rounds R.

It should also be noted that this work was not aimed at cryptography, but only at basis reduction
algorithms in a general setting. Hence, Gama and Nguyen did not experiment specifically with lattices that
arise from a cryptographic setting, but instead with random lattices from the Goldstein Mayer distribution
[9] (as described in Section 2) and some specially structured lattices for the unique shortest vector problem.

Gama, Nguyen and Regev in 2010 [6] proposed improved heuristics for solving SVP using enumeration
via a technique called extreme pruning. Potentially, this technique could be used with the enumeration of
the β dimensional projected lattices within the BKZ algorithm. However, this heuristic technique requires a
pretty good estimate of the length of the shortest vector. But Gama and Nguyen had already observed that
the projected lattices that occur in BKZ with low block size (say β < 50) do not follow the distribution of
random lattices. More specifically, these projected lattices did not adhere to the Gaussian Heuristic, which
would have given a good approximation to the length of the shortest vector. Thus, extreme pruning cannot
trivially be applied to BKZ with low block size.

But then Chen and Nguyen [2] made the observation that the projected lattices that appear in BKZ for
higher blocksizes (say β > 50) behave like random lattices as far as the Gaussian Heuristic is concerned. This
enables the introduction of extreme pruning and several other heuristic improvements to BKZ, resulting in
the BKZ 2.0 algorithm outlined above. The BKZ 2.0 algorithm is able to reduce lattices with much higher
block sizes in practice than the original BKZ. This observation about the projected lattices and Gaussian
Heuristic also allowed Chen and Nguyen to create a simulator for BKZ 2.0, which simulates the behaviour
of the algorithm on the lengths of the Gram-Schmidt vectors of the basis. This makes it much easier to
heuristically explain (for large enough block size) the behaviour of BKZ in practice and the associated
output δB , even for block sizes that we might not be able to run in practice.

Chen and Nguyen use the simulator to estimate the approximate security of the NTRU encryption scheme
and the Gentry-Halevi FHE challenges. Specifically for the challenges by Gentry and Halevi they reason as
follows. From the parameters of the scheme they can derive that they require a root-Hermite factor of δB .
They use the simulation to estimate that this requires R rounds of BKZ with block size β (starting from
an LLL-reduced basis). Using an upper bound for the cost of a block size β enumeration derived from
experiments, they convert the R rounds into the number of enumeration nodes (given that each round
consists of d− β enumerations where d is the dimension of the lattice). This number of nodes gives a rough
estimate for the bit-security of the specific parameters of the scheme.
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Our Approach. In the heuristic approach by Chen and Nguyen (and others), an estimated secrity level is
essentially derived from a system with given parameters. However, we would like to choose our parameters
according to a given security level. Thus, we reverse the analysis by Chen and Nguyen and try to answer the
question: Given a security level of sec such that the adversary can only perform 2sec operations, how should
we choose our parameters such that our system is secure against this adversary?

Say we choose the dimension d of a Goldstein Mayer lattice and a security level sec. Now, an adversary
can attempt to run BKZ with block size β, for varying β. For each β, we can approximate the cost of a single
enumeration using the tables from Chen and Nguyen [2]. Then, we can compute how many enumerations we
could maximally perform with this block size without exceeding 2sec nodes. This bound on the number of
enumerations gives us a bound on the number of rounds R, say R(β, d, sec), for the dimension d as well. Now
we can simulate the behaviour of R(β, d, sec) rounds of BKZ with block size β on a random LLL-reduced
basis of a d-dimensional Goldstein Mayer lattice, using the simulation algorithm from [2]. This allows us to
predict the root-Hermite factor δB of the output basis from BKZ. Thus, on input of d, sec and β, we obtain
a value of δB . If we perform this procedure for all block sizes β, we find an estimated value of δB (one for
each β). Taking the minimum of all such δB we obtain an estimate for the best value of δB which can be
obtained by an adversary which is limited to enumerating at most 2sec nodes.

