
> http://eprint.iacr.org/2013/246.pdf <

 1

A Lever Function to a New Codomain with Adequate Indeterminacy
*

Shenghui Su 1, 2, Maozhi Xu 3, and Shuwang Lü 4
1 College of Computers, Beijing University of Technology, Beijing 100124, P.R.China

2 College of Information Engi., Yangzhou University, Yangzhou 225009, P.R.China
3 School of Mathematics, Peking University, Beijing 100871, P.R.China

4 Graduate School, Chinese Academy of Sciences, Beijing 100039, P.R.China

Abstract: The key transform of the REESSE1+ cryptosystem is Ci ≡ (Ai W ℓ(i))δ (% M) with ℓ(i)
∈ Ω = {5, 7, …, 2n + 3} for i = 1, …, n, where ℓ(i) is called a lever function. In this paper, the
authors give a simplified transform Ci ≡ Ai W ℓ(i) (% M) and a new codomain Ω± = {+/−5,
+/−6, …, +/−(n + 4)}, where “+/−” means the selection of the “+” or “−” sign. Discuss the
necessity of ℓ(.) to Ω± that a simplified private key is insecure if ℓ(.) is only a fixed integer, and
the sufficiency that a simplified private key is secure (namely Ci ≡ Ai W ℓ(i) (% M) is not faced
with determinate polynomial time attack) if ℓ(.) is a one-to-one function. The sufficiency is
expounded from five aspects: indeterminacy of ℓ(.) to Ω±, insufficiency of each of the four
judgment conditions for counteraction of powers of W and W −1 even if Ω± = {5, 6, …, n + 4},
verifying by examples, running times of continued fraction attack and indeterministic intersection
attack most efficient now, and a relation between a lever function and a random oracle.

Keywords: Public key cryptosystem; Coprime sequence; Lever function; Continued fraction
attack; Random oracle

1 Introduction
Theories of computational complexity such as the class P, the class NP, one-way functions, and

trapdoor functions provide public key cryptosystems with foundation stones [1][2][3]. For instance, the
RSA cryptosystem is founded on the integer factorization problem (IFP) [4], and the ElGamal
cryptosystem is founded on the discrete logarithm problem (DLP) [5]. It appeals to people whether
polynomial time algorithms for solving IFP and DLP on electronic computers exist or not since IFP
and DLP are not proved NP-complete.

To N = p q with p and q prime, if N is given, the values of p and q are determined. To y ≡ g
x (% p)

with g a generator of (*
p , ·), if y is given, the value of x is also determined. Nevertheless there exists

such a class of computational problems, which looks very ordinary, but leads indeterminacy into a
public key cryptosystem ― a permutation problem for example.

In the REESSE1+ public key cryptosystem [6], the key transform is Ci ≡ (AiW ℓ(i))δ (% M) with ℓ (i) ∈
Ω = {5, 7, …, 2n + 3}. The analysis in [6] shows that a REESSE1+ private key ({Ai}, {ℓ(i)}, W, δ) is
secure without doubt due to the existence of δ ∈ [1, M – 1].

If δ = 1 and Ci ≡ Ai W ℓ(i) (% M) with ℓ (i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} new, what is the thing?
In this paper, starting on the security of the simplified transform Ci ≡ Ai W ℓ(i) (% M), we will investigate

the effect of the lever function ℓ(.) from {1, 2, …, n} to Ω± with indeterminacy.
Throughout the paper, unless otherwise specified, n ≥ 80 is the bit-length of a plaintext block or the

item-length of a sequence, the sign % means “modulo”,  does “M – 1” with M prime, lg x denotes a
logarithm of x to the base 2, ¬x does the opposite of a bit x, Þ does the maximal prime allowed in
coprime sequences, |x| does the absolute value of an integer x, S  does the size of a set S, and gcd(a, b)
represents the greatest common divisor of two integers a and b. Without ambiguity, “% M ” is usually
omitted in expressions.

2 Simplified REESSE1+ Encryption Scheme
To probe the indeterminacy of the lever function ℓ(.) to Ω±, let 1 = δ in the key transform of the

REESSE1+ cryptosystem.
We first observe the simplified REESSE1+ encryption scheme with δ = 1.

2.1 Two Definitions
Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j), either

gcd(Ai, Aj) = 1, or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k (≠ i, j) ∈ [1, n], these

* This work is supported by MOST with Project 2007CB311100 and 2009AA01Z441. Corresponding email: reesse@126.com.

> http://eprint.iacr.org/2013/246.pdf <

 2

integers are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}.
Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence

whose elements are pairwise coprime must be a coprime sequence.
Property 1: Let {A1, …, An} be a coprime sequence. If randomly select m ∈ [1, n] elements Ax1, …,

Axm from the sequence, then the mapping from a subset {Ax1, …, Axm} to a subset product G = ∏m
i=1Axi is

one-to-one, namely the mapping from b1…bn to G = ∏ n
i = 1 Ai

bi is one-to-one, where b1…bn is a bit string.
Refer to [6] for its proof.
Definition 2: The secret parameter ℓ(i) in the key transform of a public key cryptosystem is called a

lever function, if it has the following features:
• ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, }, where  is large;
• the mapping between i and ℓ(i) is established randomly without an analytical expression;
• an attacker has to be faced with all the arrangements of n elements in Ω when extracting a related

private key from a public key;
• the owner of a private key only needs to consider the accumulative sum of n elements in Ω when

recovering a related plaintext from a ciphertext.
The latter two points manifest that if n is large enough, it is infeasible for the attacker to search all

the permutations of elements in Ω exhaustively while the decryption of a normal ciphertext is feasible
in some time being polynomial in n. Thus, there are the large amount of calculation on ℓ(.) at “a public
terminal”, and the small amount of calculation on ℓ(.) at “a private terminal”.

Notice that c in modular  arithmetic, −x represents  – x; d the number of elements of Ω is not
less than n; e considering the speed of decryption, the absolute values of all the elements should be
comparatively small; f the lower limit 5 will make seeking the root W from W ℓ

(i) ≡ Ai
–1

 Ci (% M) face
an unsolvable Galois group when Ai ≤ 1201 is guessed [7].

2.2 Key Generation Algorithm
In the simplified REESSE1+ encryption scheme, we substitute Ω = {5, 7, …, 2n + 3} with Ω±.
Let |Ω±| be the set of absolute values of all the elements in Ω±.
Let Λ = {2, …, Þ}, where Þ = 863, 937, 991, or 1201 when n = 80, 96, 112, or 128.
This algorithm is employed by a certificate authority or the owner of a key pair.
INPUT: the integer n; the set Λ.
S1: Randomly generate Ω± = {+/−5, +/−6, …, +/−(n + 4)}.
S2: Randomly produce pairwise coprime A1, …, An ∈ Λ.
S3: Find a prime M > ∏ n

i=1 Ai making q2 |  ∀ q (prime) ∈ |Ω±|.
S4: Stochastically pick the integer W ∈ (1, ).
S5: Randomly produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω±.
S6: Compute Ci ← Ai W ℓ

(i) % M for i = 1, …, n.
OUTPUT: a public key ({Ci}, M); a private key ({Ai}, W, M)({ℓ(i)} may be discarded).
Notice that at S1, Ω± = {+/−5, +/−6, …, +/−(n + 4)} indicates that Ω± is one of 2n potential sets, and

indeterminate, where “+/−” means the selection of the “+” sign or the “−” sign.

