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Abstract: The key transform of the REESSE1+ cryptosystem is Ci ≡ (Ai W ℓ(i))δ (% M) with ℓ(i) 
∈ Ω = {5, 7, …, 2n + 3} for i = 1, …, n, where ℓ(i) is called a lever function. In this paper, the 
authors give a simplified transform Ci ≡ Ai W ℓ(i) (% M) and a new codomain Ω± = {+/−5, 
+/−6, …, +/−(n + 4)}, where “+/−” means the selection of the “+” or “−” sign. Discuss the 
necessity of ℓ(.) to Ω± that a simplified private key is insecure if ℓ(.) is only a fixed integer, and 
the sufficiency that a simplified private key is secure (namely Ci ≡ Ai W ℓ(i) (% M) is not faced 
with determinate polynomial time attack) if ℓ(.) is a one-to-one function. The sufficiency is 
expounded from five aspects: indeterminacy of ℓ(.) to Ω±, insufficiency of each of the four 
judgment conditions for counteraction of powers of W and W −1 even if Ω± = {5, 6, …, n + 4}, 
verifying by examples, running times of continued fraction attack and indeterministic intersection 
attack most efficient now, and a relation between a lever function and a random oracle. 
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1  Introduction 
Theories of computational complexity such as the class P, the class NP, one-way functions, and 

trapdoor functions provide public key cryptosystems with foundation stones [1][2][3]. For instance, the 
RSA cryptosystem is founded on the integer factorization problem (IFP) [4], and the ElGamal 
cryptosystem is founded on the discrete logarithm problem (DLP) [5]. It appeals to people whether 
polynomial time algorithms for solving IFP and DLP on electronic computers exist or not since IFP 
and DLP are not proved NP-complete. 

To N = p q with p and q prime, if N is given, the values of p and q are determined. To y ≡ g 
x (% p) 

with g a generator of ( * 
p , ·), if y is given, the value of x is also determined. Nevertheless there exists 

such a class of computational problems, which looks very ordinary, but leads indeterminacy into a 
public key cryptosystem ― a permutation problem for example. 

In the REESSE1+ public key cryptosystem [6], the key transform is Ci ≡ (AiW ℓ(i))δ (% M) with ℓ (i) ∈ 
Ω = {5, 7, …, 2n + 3}. The analysis in [6] shows that a REESSE1+ private key ({Ai}, {ℓ(i)}, W, δ) is 
secure without doubt due to the existence of δ ∈ [1, M – 1]. 

If δ = 1 and Ci ≡ Ai W ℓ(i) (% M) with ℓ (i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} new, what is the thing? 
In this paper, starting on the security of the simplified transform Ci ≡ Ai W ℓ(i) (% M), we will investigate 

the effect of the lever function ℓ(.) from {1, 2, …, n} to Ω± with indeterminacy. 
Throughout the paper, unless otherwise specified, n ≥ 80 is the bit-length of a plaintext block or the 

item-length of a sequence, the sign % means “modulo”,  does “M – 1” with M prime, lg x denotes a 
logarithm of x to the base 2, ¬x does the opposite of a bit x, Þ does the maximal prime allowed in 
coprime sequences, |x| does the absolute value of an integer x, S  does the size of a set S, and gcd(a, b) 
represents the greatest common divisor of two integers a and b. Without ambiguity, “% M ” is usually 
omitted in expressions. 

2  Simplified REESSE1+ Encryption Scheme 
To probe the indeterminacy of the lever function ℓ(.) to Ω±, let 1 = δ in the key transform of the 

REESSE1+ cryptosystem.  
We first observe the simplified REESSE1+ encryption scheme with δ = 1. 

2.1  Two Definitions 
Definition 1: If A1, …, An are n pairwise distinct positive integers such that ∀ Ai, Aj (i ≠ j), either 

gcd(Ai, Aj) = 1, or gcd(Ai, Aj) = F ≠ 1 with (Ai / F) ł Ak and (Aj / F) ł Ak ∀ k (≠ i, j) ∈ [1, n], these 
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integers are called a coprime sequence, denoted by {A1, …, An}, and shortly {Ai}. 
Notice that the elements of a coprime sequence are not necessarily pairwise coprime, but a sequence 

whose elements are pairwise coprime must be a coprime sequence. 
Property 1: Let {A1, …, An} be a coprime sequence. If randomly select m ∈ [1, n] elements Ax1, …, 

