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Abstract One of the key problems in Radio Frequency Identification (RFID) is security and 
privacy. Many RFID authentication protocols have been proposed to preserve security and privacy 
of the system. Nevertheless, most of these protocols are analyzed and it is shown that they can not 
provide security against some RFID attacks. In WISTP 2013, a new lightweight authentication 
protocol using AES S-box and some special function is presented. The new protocol has a good 
implementation in resource constrained tags. In this paper, we give the security analysis on this 
new authentication protocol. After impersonating the valid reader to query the tag and collecting 
the responses, we can deduce all the secrets shared between the reader and tag through analyzing 
the messages. The attack utilizes the structure of the invertible function and the property of the 
special function introduced in the new protocol. 
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1  Introduction 

Radio Frequency Identification (RFID) systems are used for automated identification of 
objects and people. Applications that use RFID technology include warehouse management, 
logistics, railroad car tracking, product identification, library books check-in/check-out, asset 
tracking, passport and credit cards, etc. Privacy and security is one of the key problems in RFID, 
because the communication between the reader and the tag are more vulnerable to malicious 
adversaries. The possible security threats to RFID systems include denial of service (DoS), man in 
the middle (MIM), counterfeiting, spoofing, eavesdropping, traffic analysis, traceability, 
de-synchronization etc. 

An effective and flexible way to assure privacy and security is to adopt authentication 
protocols. The low cost deployment demand for RFID tags forces the lack of resources for 
performing true cryptographic operations to provide security. It is worthwhile to study 
ultra-lightweight authentication protocols which require tags to involve only simple bitwise 
operations such as bitwise XOR, bitwise OR, bitwise AND and rotation. 

However, providing lightweight security in RFID systems is not a trivial task. Several 
ultra-lightweight protocols have already been proposed. However, they all have certain flaws and 
vulnerabilities. Vajda and Buttyan [1] have proposed a set of extremely lightweight challenge 
response authentication algorithms. These can be used for authenticating the tags, but they may be 
easily attacked by a powerful adversary. Juels [2] proposed a solution based on the use of 
pseudonyms, without using any hash function. But after a set of authentication sessions, the list of 
pseudonyms will need to be reused or updated through an out-of-band channel, which limits the 
practicality of this scheme.  

A family of ultralightweight mutual authentication protocols have been proposed, but later it 



  

was reported that these protocols are vulnerable to variable attacks, such as passive attack,  
desynchronization attack and full-disclosure attack[3-13]. One of the reasons for the 
vulnerabilities of these protocols is the imbalance of some triangular operations like bitwise OR 
and bitwise AND, and the operations used can not provide good cryptographic property.  

Recently, Dusart and Traore proposed a lightweight authentication protocol for Low-Cost 
RFID Tags(named D-T protocol) in the conference of WISTP 2013[14]. The protocol utilizes the 
security qualities of the AES S-Boxes[15] to build a function, and the authors claim the new 
protocol can provide good Strict Avalanche property, and can resist many passive or active attacks. 
In this paper, we examine the security of D-T protocol. An active attack on D-T protocol is 
proposed, in which we first collect some authentication messages through impersonating valid reader 

to query the tag; then using the property of the f  function introduced in D-T protocol, we can 

obtain all the secret key bytes. The number we need to query the tag is less than 2048, so we 
conclude D-T can not provide privacy guarantee as claimed. 

The rest of the paper is organized as follows: We describe the D-T protocol in section 2, and 
the detail security analysis of D-T is presented in section 3, and show how to extract all the secrets 
shared by the reader and the tag; Conclusion is given in section 4. 

2  Description of D-T Protocol  

D-T protocol utilizes the challenge-response authentication model, which uses a non- 
invertible function h . In D-T protocol, to verify the identity of the tag, the reader R and the tag T 
shares secret key K . D-T protocol is proceeded as follows: 

Step 1. The reader R generates and sends the challenge 0 1 15( , ,..., )C C C C=  to the tag T, 

where iC  are bytes randomly chosen. 

Step 2. The tag computes and sends 1 ( )Kt ID h C= ⊕ , 2 ( )IDt h C= , where ID  is the 

identity of the tag. 

Step 3. The reader polls all the secrets K  to compute ( )Kh C , and retrieves the identity of 

the tag. Finally authentication of the tag can be verified by checking ( )IDh C . 

To provide mutual authentication, D-T protocol can be adapted with a slightly modification: 
In Step 2, a challenge 'C  is sent with the tag’s response, and the reader should respond with the 

computation of ' ( )K Ch C ID⊕ ⊕ . 