2.3 Encryption Algorithm
This algorithm is employed by a person who wants to encrypt plaintexts.
INPUT: a public key ({Ci}, M); an n-bit plaintext block b1…bn.
S1: Set Ḡ ← 1, i ← 1.
S2: If bi = 1 then let Ḡ ← Ḡ Ci % M.
S3: Let i ← i + 1.
S4: If i ≤ n then goto S2; else end.
OUTPUT: the ciphertext Ḡ ≡ ∏

n
i=1 Ci

bi (% M).
Definition 3: Given Ḡ and ({Ci}, M), seeking b1…bn from Ḡ ≡ ∏

n
i=1 Ci

bi (% M) is called a subset
product problem, shortly SPP [6][8].

Notice that when lg M < 1024, a discrete logarithm can be found in tolerable time.
Let g be a generator of (*

M , ·), Ḡ ≡ g

u (% M), C1 ≡ g

v1 (% M), …, Cn ≡ g

vn (% M), and then the subset
product problem Ḡ ≡ ∏

n
i=1 Ci

bi (% M) is degenerated to a subset sum problem u ≡ b1 v1 + … + bn vn (% )
of density less than 1, which indicates Ḡ is not robust [9].

> http://eprint.iacr.org/2013/246.pdf <

 3

Therefore, only if lg M ≥ 1024, can simplified REESSE1+ have practical sense.

2.4 Decryption Algorithm
This algorithm is employed by a person who wants to decrypt ciphertexts.
INPUT: a private key ({Ai}, W, M); a ciphertext Ḡ.
S1: Set X0 ← Ḡ, X1 ← X0, h ← 0.
S2: Set b1…bn ← 0, G ← Xh, i ← 1.
S3: If Ai | G then let bi ← 1, G ← G / Ai.
S4: Let i ← i + 1.

If i ≤ n and G ≠ 1 then goto S3.
S5: If G ≠ 1 then do h ← ¬h, Xh ← Xh W

(–1)h % M, goto S2;
else end.

OUTPUT: the original plaintext block b1…bn.
Notice that as long as Ḡ is a true ciphertext, this algorithm can always terminates normally.

3 Necessity of the Lever Function ℓ(.)
We will discuss the necessity of the lever function ℓ(.) from [1, …, n] to Ω± for resisting continued

fraction attack and intersection attack.
The necessity of the lever function ℓ(.) to Ω± means that if a simplified REESSE1+ private key is

secure, ℓ(.) as a one-to-one function must exist in the key transform. The equivalent contrapositive
assertion is that if ℓ(.) as a one-to-one function does not exist (namely every ℓ(i) is mapped to the same
integer ), a simplified REESSE1+ private key will be insecure.

3.1 Continued Fraction Attack on a Simplified Private Key
Theorem 1: If α is an irrational number, r, s > 0 are two integers, and r / s is a rational in the lowest

terms such that |α − r / s| < 1 / (2s2), then r / s is a convergent of the simple continued fraction
expansion of α.

Refer to [10] for the proof.
Notice that theorem 1 also holds when α is a rational number [10].
For a public key cryptosystem, if a private key is insecure, a plaintext must be insecure. Hence, the

security of a private key is most foundational [11].
Definition 4: Attack on Ci ≡ Ai W ℓ

(i) (% M) with ℓ(i) ∈ Ω± = {+/−5, +/−6,…, +/−(n + 4)} for i = 1, …,

n by a convergent of the continued fraction of Gz / M, where Gz ≡ (Cx1 …Cxm)(Cy1 …Cyh)
–1 with m ∈ [1, n

– 1], h ∈ [1, n – m], and xj ≠ yk ∀ j ∈ [1, m] and k ∈ [1, h], is called continued fraction attack.
Property 2: Let  ∈ [1, ] be any integer. If the key transform of the simplified REESSE1+

cryptosystem is Ci ≡ Ai W (% M), namely ℓ(i) =  for i = 1, …, n, a simplified REESSE1+ private key
({A1, …, An}, W) is insecure.

Proof.
Assume that ℓ(1) = … = ℓ(n) = , where  is a fixed integer.
Then, the key transform becomes as

Ci ≡ Ai W (% M),
and especially when  = 1, Ci ≡ Ai W (% M) for i = 1, …, n.

Since (*
M , ·) is an Abelian group [7], of course, there is

Ci
–1 ≡ (Ai W)–1 (% M).

∀x ∈ [1, n – 1], let
Gz ≡ Cx Cn

–1 (% M).
Substituting Ax W and An W respectively for Cx and Cn in the above congruence yields

Gz ≡ Ax W (An W)–1 (% M)
An Gz ≡ Ax (% M)
An Gz – L M = Ax,

where L is a positive integer.
The either side of the equation is divided by An M gives

Gz / M – L / An = Ax / (An M). (1)
Due to M > ∏

n
i=1 Ai and Ai ≥ 2, there is

> http://eprint.iacr.org/2013/246.pdf <

 4

Gz / M – L / An < Ax / (An ∏

n
i=1 Ai)

= Ax / (An
2 ∏

n – 1
i = 1 Ai) ≤ 1 / (2 n – 2

 An
2),

that is,
Gz / M – L / An < 1 / (2 n – 2

 An
2). (2)

Evidently, as n > 2, there is
Gz / M – L / An < 1 / (2 An

2). (2′)
In terms of theorem 1, L / An is a convergent of the continued fraction of Gz / M.
Thus, L / An, namely An may be determined by (2′) in polynomial time since the length of the

continued fraction will not exceed lg M, and further W ≡ Cn An
–1 (% M) may be computed, which

indicates the original coprime sequence {A1, …, An} with Ai ≤ Þ can almost be recovered.
Because W in every Ci has the same exponent, and the powers of W and W–1 in any Cx Cn

–1 % M
always counteract each other, when ℓ(i) is a fixed integer ḵ, there does not exist the indeterministic
reasoning problem.

It should be noted that when a convergent of the continued fraction of Gz / M satisfies (2′), the some
subsequent convergents also possibly satisfies (2′), and if so, it will bring about the nonuniqueness of
value of An. Therefore, we say that {A1, …, An} with Ai ≤ Þ can almost be recovered.

3.2 Intersection Attack on a Simplified Private Key
Assume that ℓ(1) = … = ℓ(n) = , where  is a fixed integer. Then the key transform turns to Ci ≡

AiW
 (% M) for i = 1, …, n. Hence, there exists the following attack.

Algorithm 3.2:
INPUT: a public key ({C1, …, Cn}, M)
S1: Let Ai traverse Λ for every i:

S1.1: Compute W such that W ≡ Ci Ai
−1 (% M)

for every possible value of Ai.
S1.2: Place the pair (W, Ai) into the set Θi

for every possible value of Ai.
S2: Seek the intersection Θ = Θ1 ∩ … ∩Θn on W.

(Note that Θ  is pretty limited, and at least 1)
S3: Extract W from Θ and corresponding Ai from Θi.
OUTPUT: a private key ({A1, …, An}, W).
It is not difficult to understand that the time complexity of the above attack is dominantly involved in

S1 and S2. Concretely speaking, the time complexity is O(Λ n + Λ n) = O(Λ n), and polynomial in n.
Section 3.1 and 3.2 manifest that when every ℓ(i) is a fixed integer , a related private key can be

deduced from a public key, and further a related plaintext can be inferred from a ciphertext. Thus, the
one-to-one lever function ℓ(.) is necessary to the security of a simplified REESSE1+ private key.