Axm from the sequence, then the mapping from a subset {Ax1, …, Axm} to a subset product G = ∏m  
i=1Axi is 

one-to-one, namely the mapping from b1…bn to G = ∏ n  
i = 1 Ai

bi is one-to-one, where b1…bn is a bit string. 
Refer to [6] for its proof. 
Definition 2: The secret parameter ℓ(i) in the key transform of a public key cryptosystem is called a 

lever function, if it has the following features: 
• ℓ(.) is an injection from the domain {1, …, n} to the codomain Ω ⊂ {5, …, }, where  is large; 
• the mapping between i and ℓ(i) is established randomly without an analytical expression; 
• an attacker has to be faced with all the arrangements of n elements in Ω when extracting a related 

private key from a public key; 
• the owner of a private key only needs to consider the accumulative sum of n elements in Ω when 

recovering a related plaintext from a ciphertext. 
The latter two points manifest that if n is large enough, it is infeasible for the attacker to search all 

the permutations of elements in Ω exhaustively while the decryption of a normal ciphertext is feasible 
in some time being polynomial in n. Thus, there are the large amount of calculation on ℓ(.) at “a public 
terminal”, and the small amount of calculation on ℓ(.) at “a private terminal”. 

Notice that c in modular  arithmetic, −x represents  – x; d the number of elements of Ω is not 
less than n; e considering the speed of decryption, the absolute values of all the elements should be 
comparatively small; f the lower limit 5 will make seeking the root W from W ℓ 

(i) ≡ Ai
–1

 Ci (% M) face 
an unsolvable Galois group when Ai ≤ 1201 is guessed [7]. 

2.2  Key Generation Algorithm 
In the simplified REESSE1+ encryption scheme, we substitute Ω = {5, 7, …, 2n + 3} with Ω±. 
Let |Ω±| be the set of absolute values of all the elements in Ω±. 
Let Λ = {2, …, Þ}, where Þ = 863, 937, 991, or 1201 when n = 80, 96, 112, or 128. 
This algorithm is employed by a certificate authority or the owner of a key pair. 
INPUT: the integer n; the set Λ. 
S1: Randomly generate Ω± = {+/−5, +/−6, …, +/−(n + 4)}. 
S2: Randomly produce pairwise coprime A1, …, An ∈ Λ. 
S3: Find a prime M > ∏ n 

i=1 Ai making q2 |  ∀ q (prime) ∈ |Ω±|. 
S4: Stochastically pick the integer W ∈ (1,  ). 
S5: Randomly produce pairwise distinct ℓ(1), …, ℓ(n) ∈ Ω±. 
S6: Compute Ci ← Ai W ℓ 

(i) % M for i = 1, …, n. 
OUTPUT: a public key ({Ci}, M); a private key ({Ai}, W, M)({ℓ(i)} may be discarded). 
Notice that at S1, Ω± = {+/−5, +/−6, …, +/−(n + 4)} indicates that Ω± is one of 2n potential sets, and 

indeterminate, where “+/−” means the selection of the “+” sign or the “−” sign. 

2.3  Encryption Algorithm 
This algorithm is employed by a person who wants to encrypt plaintexts. 
INPUT: a public key ({Ci}, M); an n-bit plaintext block b1…bn. 
S1: Set Ḡ ← 1, i ← 1. 
S2: If bi = 1 then let Ḡ ← Ḡ Ci % M. 
S3: Let i ← i + 1. 
S4: If i ≤ n then goto S2; else end. 
OUTPUT: the ciphertext Ḡ ≡ ∏ 

n 
i=1 Ci

bi (% M). 
Definition 3: Given Ḡ and ({Ci}, M), seeking b1…bn from Ḡ ≡ ∏ 

n 
i=1 Ci

bi (% M) is called a subset 
product problem, shortly SPP [6][8]. 

Notice that when lg M < 1024, a discrete logarithm can be found in tolerable time.  
Let g be a generator of ( * 

M , ·), Ḡ ≡ g 

u (% M), C1 ≡ g 

v1 (% M), …, Cn ≡ g 

vn (% M), and then the subset 
product problem Ḡ ≡ ∏ 

n 
i=1 Ci

bi (% M) is degenerated to a subset sum problem u ≡ b1 v1 + … + bn vn (% ) 
of density less than 1, which indicates Ḡ is not robust [9]. 
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Therefore, only if lg M ≥ 1024, can simplified REESSE1+ have practical sense. 

