
Towards Leakage Exploitation Rate Optimality
in Template Attack

Guangjun Fan1, Yongbin Zhou2, Hailong Zhang2, Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,Institute of
Software,Chinese Academy of Sciences,Beijing,China

guangjunfan@163.com , feng@tca.iscas.ac.cn
2 State Key Laboratory of Information Security,Institute of Information

Engineering,Chinese Academy of Sciences,Beijing,China
{zhouyongbin,zhanghailong}@iie.ac.cn

Abstract. Template Attack is widely accepted to be one of the most
powerful side-channel attacks, because it is usually assumed that one
has a full knowledge of the targeted crypto devices and thus be well
capable of characterizing the side-channel leakages. However, the ques-
tion of whether Template Attack is really optimal in terms of leakage
exploitation rate is still unclear. In this paper, we present a negative
answer to this crucial question, by introducing a normalization process
into classical Template Attack. On the theoretical side, we prove that
our Normalized Template Attack is (strictly) better in terms of leakage
exploitation rate than the classical Template Attack; on the practical
side, we evaluate the key-recovery efficiency of Normalized Template At-
tack and its classical counterpart as well under identical scenarios, by
performing attacks against both simulated and real power traces. Our
experimental results show that the proposed method is valid and effec-
tive. Interestingly enough, this normalization process is of extremely low
computation cost, and thus is very easy-to-use in practice. Therefore,
we argue that this normalization process should be integrated into Tem-
plate Attack as one necessary step in the future, so that one could better
understand the practical threats of Template Attack.
Keywords: Cryptography, Side-Channel Attacks, Power Analysis At-
tack, Template Attack.

1 Introduction

Side-channel attacks belong to an important kind of cryptanalysis techniques on
cryptographic implementations. As a matter of fact, many implementations of
traditional cryptosystems even provably secure in black-box model were broken
by side-channel attacks using electromagnetic radiation [1,5], running-time [2],
fault detection [3], power consumption [4] and many more [6,7].

Among those side-channel attacks, Power Analysis Attack is the most stud-
ied one. Power Analysis Attack exploits the fact that the instantaneous power
consumption of a cryptographic device depends on the data it processes and
the operations it performs. As an important attack method in Power Analysis



Attack, S. Chari et al. presented Template Attack in [8]. Template Attack is a
kind of profiled side-channel attacks and is widely accepted to be the strongest
side channel attack from an information theoretic point of view [8]. Because it
assumes that one knows all the details of the targeted device and possesses a
device which is identical or similar to the targeted device. While such an assump-
tion is limited, it holds in many cases and has been used in other side-channel
attacks [21,22].

Template Attack is a two-stage attack method. The first stage is a profiling
stage and the second stage is an extraction stage. In the profiling stage, one can
accurately characterize signals and noises in different times and builds templates
for each key-dependent operation with a device which is identical or similar
to the targeted device. In the extraction stage, one exploits one or a limited
number of traces and the templates to classify the correct key. Nowadays, with
the development of embedded device, Template Attack becomes more practical.
Additionally, Template Attack is also an important tool to evaluate the security
strength of the implementation of a cryptographic algorithm.

In many real world settings, one can not classify the correct key with only a
single trace in the extraction stage due to noises and the accuracy of templates.
Therefore, one needs more than one traces to classify the correct key. According
to different attack scenarios, one may apply maximum likelihood approach on
the product or the sum of conditional probabilities obtained from traces and the
templates in the extraction stage to classify the correct key. Let’s show the two
cases and some specific examples for them in the following.

Case 1: When the traces are statistically independent, one will apply max-
imum likelihood approach on the product of conditional probabilities [13]. For
convenience, we call the classical Template Attack in this case as “Template
Attack for Case 1”.

Example for Case 1 : When one can attack the output of the S-boxs in the
first round of AES-128 with random message inputs choosing by himself, he will
apply maximum likelihood approach on the product of conditional probabilities.
Because the traces are statistically independent due to the outputs of the S-boxs
are random.

Case 2: When the traces are not statistically independent, one may apply
maximum likelihood approach on the sum of conditional probabilities when the
key-dependent operations in different traces are the same [9]. For convenience,
we call the classical Template Attack in this case as “Template Attack for Case
2”.

Examples for Case 2 : In the following two specific examples, one may apply
maximum likelihood approach on the sum of conditional probabilities. Exam-
ple 1: If one can not obtain any information about the input and output of
some symmetric cipher, he can only attack the key scheduling mechanism of the
symmetric cipher and obtain more than one traces about the same key in the
extraction stage. Usually, this situation may be caused by the following two rea-
sons. Reason one is that one only has limited control about the targeted device
in the extraction stage and he can only measure the power consumption. Reason

2



two is that the Hamming Weight of some sensitive intermediate value can not
be recovered with probability 1 using a single trace due to noises for some device
whose leakage function is Hamming Weight leakage function [18]. Example 2:
When one tries to attack some fixed substantial intermediate value such as the
secret key of some asymmetric cryptosystem, he can only obtain more than one
trace with the same key and applies Template Attack for Case 2. For instance,
many public key encryption schemes and digital signature schemes are based on
the Discrete Logarithm Problem or the Decisional Diffie-Hellman assumption.
These schemes usually need to compute gx, where g is an element of a group of
prime order q and x ∈ Zq is the secret key. Note that x is fixed during every
invocation. When sliding-window exponentiation method [19] is used to compute
gx, one could build templates for the window and applies Template Attack for
Case 2.