4 Sufficiency of the Lever Function ℓ(.)
The sufficiency of the lever function ℓ(.) to Ω± for resisting continued fraction attack and

indeterministic intersection attack which are most efficient currently means that if ℓ(1), …, ℓ(n) ∈ Ω±
are pairwise distinct, a simplified REESSE1+ private key will be secure.

The analysis in this section will show that the continued fraction attack is utterly ineffectual if Ω± =
{+/−5, +/−6,…, +/−(n + 4)} is indeterminate, and do not always threaten Ci ≡ Ai W ℓ

(i) (% M) even if Ω±

= {5, …, n + 4} is adventitiously selected and known to adversaries.

4.1 Indeterminacy of the Lever Function ℓ(.)
According to Section 2.2, if the lever function ℓ(.) exists, we have

Ci ≡ Ai W ℓ

(i) (% M),

where Ai ∈ Λ = {2, …, Þ}, and ℓ(i) ∈ Ω± = {+/−5, +/−6,…, +/−(n + 4)} for i = 1, …, n.
The lever function ℓ(.) brings adversaries at least two difficulties:
• No method in terms of which one can directly judge whether the power of W in Cx1…Cxm is

counteracted by the power of W

–1 in (Cy1…Cyh)
–1 or not;

• No criterion in terms of which one can verify the presupposition of an indeterministic reasoning in
polynomial time.

The indeterministic reasoning based on continued fractions means that ones first presuppose that the

> http://eprint.iacr.org/2013/246.pdf <

 5

powers of the parameter W and the inverse W–1 counteract each other in a product, and then judge
whether the presupposition holds or not by the consequence.

According to Section 3, first select m ∈ [1, n – 1] elements and h ∈ [1, n – m] other elements from
{C1, …, Cn}. Let

Gx ≡ Cx1 …Cxm (% M),
Gy ≡ Cy1 …Cyh (% M),

where xj ≠ yk ∀ j ∈ [1, m] and k ∈ [1, h].
Let

Gz ≡ Gx Gy
–1 (% M).

Since {ℓ(1), …, ℓ(n)} is any arrangement of n elements in Ω±, it is impossible to predicate that Gz
does not contain the factor W or W

–1. For a further deduction, we have to presuppose that the power of
W in Gx is exactly counteracted by the power of W –1 in Gy

–1, and then,
Gz ≡ (Ax1…Axm)(Ay1…Ayh)

–1 (% M)
Gz (Ay1…Ayh) ≡ Ax1…Axm (% M)
Gz (Ay1…Ayh) – L M = Ax1…Axm

Gz / M – L / (Ay1…Ayh) = (Ax1…Axm) / (M Ay1…Ayh),
where L is a positive integer.

Denoting the product Ay1…Ayh by Āy yields
Gz / M – L / Āy = (Ax1…Axm) / (M Āy). (3)

Due to M > ∏

n
i=1 Ai and Ai ≥ 2, we have

Gz / M – L / Āy < 1 / (2
n

–

m

–

hĀy

2). (4)
Obviously, when n > m + h, (4) may have a variant, namely

Gz / M – L / Āy < 1 / (2 Āy
2). (4′)

Notice that when n = m + h, if M > 2(∏

n
i=1 Ai), (4′) still holds.

Especially, when n > 3, h = 1, and m = 2, there exists
Gz / M – L / Ay1 < 1 / (2

n

–

3

 Ay1
2) < 1 / (2 Ay1

2). (4″)
Obviously, as a discriminant, (4) is stricter than (4′) and (4″). (4″) is consistent with theorem 1.
Property 3: Let h + m ≤ n. If ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), the subset product Āy = Ay1…Ayh in

(4′) will be found in polynomial time.
Proof.
ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) means that the exponent on W in Cx1…Cxm is counteracted by the

exponent on W –1 in (Cy1…Cyh)
–1, and thus (4′) holds.

In terms of theorem 1, L / Āy is inevitably a convergent of the continued fraction of Gz / M, and thus
Āy = Ay1…Ayh can be found in polynomial time.

Notice that (4′) is insufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) (see Property 7), and Āy is faced
with nonuniqueness because there may possibly exist several convergents of the continued fraction of
Gz / M which all satisfy (4′).

Property 4 (Indeterminacy of ℓ(.)): Let h + m ≤ n. ∀x1, …, xm, y1, …, yh ∈ [1, n], and W  ≠ .

c When ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), and m ≠ h, there is
ℓ(x1) + W  + … + ℓ(xm) + W  ≠ ℓ(y1) + W  + … + ℓ(yh) + W  (% );

d when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), there always exist
Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W ′ ℓ(xm),

Cy1 ≡ A′y1 W ′ ℓ(y1), …, Cyh ≡ A′yh W ′ ℓ(yh) (% M),

such that ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ) with A′y1…A′yh ≤ Þ h;
e when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), probability that Cx1, …, Cxm, Cy1, …, Cyh make (4) with

A′y1…A′yh ≤ Þ h hold is roughly 1 / 2n – m – h – 1.
Proof.
c It is easy to understand that

W
ℓ(x1) ≡ W

ℓ(x1)

+

W

, …, W
ℓ(xm) ≡ W

ℓ(xm)

+

W

 (% M),
W

ℓ(y1) ≡ W
ℓ(y1)

+

W

, …, W
ℓ(yh) ≡ W

ℓ(yh)

+

W

 (% M),
Due to W  ≠ , mW  ≠ hW , and ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), it follows that

ℓ(x1) + … + ℓ(xm) + mW  ≠ ℓ(y1) + … + ℓ(yh) + hW  (% ).

> http://eprint.iacr.org/2013/246.pdf <

 6

d Because A′y1…A′yh need be observed, the constraint A′y1…A′yh ≤ Þ h is demanded while because
A′x1, …, A′xm need not be observed, the constraints A′x1 ≤ Þ, …, A′xm ≤ Þ are not demanded.

Let Ōd be an oracle on a discrete logarithm.
Suppose that W ′ ∈ [1, ] is a generator of (*

M , ·).
Let µ = ℓ′(y1) + … + ℓ′(yh). In terms of group theories, ∀A′y1, …, A′yh ∈ [2, Þ] which need not be

pairwise coprime, the equation
Cy1…Cyh ≡ A′y1…A′yh W ′ µ (% M)

in µ has a solution. µ may be obtained through Ōd.
∀ ℓ′(y1), …, ℓ′(yh – 1) ∈ [1, ], let ℓ′(yh) ≡ µ – (ℓ′(y1) + … + ℓ′(yh – 1)) (% ).
Similarly, ∀ ℓ′(x1), …, ℓ′(xm – 1) ∈ [1, ], let ℓ′(xm) ≡ µ – (ℓ′(x1) + … + ℓ′(xm – 1)) (% ).
Further, from Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W ′ ℓ(xm) (% M), we can obtain a tuple (A′x1, …, A′xm),

where A′x1, …, A′xm ∈ (1, M), and ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ).
Thus, Property 4.1 is proven.
e Let Gz ≡ Cx1…Cxm (Cy1…Cyh)

–1 (% M). Then in terms of Property 4.1, there is
Cx1…Cxm (Cy1…Cyh)