2.4  Decryption Algorithm 
This algorithm is employed by a person who wants to decrypt ciphertexts. 
INPUT: a private key ({Ai}, W, M); a ciphertext Ḡ. 
S1: Set X0 ← Ḡ, X1 ← X0, h ← 0. 
S2: Set b1…bn ← 0, G ← Xh, i ← 1. 
S3: If Ai | G then let bi ← 1, G ← G / Ai. 
S4: Let i ← i + 1. 

If i ≤ n and G ≠ 1 then goto S3. 
S5: If G ≠ 1 then do h ← ¬h, Xh ← Xh W 

(–1)h % M, goto S2; 
else end. 

OUTPUT: the original plaintext block b1…bn. 
Notice that as long as Ḡ is a true ciphertext, this algorithm can always terminates normally. 

3  Necessity of the Lever Function ℓ(.) 
We will discuss the necessity of the lever function ℓ(.) from [1, …, n] to Ω± for resisting continued 

fraction attack and intersection attack. 
The necessity of the lever function ℓ(.) to Ω± means that if a simplified REESSE1+ private key is 

secure, ℓ(.) as a one-to-one function must exist in the key transform. The equivalent contrapositive 
assertion is that if ℓ(.) as a one-to-one function does not exist (namely every ℓ(i) is mapped to the same 
integer ), a simplified REESSE1+ private key will be insecure. 

3.1  Continued Fraction Attack on a Simplified Private Key 
Theorem 1: If α is an irrational number, r, s > 0 are two integers, and r / s is a rational in the lowest 

terms such that |α − r / s| < 1 / (2s2), then r / s is a convergent of the simple continued fraction 
expansion of α. 

Refer to [10] for the proof. 
Notice that theorem 1 also holds when α is a rational number [10]. 
For a public key cryptosystem, if a private key is insecure, a plaintext must be insecure. Hence, the 

security of a private key is most foundational [11]. 
Definition 4: Attack on Ci ≡ Ai W ℓ

 
(i) (% M) with ℓ(i) ∈ Ω± = {+/−5, +/−6,…, +/−(n + 4)} for i = 1, …, 

n by a convergent of the continued fraction of Gz / M, where Gz ≡ (Cx1 …Cxm)(Cy1 …Cyh)
–1 with m ∈ [1, n 

– 1], h ∈ [1, n – m], and xj ≠ yk ∀ j ∈ [1, m] and k ∈ [1, h], is called continued fraction attack. 
Property 2: Let  ∈ [1, ] be any integer. If the key transform of the simplified REESSE1+ 

cryptosystem is Ci ≡ Ai W (% M), namely ℓ(i) =  for i = 1, …, n, a simplified REESSE1+ private key 
({A1, …, An}, W) is insecure. 

Proof.  
Assume that ℓ(1) = … = ℓ(n) = , where  is a fixed integer.  
Then, the key transform becomes as  

Ci ≡ Ai W (% M), 
and especially when  = 1, Ci ≡ Ai W (% M) for i = 1, …, n. 

Since ( * 
M , ·) is an Abelian group [7], of course, there is 

Ci
–1 ≡ (Ai W)–1 (% M). 

∀x ∈ [1, n – 1], let 
Gz ≡ Cx Cn

–1 (% M). 
Substituting Ax W and An W respectively for Cx and Cn in the above congruence yields 

Gz ≡ Ax W (An W)–1 (% M) 
An Gz ≡ Ax (% M) 
An Gz – L M = Ax, 

where L is a positive integer. 
The either side of the equation is divided by An M gives 

Gz / M – L / An = Ax / (An M).                            (1) 
Due to M > ∏ 

n  
i=1  Ai and Ai ≥ 2, there is 
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Gz / M – L / An < Ax / (An ∏ 

n  
i=1  Ai)  

= Ax / (An
2 ∏ 

n – 1 
i = 1 Ai) ≤ 1 / (2 n – 2

 An
2), 

that is, 
Gz / M – L / An < 1 / (2 n – 2

 An
2).                           (2) 

Evidently, as n > 2, there is 
Gz / M – L / An < 1 / (2 An

2).                            (2′) 
In terms of theorem 1, L / An is a convergent of the continued fraction of Gz / M. 
Thus, L / An, namely An may be determined by (2′) in polynomial time since the length of the 

continued fraction will not exceed lg M, and further W ≡ Cn An
–1 (% M) may be computed, which 

indicates the original coprime sequence {A1, …, An} with Ai ≤ Þ can almost be recovered.           
Because W in every Ci has the same exponent, and the powers of W and W–1 in any Cx Cn

–1 % M 
always counteract each other, when ℓ(i) is a fixed integer ḵ, there does not exist the indeterministic 
reasoning problem. 