1.1 Motivations

Usually, a side-channel attack method with higher leakage exploitation rate
will has higher success rate [10]. Research on Template Attack has concentrated
mainly on the profiling stage and try to build more accurate templates in order to
increase success rate (leakage exploitation rate) when the amount of information
can be exploited by one remain unchanged1. In the extraction stage of Template
Attack, one directly applies maximum likelihood approach on the product or the
sum of conditional probabilities obtained from traces and templates to classify
the correct key. However, it is unknown that whether this way of exploiting
traces and templates optimize leakage exploitation rate and result in the highest
success rate though accurate templates are built in the profiling stage. Therefore,
a natural and important question is that does there exist a better way to exploit
traces and templates which has higher leakage exploitation rate in the extraction
stage and achieves higher success rate than the classical Template Attack? In
this paper, we try to answer this question.

It is well known that the effectiveness of Template Attack is mainly affected
by the accuracy of templates, noises in the target device, and the number of
traces used in the extraction stage. However, how the accuracy of templates and
noises affect the effectiveness of Template Attack when the number of traces
used in the extraction stage is fixed has not been established. In this paper,
we try to find some quantitative factors in the extraction stage which affect the
effectiveness of Template Attack.

1.2 Contributions

1 For example, the adversary has a fixed number of traces in the profiling stage and
the extraction stage.

3



The main contributions of this paper are two-fold as follows. Although Tem-
plate Attack is widely accepted to be the strongest side channel attack, we first
prove that leakage exploitation rate of the classical Template Attack is not op-
timal. This observation is obtained by a new way of exploiting traces and the
templates which has higher leakage exploitation rate (higher success rate) than
the classical Template Attack in the extraction stage. Consequently, we give out
two improved attack methods for each one of the two cases of classical Template
Attack, which use the new way. Second, we find a quantitative factor which af-
fects the effectiveness of the classical Template Attack. This quantitative factor
give us a better understanding of the classical Template Attack.

1.3 Related Work

Template Attack was introduced in [8]. In [9], C. Rechberger et al. pro-
vided answers to some basic and practical issues of Template Attack, such as
how to select interesting points in an efficient way and how to preprocess noisy
data. Template Attack for Case 2 was also presented in [9]. Principal subspace-
based Template Attacks were investigated in [15,16]. However, due to their high
computational requirements, principal subspace-based Template Attacks are not
used widely [9]. In [17], Template Attack on an implementation of a block ci-
pher that uses a masking scheme was introduced that retrieves the secret key.
In [23], an efficient leakage characterization method in the profiling stage for
Template Attack was introduced. A simple pre-processing technique of Tem-
plate Attack, normalizing the trace means and variances from the training and
targeted devices was evaluated for various test data set sizes in [20]. In [29], the
assumption of Template Based DPA was relax with machine learning techniques.
Template Attack assumes that the adversary possesses a device which is iden-
tical or similar to the targeted device and can fully control it. The paper [30]
relaxes this assumption by generalizing Template Attack using a method based
on a semi-supervised learning strategy. However, our important discoveries are
not considered or neglected in the previous work.

1.4 Organization of This Paper

The rest of paper is organized as follows. In section 2, we review Template
Attack and the above two attack scenarios. We show our new way and explain
why it is more effective in section 3. Our new way can be used in the two
attack scenarios yielding two improved attack methods. The two improved attack
methods are verified by simulated and practical experiments in section 4. In
section 5, we conclude this paper.

4



2 Preliminaries

In this section, we briefly review Template Attack. In Template Attack, there
exists two stages. The first stage is a profiling stage and the second stage is a
extraction stage. We will introduce the two stages in the following.

2.1 The Profiling Stage

In the profiling stage, one has a cryptographic device which is identical or
similar to the targeted device. One derives some traces from this device. These
traces are used to build templates for each key (key-dependent operation).

Let us assume there exist K different (sub)key keyi, i = 0, 1, . . . ,K−1 which
need to be classified. There also exist K different key-dependent operations Oi

with i = 0, 1, . . . ,K−1. Usually, one will generate K templates, one for each key-
dependent operation Oi. In each one of the templates, there exists two parts. The
first part in a template estimates the data-dependent portion of the side channel
leakages. It is the average signal Mi for each of the operations. The second part
in a template estimates the probability density of the noises in the side channel
leakages. One can exploit advanced techniques [9,14] to choose N selected in-
stants (P1, P2, . . . , PN ) in each sample. It is assumed that the noises in the side
channel leakages approximately have a multivariate normal distribution with
respect to the selected N interesting points (P1, P2, . . . , PN ). A N dimensional
noise vector ni(S) is extracted from each sample S (a trace) representing the
template’s key dependency Oi as ni(S) = (S[P1]−Mi[P1], . . . , S[PN ]−Mi[PN ]).
One computes the (N ×N) covariance matrix Ci from these noise vectors. The
probability density of the noises occurring under key-dependent operation Oi is
given by the N dimensional multivariate Gaussian distribution pi(·) where the
probability of observing a noise vector ni(S) is

pi(ni(S)) =
1√

(2π)N |Ci|
exp

(
− 1

2
ni(S)

TC−1
i ni(S)

)
ni(S) ∈ RN , (1)

where |Ci| denotes the determinant of Ci and C−1
i its inverse.

2.2 The Extraction Stage

In this stage, one tries to classify the correct key with one or a limited
number of traces obtained from the targeted device. Usually, due to noises and
the accuracy of templates, one can not recover the correct key with only one
single trace. When one obtains more than one trace in the extraction stage,
according to different attack scenarios, his strategy to classify the correct key is
to apply maximum likelihood approach on the product or the sum of conditional
probabilities obtained from traces and the templates.

5



Assume that one obtains t traces (denoted by S1, S2, . . . , St) in the extraction
stage.