Description of function h . Function h  is composed of f  Function and S  function, 

and S  function is chosen as the AES[15] SubBytes  function. Let 0 1 15{ , ,..., }M M M M=  

be a 16-byte vector, then 0 1 15( ) (SubBytes( ),SubBytes( ),...,SubBytes( ))S M M M M= .  



  

f  function takes two input bytes, and produces one byte output 256 256 256:f F F F× → : 

( , ) [[ ((255 ) 1)] 16 [((255 ) ( 1)) mod16]]mod 256 f x y x y x y= ⊕ − << + ⋅ − ⊕ >>  

where ⊕  is the bitwise Exclusive Or, + represents the classical integer addition, 1n >>  
divides n by 2, 1n <<  multiplies n by 2. 

Let {0,1,...,15}i∈  be a vector index and {1,2,3,4}j∈  a round index, and M =  

0 1 15{ , ,..., }M M M  is a vector of 16 bytes. The following functions is defined: 

1( 2 )mod16
( ) ( , )j

j
i i i

F M f M M −+
=  and  0 1 15( ) ( ( ), ( ),..., ( ))j j j jF M F M F M F M=  

To compute ( )Kh C , First the challenge C  is Xored to the key K , and we can obtain 

0 0 15 15( ,..., )D C K C K C K= ⊕ = ⊕ ⊕ . The first state 0M  is initialized by 0 ( )M S D= . 

Then, the following values are calculated: 
1 1 0 2 2 1

3 3 2 4 4 3

( ( )) ( (,      ,))
( ( )) ( ( )),      .

M S F M K M S F M K
M S F M K M S F M K

= ⊕ = ⊕

= ⊕ = ⊕
 

Finally, the function ( )Kh C  is denoted as 4 4 4 4
0 1 15( , ,..., )( )Kh MM MC M== . 

3  Security Analysis of D-T Protocol  

Suppose the secret key is 0 1 15( , ,..., )K K K K= , in this section we give a security analysis 

of the D-T protocol and show how to deduce the secret key from ( )Kh C .  

3.1  Analysis of the D-T Protocol 

We first give some observations about the f  function and S  function. 

Observation 1. As to f  function, given y , 0 1( , ) ( , )f x y f x y≠  for any different 0x  

and 1x ; while given x  and y , there exists a unique 'y  satisfying ( , ) ( , ')f x y f x y= . 

Observation 2. As to S  function, SubBytes  is a bijective function mapping 256F  to 

256F . 

From the description of D-T protocol, we know 4
0M  is calculated as figure 1 shows. Here 

1
2kM  is obtained from 

0
2kM  and 0

2 1kM + ( 0,1,...,7k = ): 
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Fig 1. calculation of 4
0M  

From the above observation, we can obtain the following conclusion: 

Conclusion 1. Given the challenge 0 1 15( , ,..., )C C C C= , we denote ( )Kh C  as 

4 4 4
,0 ,1 ,15( , ,..., )C C CM M M . Then we poll the second byte 1C  over the field 256F , and the other 

bytes unchanged, we can get another unique challenge * *
0 1 15( , ,..., )C C C C=  satisfying 

*
4 4

,0,0 CC
M M= . 

Proof. From the observation 1 and observation 2, we know there must exist *
1C  satisfying 

*
1 1

,0,0 CC
M M= . Combined with the calculation of 4

0M , we know *
4 4

,0,0 CC
M M= . In addition, we 

know the value *
1C  is unique, because if *

1 1
,0,0 CC

M M≠ , we also know *
2 2

,0,0 CC
M M≠  and 

*
3 3

,0,0 CC
M M≠  because of observation 1, thus *

4 4
,0,0 CC

M M≠ . 

Using the conclusion 1, we present the following algorithm to deduce the second key byte 

1K  from ( )Kh C .  

 

Algorithm 1 Recovery of the second key byte 1K    

Step 1. A random challenge 0 1 15( , ,..., )C C C C=  is chosen, and we obtain 

4 4 4
,0 ,1 ,15( , ,..., )C C CM M M  

Step 2. Try all the other challenge 0 1 15' ( , ',..., )C C C C= , where the second value 1 'C  is polled 

from 0 to 255, and the other values are the same as C , this step will stop if we find *
1C  

satisfying *
4 4

,0,0 CC
M M≠ . Now we get 0 1( , )C C  and *

0 1( , )C C , which have *
1 1

,0,0 CC
M M= . 

Step 3. we try all the possible 0K  and 1K , and output the pairs satisfying: 

*
0 0 1 1 0 0 1 1(SubBytes( ),SubBytes( )) (SubBytes( ),SubBytes( ))f K C K C f K C K C⊕ ⊕ = ⊕ ⊕



  

Step 4. Usually, there are many possible outputs of the Step 3, we can change the first and second 
bytes of the challenge C  in Step 1, then proceed Step 2 and Step 3 to filter out the wrong 
possible values. 