It should be noted that when a convergent of the continued fraction of Gz / M satisfies (2′), the some 
subsequent convergents also possibly satisfies (2′), and if so, it will bring about the nonuniqueness of 
value of An. Therefore, we say that {A1, …, An} with Ai ≤ Þ can almost be recovered. 

3.2  Intersection Attack on a Simplified Private Key 
Assume that ℓ(1) = … = ℓ(n) = , where  is a fixed integer. Then the key transform turns to Ci ≡ 

AiW
 (% M) for i = 1, …, n. Hence, there exists the following attack. 

Algorithm 3.2: 
INPUT: a public key ({C1, …, Cn}, M) 
S1: Let Ai traverse Λ for every i: 

S1.1: Compute W such that W ≡ Ci Ai
−1 (% M) 

for every possible value of Ai. 
S1.2: Place the pair (W, Ai) into the set Θi  

for every possible value of Ai. 
S2: Seek the intersection Θ = Θ1 ∩ … ∩Θn on W. 

(Note that Θ   is pretty limited, and at least 1) 
S3: Extract W from Θ and corresponding Ai from Θi. 
OUTPUT: a private key ({A1, …, An}, W). 
It is not difficult to understand that the time complexity of the above attack is dominantly involved in 

S1 and S2. Concretely speaking, the time complexity is O(Λ n + Λ n) = O(Λ n), and polynomial in n. 
Section 3.1 and 3.2 manifest that when every ℓ(i) is a fixed integer , a related private key can be 

deduced from a public key, and further a related plaintext can be inferred from a ciphertext. Thus, the 
one-to-one lever function ℓ(.) is necessary to the security of a simplified REESSE1+ private key. 

4  Sufficiency of the Lever Function ℓ(.) 
The sufficiency of the lever function ℓ(.) to Ω± for resisting continued fraction attack and 

indeterministic intersection attack which are most efficient currently means that if ℓ(1), …, ℓ(n) ∈ Ω± 
are pairwise distinct, a simplified REESSE1+ private key will be secure. 

The analysis in this section will show that the continued fraction attack is utterly ineffectual if Ω± = 
{+/−5, +/−6,…, +/−(n + 4)} is indeterminate, and do not always threaten Ci ≡ Ai W ℓ

 
(i) (% M) even if Ω± 

= {5, …, n + 4} is adventitiously selected and known to adversaries. 

4.1  Indeterminacy of the Lever Function ℓ(.) 
According to Section 2.2, if the lever function ℓ(.) exists, we have 

Ci ≡ Ai W ℓ
 
(i) (% M), 

where Ai ∈ Λ = {2, …, Þ}, and ℓ(i) ∈ Ω± = {+/−5, +/−6,…, +/−(n + 4)} for i = 1, …, n. 
The lever function ℓ(.) brings adversaries at least two difficulties: 
• No method in terms of which one can directly judge whether the power of W in Cx1…Cxm is 

counteracted by the power of W 

–1 in (Cy1…Cyh)
–1 or not; 

• No criterion in terms of which one can verify the presupposition of an indeterministic reasoning in 
polynomial time. 

The indeterministic reasoning based on continued fractions means that ones first presuppose that the 
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powers of the parameter W and the inverse W–1 counteract each other in a product, and then judge 
whether the presupposition holds or not by the consequence. 

According to Section 3, first select m ∈ [1, n – 1] elements and h ∈ [1, n – m] other elements from 
{C1, …, Cn}. Let 

Gx ≡ Cx1 …Cxm (% M), 
Gy ≡ Cy1 …Cyh (% M), 

where xj ≠ yk ∀ j ∈ [1, m] and k ∈ [1, h]. 
Let  

Gz ≡ Gx Gy
–1 (% M). 