Doing this for a number of increasing dimensions we find the data in Table 1 for the estimate of the best
δB an adversary can obtain in a given dimension d. Unsurprisingly we see that as the dimension increases
the best value of δB that one can obtain also increases, although the increase is not too pronounced. This
can be explained as follows. If we allow BKZ with block size β to run indefinitely, so for unbounded R,
the simulation suggests that δB of the output basis converges to some value that seems to only depend on
β (consistent with the observations from [5]). However, as the dimension increases, performing a round of
BKZ becomes more costly. Furthermore, the simulation also indicates that in higher dimensions it converges
more slowly to this value δ, i.e., it takes a larger number of rounds R to reach it. In higher dimensions, BKZ
with block size β reaches a worse δB in R(β, d, sec) rounds than BKZ with block size β′ < β in R(β′, d, sec)
rounds. The results in Table 1 assume that the estimated number of nodes visited during an enumeration
reported in [2] cannot be improved by further algorithmic improvements.

d
sec 1024 2048 4096 8192 16384 32768 65536 131072

80 1.0081 1.0081 1.0084 1.0084 1.0088 1.0088 1.0092 1.0092
128 1.0067 1.0067 1.0067 1.0069 1.0069 1.0069 1.0069 1.0072
256 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055 1.0055

Table 1. Smallest achievable δB by BKZ in dimension d and evaluating at most 2sec nodes.

For d > 217, the BKZ simulator is rather slow, but for the applications in Section 5 dimensions up to
217 are sufficient. Therefore, only dimensions up to d17 were considered here. The value of δB achievable
when evaluating at most 2256 nodes is achieved by performing BKZ with block size 250. Since Chen and
Nguyen only give the cost of enumerations up to block size 250, it is possible that an attacker could use
BKZ with a higher block size and achieve a better δB , while evaluating no more than 2256 nodes. Because it
was not possible to reproduce the costs for varying block sizes and because it is unclear how to realistically
extrapolate the costs to higher block sizes, the value of δB here corresponds to block size 250.

4 Estimating LWE Parameters

Our goal is to provide estimates for LWE parameters for specific cryptographic systems in large dimensions,
given the estimates in the previous section. Before proceeding we recap a little on notation and prior analysis
so as to fix notation. The LWE problem, and hence to the best of our knowledge the ring-LWE problem, is
based upon arithmetic in q-ary lattices.
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q-ary Lattices. A q-ary lattice L of dimension n is one such that qZn ⊂ L ⊂ Zn for some integer q. Note
that all integer lattices are q-ary lattices for a value of q which is an integer multiple of ∆(Λ). Our interest
will be in special lattices which are q-ary for a value of q much smaller than the determinant. Much of our
discussion follows that in [11].

Suppose we are given a matrix A ∈ Zn×dq , with d ≥ n, we then define the following two d-dimensional
q-ary lattices.

Λq(A) =
{
y ∈ Zd : y = z ·A (mod q) for some z ∈ Zn

}
,

Λ⊥q (A) =
{
y ∈ Zd : y ·AT = 0 (mod q)

}
.

Suppose we have y ∈ Λq(A) and y′ ∈ Λ⊥q (A) then we have y = z · A and y′ · AT = 0 (mod q). This implies
that

y · y′T = (z ·A) · y′T = z · (y′ ·AT)T ∈ q · Z.
Hence, the two lattices are, up to normalisation, duals of each other. We have Λq(A) = q · Λ⊥q (A)∗ and
Λ⊥q (A) = q · Λq(A)∗.

To fix ideas consider the following example; Let n = 2, m = d = 3, q = 1009 and set

A =
(

1 2 3
3 5 6

)
.

To define a basis B of Λq(A) we can take the row-HNF of the 5× 3 matrix
(

A
q · I3

)
to obtain

B =

1009 0 0
1 1 0

336 0 1

 .

The basis of Λ⊥q (A) is given by

B∗ = q · ((BT)−1) =

1 − 1 − 336
0 1009 0
0 0 1009

 .

The properties of the above example hold in general; namely if q is prime and (in general) if d is a bit larger
than n then we have ∆(Λq(A)) = qd−n and ∆(Λ⊥q (A)) = qn.

We now turn to discussing how short the vectors are that one can find in q-ary lattices. Let us focus
on the lattice Λ⊥q (A), which will be more important for our analysis. We know that this contains vectors of
length q (since it is a q-ary lattice), we assume that lattice reduction will output a basis B with root Hermite
factor δB for some value of δB . This means that computationally the shortest vector we can produce in the
lattice Λ⊥q (A) will be of size

min(q, δdB · qn/d)
since ∆(Λ⊥q (A)) = qn.

LWE Problem. The LWE problem is parametrized by four parameters n, d, q and r = s/
√

2π. To define
the problem we introduce the Gaussian distribution in one variable with parameter s (and mean zero) as
the distribution with probability distribution function proportional to

f(x) =
1
s

exp
(
−π · x

2

s2

)
.