–1 ≡ A′x1…A′xm W ′ ℓ(x1) +

…

+ ℓ(xm)(A′y1…A′yh W ′ ℓ(y1) + … + ℓ(yh))–1

with ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ).
Further, there is

A′x1…A′xm ≡ Cx1…Cxm (Cy1…Cyh)
–1

 A′y1…A′yh (% M).
The above equation manifests that the values of W ′ and (ℓ′(y1) + … + ℓ′(yh) or ℓ′(x1) + … + ℓ′(xm)) do

not influence the value of the product A′x1…A′xm.
If A′y1…A′yh ∈ [2h, Þ h] changes, the product A′x1…A′xm also changes, where A′y1…A′yh is a composite

integer. Therefore, ∀ x1, …, xm, y1, …, yh ∈ [1, n], the number of potential values of A′x1…A′xm is
roughly (Þ

h – 2h + 1).
Let M = qÞ m

 (A′y1…A′yh) 2n – m – h, where q is a rational number.
According to (3),

Gz / M – L / (A′y1…A′yh) = (A′x1 … A′xm) / (M A′y1 … A′yh)
= (A′x1…A′xm) / (qÞ m

 2n – m – h
 (A′y1…A′yh)

2).
When A′x1…A′xm ≤ qÞ m, there is

Gz / M – L / (A′y1…A′yh) ≤ qÞ m / (qÞ m
 2n – m – h(A′y1…A′yh)

2)
= 1 / (2n – m – h (A′y1…A′yh)

2),
which satisfies (4).

Assume that the value of A′x1…A′xm distributes uniformly on the interval (1, M). If A′y1…A′yh is a
certain concrete value, the probability that A′x1…A′xm makes (4) hold at a specific value of A′y1…A′yh is

qÞ m / M = qÞ m / (qÞ m(A′y1…A′yh)2
n – m – h)

= 1 / ((A′y1…A′yh) 2n – m – h).
In fact, it is possible that A′y1…A′yh take every value in the interval [2h, Þ

h] when Cx1, …, Cxm, Cy1, …,
Cyh are fixed. Thus, the probability that A′x1…A′xm makes (4) hold is

P∀x1, …, xm, y1, …, yh ∈ [1, n] = (1 / (2n – m – h))(1 / 2h
 + 1 / (2h

 + 1) + … + 1 / Þ h)
> (1 / 2n – m – h)(2(Þ h – 2h

 + 1) / (Þ h + 2h))
= (Þ h – 2h

 + 1) / (2n – m – h – 1(Þ h + 2h))
≈ 1 / 2n – m – h – 1.

Obviously, the larger m + h is, the larger the probability is, and the smaller n is, the larger the
probability is also.

Property 5: Let h + m ≤ n. ∀ x1, …, xm, y1, …, yh ∈ [1, n], when ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh),
the probability that another Āy makes (4) with Āy ≤ Þ h hold is roughly 1 / 2n – m – h – 1.

Proof.
Let

Gx ≡ Cx1 …Cxm ≡ (Ax1…Axm) W
ℓ(x1) + … + ℓ(xm) (% M),

Gy ≡ Cy1 …Cyh ≡ (Ay1…Ayh) W
ℓ(y1) + … + ℓ(yh) (% M).

Due to ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), there is
Gz ≡ Gx Gy

–1 ≡ (Ax1…Axm)(Ay1…Ayh)

–1 ≡ (Ax1…Axm) Āy
–1 (% M).

According to the derivation of (4″), Āy will occur in a convergent of the continued fraction of Gz / M.
Let p1 / q1, …, px / qx = L /Āy, px + 1 / qx + 1, …, pt / qt be the convergent sequence of the continued

> http://eprint.iacr.org/2013/246.pdf <

 7

fraction of Gz / M, where t ≤ lg M.
Because of Gz / M – L / Āy < 1 / (2

n

–

m

–

h Āy

2), it will lead
|Gz / M – px + 1 / qx + 1| < 1 / (2

n

–

m

–

h

 qx + 1
2) with qx + 1 ≤ Þ h,

……, or
|Gz / M – pt / qt| < 1 / (2

n

–

m

–

h

 qt
2) with qt ≤ Þ h

to probably hold, and in terms of Property 4.2, the probability is roughly 1 / 2n – m – h – 1.
Notice that in this case, there is ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ) with A′y1…A′yh ≤ Þ h,

where ℓ′(x1), …, ℓ′(xm), ℓ′(y1), …, ℓ′(yh) satisfy
Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W ′ ℓ(xm), Cy1 ≡ A′y1 W ′ ℓ(y1), …, Cyh ≡ A′yh W ′ ℓ(yh) (% M).

End.
Property 5 illuminates that the nonuniqueness of Āy, namely there may exist the disturbance of Āy.

The smaller m + h is, the less the disturbance is.

4.2 Some Conditions Are Only Necessary But Insufficient
Property 6: (4) is necessary but insufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) with x1, …, xm,

y1, …, yh ∈ [1, n], namely for the powers of W and W –1 in Gz to counteract each other.
Proof. Necessity:
Suppose that ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh).
Let {C1, …, Cn} be a public key sequence, and M be a modulus, where Ci ≡ Ai W ℓ

(i) (% M).

Let Gx ≡ Cx1…Cxm (% M), Gy ≡ Cy1…Cyh (% M), and Gz ≡ Gx Gy
–1

 (% M).
Further, Gz ≡ (Ax1…Axm)(Ay1…Ayh)

–1 (% M).
Denote the product Ay1…Ayh by Āy. Similar to Section 4.1, we have

Gz / M – L / Āy < 1 / (2
n

–

m

–

hĀy

2),
Namely (4) holds.

Insufficiency:
Suppose that (4) holds.
The contrapositive of the proposition that if (4) holds, ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) holds is

that if ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) does not hold.
Hence, we need to prove that when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) still holds.
In terms of Property 4.2, when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), the (4) holds with the probability

1 / 2n – m – h – 1, which reminds us that when {C1, …, Cn} is generated, some subsequences in the forms
{Cx1, …, Cxm} and {Cy1, …, Cyh} which are verified to satisfy (4) with ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … +

ℓ(yh) can always be found beforehand through adjusting the values of W and some elements in {A1,
A2, …, Ai} or {ℓ(1), ℓ(2), …, ℓ(n)}.

Hence, the (4) is not sufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh).
Property 7: (4′) is necessary but not sufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) with x1, …, xm,

y1, …, yh ∈ [1, n], for the powers of W and W –1 in Gz to counteract each other.
Proof.
Because (4′) is derived from (4), and Property 6 holds, naturally Property 7 holds.
Property 8: Let m = 2 and h = 1. ∀ x1, x2, y1 ∈ [1, n], when ℓ(x1) + ℓ(x2) ≠ ℓ(y1),

c there always exist
Cx1 ≡ A′x1 W ′ ℓ′ (x1), Cx1 ≡ A′x2 W ′ ℓ′ (x2), Cy1 ≡ A′y1 W ′ ℓ′ (y1) (% M),

such that ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (% ) with A′y1 ≤ Þ ;
d Cx1, Cx2, Cy1 make (4″) with A′y1 ≤ Þ hold in all probability.
Proof.
c It is similar to the proving process of Property 4.1.
d Let

Gz ≡ Cx1 Cx2 Cy1
–1

 ≡ A′x1 A′x2W ′ ℓ′ (x1)

+

ℓ′

(x2)
 (A′y1 W ′ ℓ′ (y1))–1 (% M)

with ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (% ).
Further, there is A′x1 A′x2 ≡ Cx1 Cx2 Cy1

–1
 A′y1 (% M).