When the traces are statistically independent (Case 1), one will apply max-
imum likelihood approach on the product of conditional probabilities [13], i.e.

keyck = argmaxkeyi

{ t∏
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1
}
,

where Pr(Sj |keyi) = pf(Sj ,keyi)(nf(Sj ,keyi)(Sj)). The keyck is considered to be
the correct key. The output of the function f(Sj , keyi) is the index of some
key-dependent operation. For example, when one attacks the output of the first
S-box (denoted by Sbox) in the first round of AES-128, one builds templates
for each output of the S-box (The key-dependent operation is the output of the
S-box.). In this case, f(Sj , keyi) = Sbox(mj ⊕ keyi), where mj is the plaintext
of the power trace Sj .

When the traces are not statistically independent, in many real world set-
tings, one can only obtains more than one traces with the same key-dependent
operation in the extraction stage (Case 2). In this case, one can computes∑t

j=1 Pr(Sj |keyi) for each key keyi, i = 0, 1, . . . ,K − 1 and apply maximum
likelihood approach on the sum of conditional probabilities, i.e.

keyck = argmaxkeyi

{ t∑
j=1

Pr(Sj |keyi), i = 0, 1, . . . ,K − 1
}
,

where Pr(Sj |keyi) = pf(keyi)(nf(keyi)(Sj)) [9]. The keyck is considered to be
the correct key. The output of the function f(keyi) is the index of some key-
dependent operation. In this case, the output of f(keyi) only depends on keyi.
For example, when one attacks the output of some S-box in the key expansion
algorithm of AES-128, f(keyi) = Sbox(keyi).

3 Normalized Template Attack

In this section, we first introduce the main idea of our new way which has
higher leakage exploitation rate. Then we show our new way formally. Finally,
we explain why our new way has higher leakage exploitation rate. We take Case
1 for example. For Case 2, we have similar results.

Our new way introduces a normalization process in the extraction stage and
does not change the profiling stage. The normalization process makes the attack
method has higher leakage exploitation rate because it reduces the effect of
noises in each trace and the inaccuracy of templates by exploiting normalized
conditional probability instead of conditional probability.

Now, we give out an improved Template Attack for Case 1 and Case 2 respec-
tively, which uses our new way. The two improved Template Attacks are called
“Normalized Template Attack for Case 1” and “Normalized Template Attack
for Case 2” and are shown in Algorithm 1 and Algorithm 2 respectively. The

6



profiling stages of the two improved Template Attacks are the same as the clas-
sical Template Attack. Therefore, we ignore the profiling stages here and only
show the extraction stages of them.

For simplicity, we rewrite Pr(Sj |keyi) as P (i, j), i = 0, 1, . . . ,K − 1, j =
1, 2, . . . , t.

Algorithm 1 Normalized Template Attack for Case 1

Input: P (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t
Output: a candidate key keyck, ck ∈ {0, 1, . . . ,K − 1}

Step 1 Computes the natural logarithm of each conditional probability P (i, j), i.e.

H(i, j) = lnP (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 2 Computes

maxln(j) = max{H(0, j), H(1, j), . . . , H(K − 1, j)}
for each traces Sj , j = 1, 2, . . . , t.
Step 3 Computes normalized conditional probability V (i, j) for each traces:

V (i, j) = exp
(maxln(j)

H(i, j)

)
, i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 4 Applying maximum likelihood approach on
∏t

j=1 V (i, j). Let

keyck = argmaxi{
∏t

j=1 V (i, j), i = 0, 1, . . . ,K − 1}.
Step 5 Return keyck.

Step 1-Step 3 in Algorithm 1 and Algorithm 2 is called normalization process.
Note that, the normalization process is of extremely low computation cost. For
example, we assume that there are K keys and the adversary obtains t power
traces in the extraction stage. Then the normalization process only need to
compute tK times of real division. In the following, we explain why our new way
has higher leakage exploitation rate.

For every trace Sj (j = 1, 2, . . . , t), we compute

maxln(j) = max{H(0, j), . . . ,H(K − 1, j)}.

Clearly, for each conditional probability P (i, j), i = 0, 1, . . . ,K−1 obtained from
a single trace Sj (j = 1, 2, . . . , t), there exists a real number α(i,j) ∈ [0, 1], i =
0, 1, . . . ,K − 1 such that α(i,j) = maxln(j)/H(i, j). Note that the number α(i,j)

is proportional to P (i, j) for a fixed j. Let

V (i, j) = e
maxln(j)
H(i,j) = eα(i,j) , i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

We call V (i, j) the normalized conditional probability. Assume that, for the
correct key keyck, we have∏t

j=1 V (ck, j) >
∏t

j=1 V (i, j), i ∈ {0, 1, . . . ,K − 1}\ck.

7



Algorithm 2 Normalized Template Attack for Case 2

Input: P (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t
Output: a candidate key keyck, ck ∈ {0, 1, . . . ,K − 1}

Step 1 Computes the natural logarithm of each conditional probability P (i, j), i.e.

H(i, j) = lnP (i, j), i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 2 Computes

maxln(j) = max{H(0, j), H(1, j), . . . , H(K − 1, j)}
for each traces Sj , j = 1, 2, . . . , t.
Step 3 Computes normalized conditional probability V (i, j) for each traces:

V (i, j) = exp
(maxln(j)

H(i, j)

)
, i = 0, 1, . . . ,K − 1, j = 1, 2, . . . , t.

Step 4 Applying maximum likelihood approach on
∑t

j=1 V (i, j). Let

keyck = argmaxi{
∑t

j=1 V (i, j), i = 0, 1, . . . ,K − 1}.
Step 5 Return keyck.

This assumption is reasonable. Because for the correct key keyck and every
trace Sj (j = 1, 2, . . . , t), α(ck,j) is much closer to 1 than α(i,j) for the wrong
keys keyi, i ∈ {0, 1, . . . ,K − 1}\ck with high probability. If∏t

j=1 P (ck, j) >
∏t

j=1 P (i, j), i ∈ {0, 1, . . . ,K − 1}\ck,

Template Attack for Case 1 will return the correct key keyck. However, when
noises are large and/or the templates are not very accurate, the classical Tem-
plate Attack may return a wrong key keywk, wk ∈ {0, 1, . . . ,K − 1}\ck. We will
show one of the reasons about why the classical Template Attack return a wrong
key in the following.