 

 

3.2  Experiment Results and complexity analysis 

We give an experiment as appendix shows, here 0 10 7,  0 92K xa K x= = ; we first take 

0 0 37C x=  and 1 0 7,C xb=  and we can get another *
1 102C = . The number of the possible 

pairs 0 1( , )K K  is 512, and possible values of 1K  are 67 and 146; Then we change the first and 

second byte of challenge as 0 0 6C xa=  and 1 0 79C x= , and *
1 118C = , and possible values 

of 1K  are 157 and 146. So we can deduce the value of 1K  is 146. 

In our attack, we can not obtain the value of the first secret byte, and the number of the 
possible value of the second byte is always 2. So after trying the algorithm 1 two times, we can 

obtain the value of 1K . Using the same method, we can deduce all the bytes of the secret K .  

When attacking the RFID D-T authentication protocol using algorithm 1, the attack 

complexity is coming from the number to query the tag. As the experiment shows, to obtain 1K , 

we query the tag about 9256*2 2=  times, so we almost have to query the tag 9 132 *16 2=  

times to obtain all the secret. To reduce the query number, we can get the remaining 32 bits in 

brute force way after obtaining 12 bytes secrets, and the query number is about 92 *12 6144= .  

In fact, we can reduce the query number as the way of birthday attack. We query the tag 

challenge 0 1 15( , ,..., )C C C C= , where 1C  is randomly chosen and the other values are constant. 

From the birthday attack, we know after query 130 challenges, we must have at least 2 pairs of 

1 1 2 2
0 1 15 0 1 15{ ( , ,..., ), ( , ,..., )}C C C C C C C C= =  and 3 1 4 2

0 1 15 0 1 15{ ( , ,..., ), ( , ,..., )}C C C C C C C C= =  

satisfying what we need, then the total number we need is about 7 112 *16 2= (130*12=1560 if 

brute force attack considered). 

4  Conclusion 

In this paper, we give the active attack on the new proposed lightweight authentication 
protocol at WISTP 2013. We first impersonate the valid reader to query the tag, and send some 
special challenges and collect the corresponding responses. Utilizing the structure of the h  



  

function and the property of the f  function, we can deduce all the secrets shared between the 

reader and the tag. The attack complexity is to query the tag about 112  times, and in the real 
attack, the number is much shorter than this value. So we conclude the new protocol is not secure 
enough to use in reality. How to reduce the analysis complexity and analyze the protocol 
theoretically will be considered in the future work.  
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Appendix.  
 
#include<stdio.h> 

void main() 

{  



  

 int x,y,z1,z2,z11,z12,z,z0,x1,y1,k0,k1,i,j,k; 

 k0=0xa7; 

 k1=0x92; 

 x=0x37; 

 y=0xb7; 

 int number=0; 

 

    int sbox[256] = { 

    //0    1    2    3    4    5    6   7    8    9    A    B   C   D    E    F 

    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0 

    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1 

    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2 

    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3 

    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4 

    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5 

    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6 

    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7 

    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8 

    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9 

    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A 

    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B 

    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C 

    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D 

    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E 

    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F 

 

 x=sbox[x^k0]; 

 y=sbox[y^k1]; 

 

 z1=x^((255-y)<<1); 

 z2=16*(((255-x)^(y>>1))%16); 

 z=(z1+z2)%256; 

 printf("%d,",z); 

 

 for(i=0;i<256;i++) 

 { 

  y=sbox[i^k1]; 

  z11=x^((255-y)<<1); 

     z12=16*(((255-x)^(y>>1))%16); 

     z0=(z11+z12)%256; 

  if(z0==z) 

  { 

   printf("%d,",i); 

  } 



  

 } 

 printf("\n"); 

 

 for(j=0;j<256;j++) 

 { 

  for(k=0;k<256;k++) 

  { 

   x=sbox[0x37^j]; 

   y=sbox[102^k]; 

   y1=sbox[183^k]; 

 

   z1=x^((255-y)<<1); 

   z2=16*(((255-x)^(y>>1))%16); 

   z=(z1+z2)%256; 

 

   z11=x^((255-y1)<<1); 

   z12=16*(((255-x)^(y1>>1))%16); 

   z0=(z11+z12)%256; 

 

   if(z0==z) 

   { 

    printf("%d,%d   ",j,k); 

    number++; 

   } 

  } 

 } 

 printf("\n%d,",number); 

} 

 