It is easily seen from the above equations that the values of W′ and ℓ′(y1) do not influence the value
of (A′x1 A′x2).

If A′y1 ∈ [2, Þ] changes, A′x1 A′x2 also changes. Thus, ∀ x1, x2, y1 ∈ [1, n], the number of potential

> http://eprint.iacr.org/2013/246.pdf <

 8

values of A′x1 A′x2 is Þ – 1.
Let M = 2 q Þ 2 A′y1, where q is a rational number.
According to (3),

Gz / M – L / A′y1 = A′x1 A′x2 / (M A′y1)
= A′x1 A′x2 / (2 q Þ 2 A′y1

2).
When A′x1 A′x2 ≤ q Þ 2, there is

Gz / M – L / A′y1 ≤ q Þ 2 / (2 q Þ 2 A′y1
2)

= 1 / (2 A′y1
2),

which satisfies (4″).
Assume that the value of A′x1 A′x2 distributes uniformly on (1, M). Then, the probability that A′x1 A′x2

makes (4″) hold is
P∀ x1, x2, y1 ∈ [1, n] = (q Þ 2 / (2 q Þ 2))(1 / 2 + … + 1 / Þ)

≥ (1 / 2)(2(Þ – 1) / (Þ + 2))
= 1 – 3 / (Þ + 2).

Apparently, P∀ x1, x2, y1 ∈ [1, n] is very large, and especially when Þ is pretty large, it is close to 1.
According to Property 8.2, for a certain Cy1 and ∀ Cx1, Cx2 ∈ {C1, …, Cn}, attack by (4″) will produce

roughly n2
 / 2 possible values of Ay1, including the repeated, while attack by (4) may filter out most of

the disturbing data of Ay1. Because every Ay1 ≤ Þ < n2
 / 2 in REESSE1, the number of potential values of

Ay1 is at most Þ in terms of the pigeonhole principle, which indicates the running time of discriminating
the original coprime sequence from the values of A1, …, the values of An is O(Þ

n).
Property 9: (4″) is necessary but not sufficient for ℓ(x1) + ℓ(x2) = ℓ(y1) with x1, x2, y1 ∈ [1, n], namely

for the powers of W and W –1 in Gz to counteract each other.
Proof.
Because (4″) is derived from (4), and Property 6 holds, naturally Property 9 holds.
It should be noted that Property 2, 3, …, 9 do not depend on the selection of codomain of the lever

function ℓ(.), namely regardless of selecting the old Ω or the new Ω±, Property 2, 3, …, 9 still hold.

4.3 Two Discrepant Cases
The cases of h = 1 and h ≠ 1 need to be treated distinguishingly.

4.3.1 Case of h = 1: Verifying by Examples
The h = 1 means that Āy = Ay1. If Āy is determined, a certain Ay1 might be exposed directly. A single

Ay1 may be either prime or composite, and thus “whether Ay1 is prime” may not be regarded as the
criterion of the powers of W and W –1 counteracting each other.

If take m = 2 and h = 1, in terms of Property 4.2, the probability P∀x1, x2, y1 ∈ [1, n] that A′x1 A′x2 makes (4)
hold is roughly 1 / 2n

–

4, and the number of rationals formed as Gz / M which lead (4) to hold is roughly

n3
 / 2n – 4 when the interval [1, n] is traversed by x1, x2, y1 separately. Notice that P∀x1, x2, y1 ∈ [1, n] is with

respect to (4), but not with respect to (4′) or (4″).
Notice that due to Ω± = {+/−5, +/−6, …, +/−(n + 4)}, the value of ℓ(x1) + ℓ(x2) ― (−5) + 6 = 1 for

example does not necessarily occur in Ω±.
In what follows, we validate Property 6 and 8 with two examples when m = 2 and h = 1. Especially

assume that Ω± = {5, 6, …, n + 4} is selected to a turn.
Example 1:
It will illustrate the ineffectuality of continued fraction attack by (4).
Assume that the bit-length of a plaintext block is n = 6.
Let {Ai} = {11, 10, 3, 7, 17, 13}, and Ω± = {5, 6, 7, 8, 9, 10}.
Find M = 510931 > 11 × 10 × 3 × 7 × 17 × 13.
Stochastically pick W = 17797, and

ℓ(1) = 9, ℓ(2) = 6, ℓ(3) = 10, ℓ(4) = 5, ℓ(5) = 7, ℓ(6) = 8.
From Ci ≡ Ai W ℓ(i) (% M), we obtain
{Ci} = {113101, 79182, 175066, 433093, 501150, 389033}.
Stochastically pick x1 = 2, x2 = 6, and y1 = 5.
Notice that there is ℓ(5) ≠ ℓ(2) + ℓ(6).
Compute

> http://eprint.iacr.org/2013/246.pdf <

 9

Gz ≡ C2 C6 C5
–1 ≡ 79182 × 389033 × 434038 ≡ 342114 (% 510931).

Presuppose that the power of W in C2 C6 is just counteracted by the power of W –1 in C5
–1, and then

342114 ≡ A2 A6 A5
–1 (% 510931).

According to (3),
342114 / 510931 – L / A5 = A2 A6 / (510931 A5).

It follows that the continued fraction expansion of 342114 / 510931 equals

1 / (1 + 1 / (2 + 1 / (37 + 1 / (1 + 1 / (2 + … + 1 / 4))))),
where the denominators 1 = a1, 2 = a2, 37 = a3, … .

Heuristically let
L / A5 = 1/ (1 + 1 / 2) = 2 / 3,

which indicates it is probable that A5 = 3. Further,
342114 / 510931 – 2 / 3 = 0.002922769 < 1 / (23

 × 32) = 0.013888889,
which satisfies (4). Then A5 = 3 is deduced, which is in direct contradiction to factual A5 = 17, so it is
impossible that (4) may serve as a sufficient condition.

Meantime, in Example 1, we observe a2 = 2 and a3 = 37, and the increase from a2 to a3 should be
sharp. However, even though the case is this, the continued fraction attack by (4) fails.

Example 2:
It will illustrate the ineffectuality of a continued fraction attack by a discriminant relevant to (4″).
The following Algorithm 4.3.1 which is evolved from the analysis task in [12] describes a continued

fraction attack on a simplified REESSE1+ private key. The attack rests on the discriminant
qs ∆ < qs +1 and qs < Amax, (5)

where qs, qs +1, ∆, and Amax are referred to Algorithm 4.3.1 for their meanings.
In terms of [12], (5) is derived from (4″). Seemingly, (5) is stricter than (4″), and intended to

uniquely determine Ay1.
Algorithm 4.3.1:
INPUT: a public key ({C1, …, Cn}, M).
S1: Generate the first 2n primes p1, …, p2n of the natural set.
S2: Set ∆ ← (M / (2∏

u
i=n – 2 pi))1

/

2, Amax ← M / ∏

n−1
i=1 pi,

where u meets ∏

u
i=1 pi < M ≤ ∏

u +1
i=1 pi.

S3: For (x1 = 1, x1 ≤ n, x1++)
For (x2 = 1, x2 ≤ n, x2++)
For (y1 = 1, y1 ≤ n, y1++) {

Compute Gz ← Cx1 Cx2 Cy1
–1 % M;

Get convergent sequence {r0 / q0, r1 / q1, …, rt / qt}
of continued fraction of Gz / M;

Get denominator sequence {q1, q2, …, qt}
from the convergent sequence;

For (s = 1, s ≤ t, s++)
If (qs ∆ < qs +1) and (qs < Amax) then {

Let Ay1 ← qs;
Return (Ay1, (x1, x2, y1)).