We divide the t traces {S1, S2, . . . , St} into two sets. In the first set Set1,
there are u samples {Si1 , . . . , Siu} satisfy

P (ck, i1) > P (wk, i1), . . . , P (ck, iu) > P (wk, iu).

In the second set Set2, there are t− u samples {Sj1 , . . . , Sjt−u} satisfy

P (ck, j1) ≤ P (wk, j1), . . . , P (ck, jt−u) ≤ P (wk, jt−u).

Let P1ck =
∏u

k=1 P (ck, ik), P2ck =
∏t−u

k=1 P (ck, jk), P1wk =
∏u

k=1 P (wk, ik),

and P2wk =
∏t−u

k=1 P (wk, jk).

Let V 1ck =
∏u

k=1 V (ck, ik), V 2ck =
∏t−u

k=1 V (ck, jk), V 1wk =
∏u

k=1 V (wk, ik),

and V 2wk =
∏t−u

k=1 V (wk, jk).
According to the definition, we have P1ck > P1wk, P2ck ≤ P2wk, V 1ck >

V 1wk, and V 2ck ≤ V 2wk. Due to∏t
j=1 V (ck, j) = V 1ckV 2ck > V 1wkV 2wk =

∏t
j=1 V (wk, j),

8



we have

V 1ck
V 1wk

>
V 2wk

V 2ck
. (2)

However, if Template Attack for Case 1 returns keywk as the output, thus∏t
j=1 P (ck, j) = P1ckP2ck < P1wkP2wk =

∏t
j=1 P (wk, j).

Therefore, we have

P1ck
P1wk

<
P2wk

P2ck
. (3)

We know thatmaxln(j) belongs to the interval (−∞, 0). The valuesmaxln(j)
are different for different traces with same operation and data due to noises in
the traces and accuracy of the templates. For different traces with the same
operation and different data, the above fact still holds. For example, we tried to
attack the output of the first S-box in the first round of AES-128 with simulated
traces1. Table 1 shows the variance of maxln(j) of 200 simulated traces with the
same operation and data2.

Table 1. the variance of maxln(j)

np 5000 7000 9000

Variance 2.3481 2.0230 1.9404

In Table 1, the number of simulated traces used to build the templates is
denoted by np. The three groups of templates built by different number of sim-
ulated traces represent different level of accuracy of templates. From table 1, we
can see that the variance of maxln(j) is not small and reduces with the increase
of of np. Now, we assume that V (ck, S) and V (wk, S) are two fixed values and
V (ck, S) > V (wk, S) for some trace S. When maxln(S) is large (i.e. maxln(S) is
close to 0.), the value of exp(H(ck, S))−exp(H(wk, S)) is large. Whenmaxln(S)
is small (i.e. maxln(S) is far to 0.), the value of exp(H(ck, S))− exp(H(wk, S))
is small even if V (ck, S) and V (wk, S) are two fixed values. This property of
function f(x) = ex may cause equation (2) and equation (3) hold simultane-
ously and will reduce the success rate of classical Template Attack when one
computes the produce or the sum of the conditional probabilities.

For example, Figure 1 shows the function f(x) = ex for x ∈ [−10,−4]. We
assume the adversary obtains two traces S1 and S2 in the extraction stage. The
adversary computes

1 Please see Section 4.1 for more details about how the simulated traces are generated.
The standard deviation of simulated Gaussian noise is 4.

2 In each trace of the 200 simulated traces, the subkey and the input of S-box keep
unchanged.

9



−10 −9 −8 −7 −6 −5 −4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Fig. 1. the function f(x) = ex for x ∈ [−10,−4]

maxln(S1) = −4,H(ck, 1) = −4, H(wk, 1) = −6.4,

maxln(S2) = −6,H(ck, 1) = −6,H(wk, 1) = −9.23.

Normalized Template Attack will return the correct key ck because

exp(V (ck, 1))exp(V (ck, 2)) = exp(1)exp(0.65)

> exp(V (wk, 1))exp(V (wk, 2)) = exp(1)exp(0.625).

However, the classical Template Attack will return wk as the answer because

exp(H(ck, 1))exp(H(ck, 2)) = exp(−4)exp(−9.23)

< exp(H(wk, 1))exp(H(wk, 2)) = exp(−6.4)exp(−6).

Normalized Template Attack exploits normalized conditional probability which
is more effective than traditional conditional probability of classical Template
Attack. Therefore, we believe that Normalized Template Attack has success
rate (leakage exploitation rate) than classical Template Attack. We know that

V (i, j) ∈ [e0, e] and P (i, j) = eH(i,j) = V (i, j)
H2(i,j)

maxln(j) , i = 0, 1, . . . ,K − 1, j =
1, 2, . . . , t. Therefore, the value H2(i, j)/maxln(j) will affect the effectiveness of
classical Template Attack for both Case 1 and Case 2. In the next section, we
will verify our observation by experiments.

4 Experiments

In this section, we evaluate the key-recovery effectiveness of Normalized Tem-
plate Attack and the classical Template Attack for Case 1 and Case 2 by exper-
iments from which show the leakage exploitation rate of our new way and the
classical way. We analyze the effectiveness by using success rate [10] as a metric.

10



For implementation of a cryptographic algorithm with countermeasures, the ad-
versary may first use some method to delete the countermeasures and then tries
to attack the implementation with classical attacks (Such as Template Attack).
For example, if an adversary has traces with random delays. He may first use the
method in paper [31] to remove the random delays and then execute classical
attacks. Therefore, we take unprotected AES-128 implementation as example for
Case 1 and Case 2 of Template Attack.