Thus we have that the standard deviation is given by r = s/
√

2 · π. The (spherical) multivariate normal
distribution on Rn, with Gaussian parameter s (resp. standard deviation r) is given by

f(x) =
1
s

exp
(
−π · ‖x‖

2
2

s2

)
=

1
r ·
√

2 · π
exp

(
−‖x‖

2
2

2 · r2

)
.
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Sampling from this distribution is performed by simply sampling each component of the vector x indepen-
dently from N(0, r).

The discrete Gaussian distribution, with support on the lattice L with Gaussian parameter s (equivalently
standard deviation r = s/

√
2 · π, denoted DL,s, is the probability distribution on L which selects x ∈ L with

probability proportional to exp(−π · ‖x‖22/s2).

Definition 1 (LWE Decision Problem). Given (A,v) where A ∈ Zn×dq and v ∈ Zdq determine which of
the following distributions v is from:
1. v is chosen uniformly at random from Zdq .
2. v = s ·A+ e where e, s← DZn,s.

The link between LWE and q-ary lattices is then immediately obvious. Given A and v the decision problem
is to determine whether v is a random point or an element which is close to a point in the lattice Λq(A).

The natural “attack” against the decision LWE problem is to first find a short vector w in the dual lattice
Λq(A)∗ and then check whether w · vT is close to an integer. If it is, one concludes that the input vector is
an LWE sample, whereas if it is not one concludes that the input vector is random. Thus to ensure security,
following the argument in [11, Section 5.4.1], we require

r ≥ 1.5
‖w‖2

.

Now from earlier, we deduce that when applying lattice reduction to the lattice Λq(A)∗ = 1
qΛ
⊥
q (A) we will

obtain a vector w with
‖w‖2 ≈

1
q

min(q, δdB · qn/d).

The point is that we have some freedom in choosing d here, since it is related to the number of LWE samples
we take. In the traditional analysis [11] one assumes δB is already given and one then applies calculus to
minimize the above estimate for ‖w‖2 by picking d as a function of q, n and δB . But as we presented in
Section 3 the value of δB is essentially a function of d and sec.
Our Analysis. We make the heuristic assumption that the behaviour of applying the BKZ lattice basis
reduction technique to the d dimensional lattice Λq(A)∗ performs roughly the same as the application to the
Goldstein Mayer lattices in Section 3. For the above distinguishing attack to fail to work we require

qn/d−1 ≥ 1.5
r · δdB

= cr,d,sec.

For fixed values of r we can derive, using the method in Section 3, values of cr,d,sec for any value of sec and
d that we require. We therefore require, to ensure security, that for all d ≥ n we have

n log2 q − d log2 q ≥ d · log2 cr,d,sec.

Note that, as a sanity check, for fixed n this means we have an upper bound on log2 q of

log2 q ≤ min
d>n

−d · log2 cr,d,sec
d− n

. (1)

We end this section by discussing what this means for a simple LWE based system at the security level of 80
bits; in particular we determine what the maximum value of q could be when we fix n = 4000 and r = 3.2. We
first derive a more detailed version of Table 1 and use linear interpolation to determine estimated δB values
for dimensions not in our table; this needs to be done once and for all, in all of our analysis. Retuning to
considering our specific values of n and r: We enumerate all d > n up to 217, and use the linear interpolation
of Table 1 to determine a value of δB for reducing a lattice of dimension d at this security level. This enables
us to obtain an upper bound on log2 q, over all values of d, from Equation 1. Indeed we obtain an upper
bound of log2 q of 195 and the “best” value of d for the distinguishing attack comes out as d = 8045 with
δB ≈ 1.0084. We compare this with the traditional analysis which assumes δB given and then computed
d as d =

√
n · log(q)/ log(δB), which would give us a value of d ≈ 8045 as well, as expected. However, we

reiterate that this traditional method of obtaining d comes from somehow estimating the value of δB one
would obtain in performing BKZ on lattices of (an as yet unknown) dimension d.
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5 Application of our method to two examples

As a first application we re-evaluate the parameters in (the full version of) [8]. The authors of [8] determine
parameters for their SHE scheme so as to homomorphically evaluate large circuits, including the AES circuit.
They select a security level equivalent to 80 bits of security and derive sizes for the resulting parameters to
evaluate circuits of multiplicative depth L, for various values of L. In order to compare the results, we will
consider the same security level.