}
}

OUTPUT: entries (Ay1, (x1, x2, y1)).
Notice that z++ denotes z ← z + 1, where z is any arbitrary variable.
However, Algorithm 4.3.1 is ineffectual in practice. Please see the following example.
Assume that the bit-length of a plaintext block is n = 10.
Let {Ai} = {437, 221, 77, 43, 37, 29, 41, 31, 15, 2}, and Ω± = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.
Find M = 13082761331670077 > ∏

n
i=1 Ai = 13082761331670030.

Randomly select W = 944516391, and
ℓ(1) = 11, ℓ(2) = 14, ℓ(3) = 13, ℓ(4) = 8, ℓ(5) = 10, ℓ(6) = 5, ℓ(7) = 9, ℓ(8) = 7, ℓ(9) = 12, ℓ(10) = 6.
By Ci ≡ Ai W ℓ

(i) (% M), obtain
{C1, …, C10} = {3534250731208421, 12235924019299910, 8726060645493642, 10110020851673707,

2328792308267710, 8425476748983036, 6187583147203887, 10200412235916586, 9359330740489342,
5977236088006743}.

> http://eprint.iacr.org/2013/246.pdf <

 10

On input of the public key ({Ci}, M), the program by Algorithm 4.3.1 will evaluate ∆ = 506, Amax =
58642670, and output Ay1 and (x1, x2, y1). Structure Table 1 with entries (Ay1, (x1, x2, y1)). On Table 1,
the number of triples (x1, x2, y1) is greater than 100.

Ay1 Triple (x1, x2, y1)
A1 = 187125 (1, 1, 1)
A1 = 121089 (2, 1, 1), (1, 2, 1)
A1 = 77 (5, 3, 1), (3, 5, 1)
A1 = 23 (8, 6, 1), (6, 8, 1), (10, 10, 1)
A1 = 437 (10, 6, 1), (6, 10, 1)
A2 = 1251 (1, 1, 2)
A2 = 187125 (2, 1, 2), (1, 2, 2)
A2 = 121089 (2, 2, 2)
A2 = 17 (8, 4, 2), (6, 5, 2), (5, 6, 2), (10, 7, 2), (4, 8, 2), (7, 10, 2)
A2 = 221 (10, 4, 2), (7, 6, 2), (6, 7, 2), (8, 8, 2), (4, 10, 2)
A2 = 77 (9, 8, 2), (8, 9, 2)
A2 = 4204 (10, 10, 2)
A3 = 187125 (3, 1, 3), (1, 3, 3)
A3 = 12 (7, 1, 3), (1, 7, 3)
A3 = 121089 (3, 2, 3), (2, 3, 3)
A3 = 77 (6, 4, 3), (4, 6, 3), (10, 8, 3), (8, 10, 3)
A3 = 11 (10, 4, 3), (7, 6, 3), (6, 7, 3), (8, 8, 3), (4, 10, 3)
A3 = 2113 (8, 7, 3), (7, 8, 3)
A3 = 769 (9, 8, 3), (8, 9, 3)
A4 = 187125 (4, 1, 4), (1, 4, 4)
A4 = 121089 (4, 2, 4), (2, 4, 4)
A4 = 76 (10, 6, 4), (6, 10, 4)
A4 = 56 (10, 9, 4), (9, 10, 4)
A5 = 187125 (5, 1, 5), (1, 5, 5)
A5 = 630269 (6, 1, 5), (1, 6, 5)
A5 = 121089 (5, 2, 5), (2, 5, 5)
A5 = 41 (8, 2, 5), (2, 8, 5)
A5 = 97 (4, 3, 5), (3, 4, 5)
A5 = 37 (6, 6, 5), (10, 6, 5), (6, 10, 5)
A6 = 187125 (6, 1, 6), (1, 6, 6)
A6 = 121089 (6, 2, 6), (2, 6, 6)
A7 = 187125 (7, 1, 7), (1, 7, 7)
A7 = 121089 (7, 2, 7), (2, 7, 7)
A7 = 3 (9, 3, 7), (3, 9, 7)
A8 = 187125 (8, 1, 8), (1, 8, 8)
A8 = 34945619 (6, 2, 8), (2, 6, 8)
A8 = 121089 (8, 2, 8), (2, 8, 8)
A9 = 187125 (9, 1, 9), (1, 9, 9)
A9 = 121089 (9, 2, 9), (2, 9, 9)
A9 = 5 (6, 4, 9), (4, 6, 9), (10, 8, 9), (8, 10, 9)
A9 = 15 (8, 6, 9), (6, 8, 9), (10, 10, 9)
A10 = 259970 (4, 1, 10), (1, 4, 10)
A10 = 187125 (10, 1, 10), (1, 10, 10)
A10 = 121089 (10, 2, 10), (2, 10, 10)
A10 = 7629 (8, 3, 10), (3, 8, 10)

Table 1: Ay1 and the Triple (x1, x2, y1)

On Table 1, we observe that

> http://eprint.iacr.org/2013/246.pdf <

 11

Ay1 relevant to 5 triples is A2 = 221 or A3 = 11,
Ay1 relevant to 4 triples is A3 = 77 or A9 = 5,
Ay1 relevant to 3 triples is A1 = 23, A5 = 37, or A9 = 15,
Ay1 relevant to 2 triples is A1 = 77, A2 = 77, A3 = 12, A4 = 56, A5 = 41, or A7 = 3 etc,
Ay1 relevant to 1 triple is A1 = 187125, A2 = 1251, A2 = 121089, or A2 = 4204.
Among these Ay1′s, there exist at least 2

n − 5 compatible selections from which some elements of the
coprime sequence {Ai} can be obtained.

For instance, randomly select compatible Ay1′s: A3 = 11, A9 = 5, A1 = 23, A5 = 41, and A2 = 1251, and
work out ℓ(y1)′s: ℓ(3) = 14, ℓ(9) = 13, ℓ(1) = 12, ℓ(5) = 11, and ℓ(2) = 10 according to the rule that the
number of the triples (x1, x2, y1) tied to Ay1 equals (ℓ(y1) – 9) when ℓ(y1) ≥ 10 [12].

Obviously, such A1, A2, A3, A5, A9 are not original elements, which indicates (5) derived from (4″) is
essentially insufficient even if a concrete Ω± = {5, 6, …, n + 4} is selected and known.

4.3.2 Case of h ≠ 1
The h ≠ 1 means Āy = Ay1…Ayh. It is well known that any composite Āy ≠ pk (p is a prime) can be

factorized into some prime multiplicative factors, and many coprime sequences of the same length can
be obtained from a prime factor set.

For instance, let h = 3 and Āy = 210 with the prime factor set {2, 3, 5, 7}. We can obtain the coprime
sequences {5, 6, 7}, {6, 5, 7}, {3, 7, 10}, {10, 3, 7}, {2, 15, 7}, {3, 2, 35}, etc. Which is the original?

Property 4 makes it clear that due to the indeterminacy of ℓ(.), no matter whether the power of W and
W –1 counteract each other or not, in some cases, one or several values of Āy which may be written as
the product of h coprime integers, and satisfy (4) can be found out from the convergents of the
continued fraction of Gz / M when the interval [1, n] is traversed respectively by x1, …, xm, y1, …, yh.
Thus, “whether Āy can be written as the product of h coprime integers” may not be regarded as a
criterion for verifying that the powers of W and W –1 counteract each other.