On one hand, we will evaluate the performance of Normalized Template At-
tack and the classical Template Attack under different noise level using simulated
power traces. On the other hand, we will perform Normalized Template Attack
and the classical Template Attack against real power traces.

For simplicity, let np denote the number of traces used in the profiling stage
and let ne denote the number of traces used in the extraction stage. Different
number of traces used in the process of building the templates means that the
templates have different level of accuracy. Different number of traces used in the
extraction stage represents different amount of information can be exploited.

In each figure showing experiment results, Normalized Template Attack (such
as Normalized Template Attack for Case 1 or Normalized Template Attack for
Case 2) is denoted by “Normalized TA” and the classical Template Attack (such
as Template Attack for Case 1 or Template Attack for Case 2) is denoted by
“Classical TA”.

4.1 Simulated Experiments

We will introduce simulated experiments about Normalized Template Attack for
Case 1 at first. Then, simulated experiments about Normalized Template Attack
for Case 2 will be shown. In all simulated experiments, the standard deviation
of simulated Gaussian noise is denoted by σ.

4.1.1 Case 1

In simulated scenarios, we chose the output of the first S-box in the first round
of unprotected AES-128 as the target intermediate value. The Hamming Weight
power model [12] was adopted to test the effectiveness of Normalized Template
Attack for Case 1 and Template Attack for Case 1. We employed three different
noise levels to test the influence of noises on the performance of the two attacks.
The standard deviation of simulated Gaussian noise for the three noise levels
were 2, 4, and 6.

For each noise level, we did as follows. We used 5000, 7000, and 9000 simu-
lated power traces to build the 256 templates respectively (Because the output
of the S-box is 8 bits long, we needed to build a template for each output of
the S-box.). The three groups of simulated power traces were generated with a
fixed sub key and random plaintext inputs. We generated additional 20000 sim-
ulated power traces which were used in the extraction stage with another fixed
sub key and random plaintext inputs. We tested the success rate of Normalized
Template Attack for Case 1 (denoted by SR(ne,NTA1)) and Template Attack

11



for Case 1 (denoted by SR(ne,TA1)) when one can use ne traces in the extrac-
tion stage as follows. We repeated the two attacks 500 times. For each time, we
chose ne traces from the 20000 simulated power traces uniformly at random.
Both Normalized Template Attack for Case 1 and Template Attack for Case 1
used the same templates and the same ne traces in the extraction stage. We re-
spectively recorded how many times the two attacks can successfully recover the
correct key (denoted by num(ne,NTA1) for Normalized Template Attack for Case
1 and num(ne,TA1) for Template Attack for Case 1). Then, We computed the
success rate SR(ne,NTA1) (SR(ne,NTA1) = num(ne,NTA1)/500) and SR(ne,TA1)

(SR(ne,TA1) = num(ne,TA1)/500). We will show SR(ne,NTA1) and SR(ne,TA1) for
different ne in Figure 2.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(a) np =5000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(b) np =5000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(c) np =5000,σ =6

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(d) np =7000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(e) np =7000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(f) np =7000,σ =6

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(g) np =9000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(h) np =9000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(i) np =9000,σ =6

Fig. 2. Simulated Experiments Results of Normalized Template Attack for Case 1 and
Template Attack for Case 1 (SR(ne,NTA1),SR(ne,TA1))

From Figure 2, we can see that Normalized Template Attack for Case 1 is
more effective than Template Attack for Case 1 when the templates are not

12



very accurate (The templates are built with less simulated power traces.) and
the noise level is high. When one uses more simulated power traces to build the
templates in the profiling stage, the success rate of Normalized Template Attack
for Case 1 are not lower than that of Template Attack for Case 1. Hence, we
only consider the case that one can only use less simulated power traces to build
the templates in the profiling stage.

4.1.2 Case 2

To verify the Normalized Template Attack for Case 2, we attacked the key
expansion algorithm of unprotected AES-128 as an example. Algorithm 3 in
Appendix A describes the key expansion algorithm of unprotected AES-128.

RotWord in Algorithm 3 performs a one-byte circular left shift on a word.
This means that an input word [b0,b1,b2,b3] is transformed into [b1,b2,b3,b0].
SubWord in Algorithm 3 performs a byte substitution on each byte of its input
word, using the S-box. If the adversary can recover w[3],w[7],w[11], and w[15],
then he can recover the main key key[0],key[1],. . .,key[15] using the internal struc-
ture of the key expansion algorithm easily. Note that w[3],w[7],w[11], and w[15]
are the input of RotWord. And the output of RotWord is the input of SubWord.
Therefore, one can try to attack the outputs of the S-boxes in SubWord and to
recover w[3],w[7],w[11], and w[15] completely if he obtains the output of every
S-box in SubWord successfully. In all of our simulated experiments for Normal-
ized Template Attack for Case 2 and Template Attack for Case 2, we attacked
an output of a S-box in SubWord and tried to recover key[15] in w[3] as an ex-
ample. The processes of attacking other key bytes in w[3],w[7],w[11], and w[15]
are similar.

We adopted ID power model [11] to test the effectiveness of Normalized
Template Attack for Case 2 and Template Attack for Case 2. If the intermediate
value computed by the device is mid, the ID power model will leak mid itself
as the simulated power consumption. For Hamming Weight power model [12],
different intermediate values with the same Hamming Weight will have the same
simulated power consumption. Therefore, it is very difficult to classify a specific
intermediate value accurately when the intermediate values of different power
traces are fixed. Hence, we used ID power model. We used 20000, 40000, and
60000 simulated power traces to build the 256 templates respectively1. The value
of key[15] of each simulated power trace was generated randomly. We employed
three different noise levels to test the influence of noises on the performance
of the two attacks. The standard deviation of simulated Gaussian noise for the
three noise levels were 2, 4, and 6.