In [8, Appendix C], they use the security analysis by Lindner and Peikert [10] to derive a lower bound on
the approximate ring dimension n = φ(m) depending on the largest modulus Q, standard deviation r and
the security level sec, which guarantees the security of the scheme. In particular the lower bound is

n ≥ log(Q/r)(sec + 110)
7.2

. (2)

To guarantee the functionality of the L-leveled homomorphic scheme, they then derive an estimate on the
size of Q needed to evaluate a circuit of depth L, this is given by

Q ≈ 222.5·L−3.6 · r · nL.

The individual moduli in the SHE scheme are given by

p0 ≈ 223.9 · n, pi ≈ 211.3
√
n for i = 1, . . . , L− 2, pL−1 ≈

√
n+ 11,

and
P ≈ 2 · 308L · ζL−2 · r · nL/2.

Combining the two equations for Q, setting sec = 80, ζ = 8 and r = 3.2 they derive values of n and Q for
various values of L.

In our analysis, we replace the security-related lower bound (2) on n by the equivalent upper bound from
Equation (1) on Q, given n. Now, we increase n, in steps of 100 from a given starting value, until the upper
bound on Q is above the estimate for Q needed to ensure correct evaluation of a circuit of multiplicative depth
L. We present our results, and the comparison with those in [8] in Table 2. As one can see the methodology
for choosing parameters in this paper results in roughly the same values for the moduli, but also produces
significantly smaller lattice dimensions. In practice, this will translate into faster overall performance figures
for the SHE scheme.

L Estimates from [8] Our Estimates
n `2(p0) `2(pi) `2(pL−1) `2(P ) n `2(p0) `2(pi) `2(pL−1) `2(P )

10 9326 37.1 17.9 7.5 177.3 7100 36.7 17.7 6.6 163.3
20 19434 38.1 18.4 8.1 368.8 14300 37.7 18.2 7.0 369.0
30 29749 38.7 18.7 8.4 564.2 21600 38.3 18.5 7.3 550.6
40 40199 39.2 18.9 8.6 762.2 28500 38.7 18.7 7.5 743.3
50 50748 39.5 19.1 8.7 962.1 35500 39.0 18.6 7.6 937.9
60 61376 39.8 19.2 8.9 1163.5 42900 39.3 18.9 7.7 1134.3
70 72071 40.0 19.3 9.0 1366.1 50400 39.5 19.1 7.9 1332.1
80 82823 40.2 19.4 9.1 1569.8 57900 39.7 19.2 7.9 1530.9
90 93623 40.4 19.5 9.2 1774.5 65500 39.9 19.3 8.0 1730.6

Table 2. Table comparing the estimates from [8] with our estimates. Here `2(x) = log2(x).

As another example we look at the example parameters used in the SPDZ MPC protocol, see [3,4]. In [3]
parameters are given for instantiating the SPDZ MPC protocol over fields of prime characteristic of size 32,
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64 and 128 bits. The resulting parameter sets have lattice dimensions 8192, 16384 and 32768 respectively.
In the prime characteristic case greater efficiency is obtained in the protocol if one has lattices of dimension
a power of two. If one performs the same analysis as in [3] for the case of characteristic two one finds that
the resulting dimension will have size roughly 8192.

By using our analysis we find that we can securely use dimensions of size roughly 4096 (for characteristic
two), 8192 (for prime characteristic of size roughly 232) 16384 (for prime characteristic of size roughly
264) 16384 (for prime characteristic of size roughly 2128). Thus we obtain a more efficient scheme for the
case of characteristic two and for very large prime characteristic only. The reason for the lack of a general
improvement is that for odd prime characteristic, the dimensions are restricted to a power of two due to
scheme specific efficiency.
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12. Phong Q. Nguyen and Damien Stehlé. Lll on the average. In Florian Hess, Sebastian Pauli, and Michael E.

Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages 238–256. Springer, 2006.
13. Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryp-

tology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science. Springer, 2012.

1 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.

10



14. C.P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum
problems. In L. Budach, editor, Fundamentals of Computation Theory, volume 529 of Lecture Notes in Computer
Science, pages 68–85. Springer Berlin Heidelberg, 1991.

11


	Estimating Key Sizes For High Dimensional Lattice-Based Systems