Moreover, even if the k values v1, …, vk of the product Ay1 Ay2…Ayh are obtained, where y1 is fixed,
and y2, …, yh are varied, gcd(v1, …, vk) can not be judged to be Ay1 in terms of the definition of a
coprime sequence.

If take m = 2 and h = 2, in terms of Property 4.2 and P∀ x1, x2, y1, y2 ∈ [1, n], the number of rationals formed
as Gz / M which leads (4) to hold is roughly n4

 / 2n – 5 when the interval [1, n] is traversed by x1, x2, y1, y2
respectively. What is most pivotal is that the value of ℓ(x1) + ℓ(x2) or ℓ(y1) + ℓ(y2) ∀ x1, x2, y1, y2 ∈ [1, n]
does not necessarily occur in a concrete Ω±.

4.4 Time Complexities of Two Attacks
The continued fraction attack and indeterministic intersection attack on Ci ≡ Ai W

ℓ

(i) (% M) are most
efficient at present.

4.4.1 Time Complexity of Continued Fraction Attack
It can be seen from section 4.1 that continued fraction attack is based on the assumption that ℓ(x1)

+ … + ℓ(xm) = ℓ(y1) + … + ℓ(yh). For convenience, usually let m = 2 and h =1.
If Ω± is determined as {5, 6, …, n + 4}, the continued fraction attack by (4), (4′), (4″) or (5) contains

five steps dominantly.
Note that it is known from Example 2 that Ω± = {5, 6, …, n + 4} does not mean that the continued

fraction attack will succeed.
Algorithm 4.4.1:
INPUT: a public key ({C1, …, Cn}, M);

the set Ω± = {5, 6, …, n + 4}.
S1: Structure Table 2 according to Ω±.
S2: Get entries (Ay1, (x1, x2, y1)) by calling Algorithm 4.3.1.
S3: Structure Table 1 with entries (Ay1, (x1, x2, y1)).
S4: Find coprime Ay1 according to Table 1 and Table 2.
S5: Find pairwise different ℓ(y1) according to Ay1 and Table 2.
OUTPUT: coprime values of Ay1 and pairwise different values of ℓ(y1).

> http://eprint.iacr.org/2013/246.pdf <

 12

ℓ(y1) 10 11 …… n + 4
ℓ(x1) + ℓ(x2) 5 + 5 5 + 6, 6 + 5 …… 5 + (n – 1), …, (n – 1) + 5

Number of ℓ(y1) = ℓ(x1) + ℓ(x2) 1 2 …… n – 5

Table 2: Number of ℓ(x1) + ℓ(x2) = ℓ(y1) over Ω± = {5, 6, …, n + 4}

At S4, finding coprime values of Ay1 will probably take O(2

n − 5) running time.
At S1, when Ω± is indeterminate (in fact, Ω± is one of 2n potential sets), an adversary must firstly

determine all the elements of Ω±, which will take O(2n) running time.

4.4.2 Time Complexity of Indeterministic Intersection Attack
Due to Ci ≡ Ai W

ℓ

(i) (% M) with Ai ∈ Λ = {2, …, Þ} and ℓ(i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} for i
= 1, …, n, and elements in the sets Λ and Ω± being small, an adversary may attempt the following
attack with indeterminacy.

Algorithm 4.4.2:
INPUT: a public key ({C1, …, Cn}, M); the set Λ.
S1: Let ℓ(i) traverse {5, …, n + 4, −5, …, −(n + 4)},

and Ai traverse Λ for every i:
S1.1: Compute W such that W

ℓ

(i) ≡ Ci Ai
−1 (% M)

for every possible value of (Ai, ℓ(i)).
S1.2: Place the triple (W, Ai, ℓ(i)) into the set Θi

for every possible value of (Ai, ℓ(i)).
S2: Seek the intersection Θ = Θ1 ∩ … ∩ Θn on W.
S3: If W unique in Θ, and relevant (Ai, ℓ(i)) unique in every Θi, then

a private key ({Ai}, {ℓ(i)}, W) is extracted;
else (W nonunique in Θ, or relevant (Ai, ℓ(i)) nonunique in some Θi)

check whether every possible {A1, …, An} is a coprime sequence,
and whether every possible {ℓ(1), …, ℓ(n)} is a lever function.

OUTPUT: private keys ({Ai}, {ℓ(i)}, W).
When the number of private keys is larger than 1, the original private key need to be verified.
Note that at S1.1, may compute W by the Moldovyan root finding method [13], and the time

complexity of the method is O(ℓ(i)1

/

2

 lgM) ≈ O(n1 / 2lgM).
The size of every Θi is about O(Λ Ω±

2) ≈ O(Þ n2) due to q2 |  ∀ q (prime) ∈ |Ω±|.
At S2, seeking the intersection Θ will take O(Þ n3) running time which is polynomial in n.
At S3, seeking a coprime sequence will take O(n) running time in the best case with low probability,

but it will take O(2n) running time in a worse case. The low probability can be guaranteed through the
selection of some private parameters in the process of a key pair generation.

Thus, the adversary cannot extract a simplified REESSE1+ private key in determinate polynomial
time.

4.5 Relation between a Lever Function and a Random Oracle
4.5.1 What Is a Random Oracle

An oracle is a mathematical abstraction, a theoretical black box, or a subroutine of which the running
time may not be considered [11][14]. In particular, in cryptography, an oracle may be treated as a
subcomponent of an adversary, and lives its own life independent of the adversary. Usually, the
adversary interacts with the oracle but cannot control its behavior.

A random oracle is an oracle which answers to every query with a completely random and
unpredictable value chosen uniformly from its output domain, except that for any specific query, it
outputs the same value every time it receives that query if it is supposed to simulate a deterministic
function [14].

Random oracles are utilized in cryptographic proofs for relpacing any irrealizable function so far
which can provide the mathematical properties required by the proof. A cryprosystem or a protocol that
is proven secure using such a proof is described as being secure in the random oracle model, as
opposed to being secure in the standard model where the integer factorization problem, the discrete
logarithm problem etc are assumed to be hard. When a random oracle is used within a security proof, it
is made available to all participants, including adversaries. In practice, random oracles producing a
bit-string of infinite length which can be truncated to the length desired are typically used to model

> http://eprint.iacr.org/2013/246.pdf <

 13

cryptographic hash functions in schemes where strong randomness assumptions of a hash function′s
output are needed.

In fact, it draws attention that certain artificial signature and encryption schemes are proven secure in
the random oracle model, but are trivially insecure when any real hash function such as MD5 or SHA-1
is substituted for the random oracle [15][16]. Nevertheless, for any more natural protocol, a proof of
security in the random oracle model gives very strong evidence that an attacker have to discover some
unknown and undesirable property of the hash function used in the protocol.

A function or algorithm is regarded random if its output depends not only on the input but also on
some random ingredients, namely if its output is not uniquely determined by the input. Hence, to a
function or algorithm, randomness contains indeterminacy.

4.5.2 Design of a Random Oracle
Correspondingly, the indeterminacy of the ℓ(i) may be expounded in terms of a random oracle.
Suppose that Ōd(y, g) is an oracle on solving y ≡ g

x (% M) for x, and Ōℓ is an oracle on solving Ci ≡
Ai W ℓ

(i) (% M) for ℓ(i), where M is prime, and i is from 1 to n.