In our simulated experiments, we chose 32 random values for key[15]. For
each one of the 32 values of key[15], we generated 600 simulated power traces.

1 If we use less traces in the profiling stage, the success rate of both the two attack
methods are low though the success rate of Normalized Template Attack for Case 2
will also much higher than that of Template Attack for Case 2. Therefore, we used
20000, 40000, and 60000 simulated power traces to build 256 templates in order to
give out a clearer situation.

13



We tested the success rate of Normalized Template Attack for Case 2 (denoted
by SR(ne,NTA2)) and the success rate of Template Attack for Case 2 (denoted
by SR(ne,TA2)) when one can use ne traces in the the extraction stage as follows.
For the ith (i = 1, 2, . . . , 32) value of key[15], we repeated the two attacks 128
times. For each time, we chose ne simulated power traces uniformly at random
from the corresponding 600 simulated power traces. Both Normalized Template
Attack for Case 2 and Template Attack for Case 2 used the same templates
and the same ne traces in the extraction stage. For the ith (i = 1, 2, . . . , 32)
value of key[15], we respectively recorded how many times the two attacks can
recover the output of S-box successfully (denoted by num(ne,i,NTA2) for Nor-
malized Template Attack for Case 2 and num(ne,i,TA2) for Template Attack for
Case 2). For the ith (i = 1, 2, . . . , 32) value of key[15], we use sr(ne,i,NTA2) and
sr(ne,i,TA2) to denote the success rate (i.e. sr(ne,i,NTA2) = num(ne,i,NTA2)/128
and sr(ne,i,TA2) = num(ne,i,TA2)/128). The success rate of the two attacks for
the case one using ne traces in the extraction stage were computed by

SR(ne,NTA2) =

∑32
i=1 sr(ne,i,NTA2)

32
, SR(ne,TA2) =

∑32
i=1 sr(ne,i,TA2)

32
.

We will show SR(ne,NTA2) and SR(ne,TA2) for different ne in Figure 3. From
Figure 3, we can see that Normalized Template Attack for Case 2 is much more
effective than Template Attack for Case 2.

4.2 Practical Experiments

We performed our two new attack methods against real power traces. The real
power traces of all the practical experiments were sampled from PowerSuite
4.0. PowerSuite 4.0 is a software benchmark evaluation board we designed and
developed by ourselves, and its CPU is an 8-bit microcontroller STC89C58RD+.
The real power traces were acquired with a sampling rate of 50M sample/s
from PowerSuite 4.0 board. The average number of real power traces during the
sampling process was ten times. The leakage function of our device approximates
Hamming Weight leakage function. In all the practical experiments, we chose the
interesting points using DPA method [4] and based on the properties introduced
in [9].

We will introduce practical experiments about Normalized Template Attack
for Case 1 at first. Then, practical experiments about Normalized Template
Attack for Case 2 will be shown.

4.2.1 Case 1

We tried to attack the output of the first S-box in the first round of an un-
protected AES-128 software implementation over PowerSuite 4.0 as an example.
Similarly to the simulated experiments of Normalized Template Attack for Case
1 and Template Attack for Case 1, we used 5000, 7000, and 9000 real power
traces to build the 256 templates respectively. The three groups of real power

14



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(a) np =20000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(b) np =20000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(c) np =20000,σ =6

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(d) np =40000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(e) np =40000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(f) np =40000,σ =6

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(g) np =60000,σ =2

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(h) np =60000,σ =4

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(i) np =60000,σ =6

Fig. 3. Simulated Experiments Results of Normalized Template Attack for Case 2 and
Template Attack for Case 2 (SR(ne,NTA2),SR(ne,TA2))

15



traces were generated with a fixed main key and random plaintext inputs. We
generated additional 20000 real power traces with another fixed main key and
random plaintext inputs. The 20000 real power traces were used in the extraction
stage. We also computed SR(ne,NTA1) and SR(ne,TA1) similarly to that in the
simulated experiments in Section 4.1.1 but with real power traces. We will show
SR(ne,NTA1) and SR(ne,TA1) for different ne in Figure 4. In Figure 5, we show
the success rate of recovering the whole main key of the unprotected AES-128
software implementation over PowerSuite 4.0 for Normalized Template Attack
for Case 1 and Template Attack for Case 1 (denoted by GSR(ne,NTA1) and
GSR(ne,TA1)). For every S-box in the first round of AES-128, Normalized Tem-
plate Attack for Case 1 is more effective than Template Attack for Case 1. Table
2 shows the ratio of SR(ne,NTA1) to SR(ne,TA1) in the practical experiments for
different number of np and ne.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(a) np =5000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(b) np =7000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase
S

uc
ce

ss
 R

at
e

 

 

Classical TA
Normalized TA

(c) np =9000

Fig. 4. Practical Experiments Results of Normalized Template Attack for Case 1 and
Template Attack for Case 1 (SR(ne,NTA1),SR(ne,TA1))

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(a) np =5000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(b) np =7000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 

Classical TA
Normalized TA

(c) np =9000

Fig. 5. Practical Experiments Results of Normalized Template Attack for Case 1 and
Template Attack for Case 1 (GSR(ne,NTA1),GSR(ne,TA1))

From Figure 4, Figure 5 and Table 2, we can see that Normalized Template
Attack for Case 1 is more effective than Template Attack for Case 1. Similar to
the simulated experiments, when we uses more real power traces to build the

16



Table 2. The ratio of SR(ne,NTA1) to SR(ne,TA1) (SR(ne,NTA1)/SR(ne,TA1)) in The
Practical Experiments

HHHHHne
np

5000 7000 9000

50 1.43 1.09 1.02

100 1.31 1.01 1

150 1.26 1 1

templates in the profiling stage, the success rate of Normalized Template Attack
for Case 1 are not lower than that of Template Attack for Case 1. Hence, we
only consider the case that one can only use less real power traces to build the
templates in the profiling stage.