Let Ḏ be a database which stores records ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) computed already. If the
arrangement order of some Ci′s is changed, {C1, …, Cn} is regarded as a distinct sequence.

The structure of Ōℓ is as Algorithm 4.5.2:
INPUT: a public key ({C1, …, Cn}, M).
S1: If find ({C1, …, Cn}, M) in Ḏ then

retrieve {ℓ(1), …, ℓ(n)}, goto S6.
S2: Randomly produce a coprime sequence A1, …, An

with each Ai ≤ Þ and ∏

n
i=1 Ai < M.

S3: Randomly pick a generator W ∈ *
M.

S4: Evaluate ℓ(i) by calling Ōd(Ci
 Ai

–1, W) for i = 1, …, n.
S5: Store ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) to Ḏ.
S6: Return {ℓ(1), , 　 ℓ(n)}, and end.
OUTPUT: a sequence {ℓ(1), …, ℓ(n)}.
Of course, {Ai} and W as side results may be outputted.
Obviously, for the same input ({C1, …, Cn}, M), the output is the same, and for a different input, a

related output is random and unpredictable.
Since Ci

 Ai
–1 is pairwise distinct, and W is a generator, the result {ℓ(1), …, ℓ(n)} will be pairwise

distinct. Again according to Definition 2, every ℓ(i) ∈ [1, ] may be beyond Ω±. Thus, {ℓ(1), …, ℓ(n)}
is a lever function although it is not necessarily the original.

The Ōℓ is perhaps strange to some people because they have never met any analogous oracle in
classical cryptosystems.

Section 4.5 explains further why the continued fraction attack by (4), (4′), (4″), or (5) and the
indeterministic intersection attack is ineffectual on Ci ≡ Ai W ℓ

(i) (% M).

5 Conclusion
Indeterminacy is ubiquitous. For example, for x + y = z, given x = –122 and y = 611, computing z =

489 is easy, and contrarily, given z = 489, seeking the original x and y is intractable since there exists
indeterminacy in x + y = z. Indeterminacy in Ci ≡ Ai W ℓ

(i) (% M) is similar, and triggered by the lever

function ℓ(.).
Inequation (4) is stricter than (4″) although both (4) and (4″) are only necessary but insufficient for

ℓ(x1) + ℓ(x2) = ℓ(y1). Property 4 and 8 show that attack by (4) is more effectual than attack by (4″)
theoretically. However, Section 4.3 shows that when Ω± = {+/−5, +/−6, …, +/−(n + 4)} is indeterminate,
the continued fraction attack by (4), (4′), (4″), or (5) will take O(2n) running time, and is practically
infeasible.

Section 4.4.2 manifests that the indeterministic intersection attack cannot extract a private key in
determinate polynomial time although it unveils some lowly probabilistic risk.

Therefore, the lever function ℓ(.) from {1, 2, …, n} to {+/−5, +/−6, …, +/−(n + 4)} is necessary and
sufficient for resisting the continued fraction attack and the indeterministic intersection attack.

Resorting to Ci ≡ Ai W ℓ

(i) (% M), we expound theoretically the effect of the lever function with

indeterminacy. In practice, to strictly assure the security of a private key and to decrease the length of

> http://eprint.iacr.org/2013/246.pdf <

 14

modulus of the cryptosystem, the key transform should be strengthened to Ci ≡ (Ai W ℓ

(i))δ (% M) with δ

∈ [2, ], Ai ∈ Λ = {2, 3, …, Þ}, and ℓ(i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} for i = 1, …, n [6][17].

Acknowledgment
The authors would like to thank the Academicians Jiren Cai, Zhongyi Zhou, Changxiang Shen, Zhengyao Wei, Andrew C.

Yao, Binxing Fang, Xicheng Lu, and Guangnan Ni for their important guidance, suggestions, and help.
The authors also would like to thank the Professors Dingyi Pei, Dengguo Feng, Jie Wang, Ronald L. Rivest, Moti Yung, Adi

Shamir, Dingzhu Du, Mulan Liu, Huanguo Zhang, Yixian Yang, Xuejia Lai, Xiaoyun Wang, Yupu Hu, Kefei Chen, Dongdai Lin,
Jiwu Jing, Rongquan Feng, Ping Luo, Jianfeng Ma, Xiao Chen, Zhenfu Cao, Tao Xie, Chao Li, Lei Hu, Lusheng Chen, Wenbao
Han, Xinchun Yin, Bogang Lin, Qibin Zhai, Dake He, Hong Zhu, Renji Tao, Bingru Yang, Zhiying Wang, and Quanyuan Wu
for their important advice, suggestions, and corrections.

References
[1] D. Z. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons, New York, 2000, ch. 3-4.
[2] A. C. Yao, Theory and Applications of Trapdoor Functions, Proc. the 23rd Annual Symposium on the Foundations of

Computer Science, IEEE, 1982, pp. 80-91.
[3] W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, vol. 22(6),

1976, pp. 644-654.
[4] R. L. Rivest, A. Shamir, and L. M. Adleman, A Method for Obtaining Digital Signatures and Public-key Cryptosystems,

Communications of the ACM, vol. 21(2), 1978, pp. 120-126.
[5] T. ElGamal, A Public-key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Transactions on

Information Theory, vol. 31(4), 1985, pp. 469-472.
[6] S. Su and S. Lü, A Public Key Cryptosystem Based on Three New Provable Problems, Theoretical Computer Science, vol.

426-427, 2012, pp. 91-117.
[7] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1998, ch. 1-3.
[8] S. Su, S. Lü, and X. Fan, Asymptotic Granularity Reduction and Its Application, Theoretical Computer Science, vol.

412(39), 2011, pp. 5374-5386.
[9] M. J. Coster, A. Joux, B. A. LaMacchia etc., Improved Low-Density Subset Sum Algorithms, Computational Complexity,

vol. 2(2), 1992, pp. 111-128.
[10] K. H. Rosen, Elementary Number Theory and Its Applications (5th ed.), Boston: Addison-Wesley, 2005, ch. 12.
[11] A. J. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, London, UK, 1997, ch.

2, 3, 8.
[12] S. Liu, F. Zhang, etc, Cryptanalysis of REESSE1 Public Encryption Cryptosystem, Information Security (in Chinese), vol.

5(7), 2005, pp. 121-124.
[13] N. A. Moldovyan, Digital Signature Scheme Based on a New Hard Problem, Computer Science Journal of Moldova, vol.

16(2), 2008, pp. 163-182.
[14] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, Proc. the 1st

ACM Conference on Computer and Communications Security, ACM Press, New York, 1993, pp. 62-73.
[15] R. Canetti, O. Goldreich, and S. Halevi, The Random Oracle Methodology Revisited, Proc. the 30 th Annual ACM

Symposium on Theory of Computing, ACM Press, New York, 1998, pp. 209-218.
[16] N. Koblitz and A. Menezes, Another Look at “Provable Security” II, Progress in Cryptology - INDOCRYPT 2006, Springer-

Verlag, Berlin, 2006, pp. 148-175.
[17] S. Su and S. Lü, REESSE1-E Public-key Signature Scheme Based on Variable Combination, Acta Electronica Sinica (in

Chinese), vol. 38(7), 2010, pp. 234-238.

	1 Introduction
	References