4.2.2 Case 2

We attacked the same intermediate value as the simulated experiments of
Case 2 in the key expansion algorithm of an unprotected AES-128 software
implementation over PowerSuite 4.0 as an example.

Similarly to the simulated experiments, we used 80000, 120000, and 160000
real power traces to build the 256 templates respectively. If we use less real power
traces in the profiling stage (such as 20000, 40000, and 60000 simulated power
traces like the simulated experiments in Section 4.1.2), the success rate of both
the two attack methods are low though the success rate of Normalized Template
Attack for Case 2 will also much higher than that of Template Attack for Case 2.
The reason of this situation is the leakage function of our device approximates
Hamming Weight leakage function and it is very difficult to distinguish two
different intermediate values (the output of the S-box) which have the same
Hamming Weight. Therefore, we used 80000, 120000, and 160000 real power
traces to build 256 templates in order to give out a clearer situation. The main
key of each of these real power traces was chosen uniformly at random. In our
practical experiments, we also chose 32 random main key (Thus there are 32
random values of key[15].). For each main key, we generated 600 real power traces
with the fixed main key. Similarly to the simulated experiments, we computed
sr(ne,i,NTA2) and sr(ne,i,TA2), i = 1, 2, . . . , 32 for the 32 random values of key[15].
Then we computed SR(ne,NTA2) and SR(ne,TA2). The value of SR(ne,NTA2) and
SR(ne,TA2) are shown in Figure 6. Table 3 shows the ratio of SR(ne,NTA2) to
SR(ne,TA2) for different number of np and ne.

From Figure 6 and Table 3, we can see that Normalized Template Attack
for Case 2 is more effective than Template Attack for Case 2. The success rate
of Normalized Template Attack for Case 2 is close to 1. We attacked all the
S-boxes in w[3], w[7], w[11] and w[15] similarly. For each S-box, Normalized
Template Attack for Case 2 is more effective than Template Attack for Case 2.
Furthermore, the situation of success rate for each S-box are very similar. Due
to the fact that SR(ne,NTA2) is much higher than SR(ne,TA2) for all the S-boxes,
the success rate of Normalized Template Attack for Case 2 of recovering the

17



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(a) np =80000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(b) np =120000

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of traces used in key extraction phase

S
uc

ce
ss

 R
at

e

 

 
Classical TA
Normalized TA

(c) np =160000

Fig. 6. Practical Experiments Results of Normalized Template Attack for Case 2 and
Template Attack for Case 2 (SR(ne,NTA2),SR(ne,TA2))

Table 3. The Ratio of SR(ne,NTA2) to SR(ne,TA2) (SR(ne,NTA2)/SR(ne,TA2)) in Prac-
tical Experiments

HHHHHne
np

80000 120000 160000

50 3.97 4.32 3.10

100 5.24 5.39 3.43

150 5.69 5.56 3.51

whole main key is close to 1 and is much higher than that of Template Attack
for Case 2 which is close to 0. Therefore, it is not necessary to show the success
rate of recovering the whole main key here.

5 Conclusion and Future Work

In this paper, we prove that the leakage exploitation rate of the classical Tem-
plate Attack is not optimal by introducing a normalization process. The nor-
malization process can be used in both Case 1 and Case 2 yielding Normalized
Template Attack. We verified Normalized Template Attack by simulated and
practical experiments. Remarkably enough, the normalization process is of ex-
tremely low computation cost. Therefore, we argue that this normalization pro-
cess should be integrated into Template Attack as one necessary step in order to
better understand practical threats of this kind of attack. Additionally, we find
a quantitative factor in the extraction stage of the classical Template Attack
which affects the effectiveness of it.

Although there exit other side channel attacks [26,27,28] against AES with
better attack result than Normalized Template Attack, the significance of our
work is not to find the best attack against AES. Furthermore, Template Attack
can be exploited to attack many cryptographic protocols not only AES.

Our work inspire us to think about the following two questions. First, is
the leakage exploitation rate of other profiled side-channel attacks optimal? Sec-
ond, what are the quantitative factors in the extraction stages of other profiled
side-channel attacks which affect the effectiveness of the attacks? Other profiled

18



side-channel attacks include the stochastic model based attack method [24], re-
duced Template Attack [25], and principal subspace-based Template Attacks
[15,16] etc. We believe that the two questions are worth researching. Addition-
ally, in this paper, we use success rate to show leakage exploitation rate. How to
quantitatively compute leakage exploitation rate of an attack method is another
interesting problem.

References

1. K. Gandol, C. Mourtel, and F. Olivier.: Electromagnetic Analysis: Concrete Re-
sults. CHES2001, LNCS 2162, pp.251-261, 2001.

2. Paul C. Kocher.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO1996, LNCS 1109, pp.104-113, 1996.

3. D. Boneh, R.A. DeMillo, and R.J. Lipton.: On the Importance of Checking Cryp-
tographic Protocols for Faults. EUROCRYPT1997, LNCS 1233, pp.37-51, 1997.

4. P. Kocher, J. Jaffe, and B. Jun.: Differential Power Analysis. CRYPTO1999, LNCS
1666, pp.388-397, 1999.

5. D. Boneh, G. Durfee, and Y. Frankel.: An Attack on RSA Given a Fraction of the
Private Key Bits. ASIACRYPT1998, LNCS 1514, pp.25-34, 1998.

6. European Network of Excellence (ECRYPT). The side channel cryptanaly-
sis lounge, http://www.crypto.ruhr-uni-bochum.de/en sclounge.html (retrieved on
29.03.2008)

7. J.-J. Quisquater, F. Koene.: Side channel attacks:State of the art, October 2002.[6].
8. S. Chari, J.R. Rao, and P. Rohatgi.: Template Attacks. CHES2002, LNCS 2523,

pp.13-28, 2003.
9. C. Rechberger, E. Oswald.: Practical Template Attacks. WISA2004, LNCS 3325,

PP.440-456, 2004.
10. F.-X. Standaert, T.G. Malkin, and M. Yung.: A Unified Framework for the Analysis

of Side-Channel Key Recovery Attacks. EUROCRYPT2009, LNCS 5479, pp.443-
461, 2009.

11. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel.: Mutual Information Analysis.
CHES2008, LNCS 5154, pp.426-442, 2008.

12. S. Mangard, E. Oswald, and T. Popp.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. pp.40-42, Springer (2007).

13. S. Mangard, E. Oswald, and T. Popp.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. pp.156, Springer (2007).

14. B. Gierlichs, K. Lemke-Rust, and C. Paar.: Templates vs. Stochastic Methods
A Performance Analysis for Side Channel Cryptanalysis. CHES2006, LNCS4249,
pp.15-29, 2006.

15. C. Archambeau, E. Peeters, F.-X. Standaert, and J.-J. Quisquater.:Template At-
tacks in Principal Subspaces. CHES2006, LNCS 4249, pp.1-14, 2006.

16. F.-X. Standaert, C. Archambeau.: Using Subspace-Based Template Attack-
s to Compare and Combin Power and Electromagnetic Information Leakages.
CHES2008, LNCS 5154, pp.411-425, 2008.

17. E. Oswald, S. Mangard.: Template Attacks on Masking—Resistance Is Futile. CT-
RSA2007, LNCS 4377, pp.243-256, 2007.

18. N. Hanley, M. Tunstall, andW.P. Marnane.: Unknown Plaintext Template Attacks.
WISA2009, LNCS 5932, pp.148-162, 2009.

19



19. A. Menezes, P. van Oorschot, and S. Vanstone.: Handbook of Applied Cryptogra-
phy, CRC Press, Chapter 14, Algorithm 14.85, pp.616, 1996.

20. D.P. Montminy, R.O. Baldwin, M.A. Temple, and E.D. Laspe.: Improving cross-
device attacks using zero-mean unit-variance mormalization. Journal of Crypto-
graphic Engineering, Volume 3, Issue 2, pp.99-110, June 2013.

21. P.N. Fahn, P.K. Pearson.: IPA: A New Class of Power Attacks. CHES1999, LNCS
1717, pp.173-186, 1999.

22. T.S. Messerges, E.A. Dabbish, and R.H. Sloan.: Power Analysis Attacks of Modular
Exponentiation in Smart Cards. CHES1999, LNCS1717, pp.144-157, 1999.

23. H.L. Zhang, Y.B. Zhou, and D.G. Feng.: An Efficient Leakage Characterization
Method for Profiled Power Analysis Attacks. ICISC2011, LNCS 7259, pp.61-73,
2011.

24. W. Schindler, K. Lemke, and C. Paar.: A Stochastic Model for Differential Side
Channel Cryptanalysis. CHES2005, LNCS 3659, pp.30-46, 2005.

25. S. Mangard, E. Oswald, and T. Popp.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. pp.108, Springer (2007).

26. S. Mangard.: A Simple Power-Analysis (SPA) Attack on Implementations of The
AES Key Expansion, ICISC2002, LNCS 2587, pp.343-358, 2003.

27. M. Renauld, F.-X. Standaert, and N. Veyrat-Charvillon.: Algebraic Side-channel
Attacks on The AES: Why Time Also Matters in DPA, CHES2009, LNCS 5747,
pp.97-111, 2009.

28. Y. Oren, M. Renauld, F.-X. Standaert, and A. Wool.: Algebraic Side-Channel
Attacks Beyond the Hamming Weight Leakage Model, CHES2012, LNCS 7428,
pp.140-154, 2012.

29. L. Lerman, G. Bontempi, and O. Markowitch.: Side Channel Attack: An Approach
Based On Machine Learning. COSADE2011, pp.29-41, 2011.

30. L. Lerman, S.F. Medeiros, N. Veshchikov, C. Meuter, G. Bontempi, and O.
Markowitch.: Semi-Supervised Template Attack. COSADE2013, LNCS 7864,
pp.184-199, 2013.

31. F. Durvaux, M. Renauld, F.-X. Standaert, Loic van Oldeneel tot Oldenzeel, Nicolas
Veyrat-Charvillon.: Efficient Removal of Random Delays from Embedded Software
Implementations Using Hidden Markov Models. CARDIS2012, LNCS 7771, pp.
123-140, 2013.

20



Appendix A: The Key Expansion Algorithm of
Unprotected AES-128

In this section, we introduce the key expansion algorithm of unprotected AES-
128 in Algorithm 3.

Algorithm 3 Key Expansion Algorithm of AES-128

KeyExpansion (byte key [16], word w[44])
{

word temp
for (i = 0; i < 4; i++)

w[i] = (key[4∗i], key[4∗i+1], key[4∗i+2], key[4∗i+3]);

for (i = 4; i < 44; i++)
{

temp = w[i − 1];
if (i mod 4 = 0)

temp = SubWord(RotWord(temp))
⊕

Rcon[i/4];
w[i] = w[i − 4]

⊕
temp;

}
}

The AES-128 key expansion algorithm takes as input a 4-word (16-byte) key
(main key) and produces a linear array of 44 words (176 bytes). This is sufficient
to provide a 4-word round key for the initial AddRoundKey stage and each of
the 10 rounds of the cipher.

21