Since {ℓ(1), …, ℓ(n)} is any arrangement of n elements in Ω±, it is impossible to predicate that Gz 
does not contain the factor W or W 

–1. For a further deduction, we have to presuppose that the power of 
W in Gx is exactly counteracted by the power of W –1 in Gy

–1, and then, 
Gz ≡ (Ax1…Axm)(Ay1…Ayh) 

–1 (% M) 
Gz (Ay1…Ayh) ≡ Ax1…Axm (% M) 
Gz (Ay1…Ayh) – L M = Ax1…Axm 

Gz / M – L / (Ay1…Ayh) = (Ax1…Axm) / (M  Ay1…Ayh), 
where L is a positive integer. 

Denoting the product Ay1…Ayh by Āy yields 
Gz / M – L / Āy = (Ax1…Axm) / (M Āy).                         (3) 

Due to M > ∏ 

n  
i=1  Ai and Ai ≥ 2, we have 

Gz / M – L / Āy < 1 / (2 
n

 
–

 
m

 
–

 
hĀy

2).                           (4) 
Obviously, when n > m + h, (4) may have a variant, namely 

Gz / M – L / Āy < 1 / (2 Āy
2).                            (4′) 

Notice that when n = m + h, if M > 2(∏ 

n  
i=1  Ai), (4′) still holds. 

Especially, when n > 3, h = 1, and m = 2, there exists 
Gz / M – L / Ay1 < 1 / (2 

n
 
–

 
3

 Ay1
2) < 1 / (2 Ay1

2).                    (4″) 
Obviously, as a discriminant, (4) is stricter than (4′) and (4″). (4″) is consistent with theorem 1. 
Property 3: Let h + m ≤ n. If ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), the subset product Āy = Ay1…Ayh in 

(4′) will be found in polynomial time. 
Proof.  
ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) means that the exponent on W in Cx1…Cxm is counteracted by the 

exponent on W –1 in (Cy1…Cyh)
–1, and thus (4′) holds. 

In terms of theorem 1, L / Āy is inevitably a convergent of the continued fraction of Gz / M, and thus 
Āy = Ay1…Ayh can be found in polynomial time.                                             

Notice that (4′) is insufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) (see Property 7), and Āy is faced 
with nonuniqueness because there may possibly exist several convergents of the continued fraction of 
Gz / M which all satisfy (4′). 

Property 4 (Indeterminacy of ℓ(.)): Let h + m ≤ n. ∀x1, …, xm, y1, …, yh ∈ [1, n], and W  ≠ . 

c When ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), and m ≠ h, there is 
ℓ(x1) + W  + … + ℓ(xm) + W  ≠ ℓ(y1) + W  + … + ℓ(yh) + W  (% ); 

d when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), there always exist 
Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W  ′ ℓ(xm),  

Cy1 ≡ A′y1 W ′ ℓ(y1), …, Cyh ≡ A′yh W ′ ℓ(yh) (% M), 

such that ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ) with A′y1…A′yh ≤ Þ h; 
e when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), probability that Cx1, …, Cxm, Cy1, …, Cyh make (4) with 

A′y1…A′yh ≤ Þ h hold is roughly 1 / 2n – m – h – 1. 
Proof.  
c It is easy to understand that  

W 
ℓ(x1) ≡ W 

ℓ(x1)
 
+

 
W

 

, …, W 
ℓ(xm) ≡ W 

ℓ(xm)
 
+

 
W

 

 (% M), 
W 

ℓ(y1) ≡ W 
ℓ(y1)

 
+

 
W

 

, …, W 
ℓ(yh) ≡ W 

ℓ(yh)
 
+

 
W

 

 (% M), 
Due to W  ≠ , mW  ≠ hW , and ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), it follows that  

ℓ(x1) + … + ℓ(xm) + mW  ≠ ℓ(y1) + … + ℓ(yh) + hW  (% ). 
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d Because A′y1…A′yh need be observed, the constraint A′y1…A′yh ≤ Þ h is demanded while because 
A′x1, …, A′xm need not be observed, the constraints A′x1 ≤ Þ, …, A′xm ≤ Þ are not demanded. 

Let Ōd be an oracle on a discrete logarithm. 
Suppose that W ′ ∈ [1, ] is a generator of ( * 

M , ·).  
Let µ = ℓ′(y1) + … + ℓ′(yh). In terms of group theories, ∀A′y1, …, A′yh ∈ [2, Þ] which need not be 

pairwise coprime, the equation 
Cy1…Cyh ≡ A′y1…A′yh W ′ µ (% M) 

in µ has a solution. µ may be obtained through Ōd. 
∀ ℓ′(y1), …, ℓ′(yh – 1) ∈ [1, ], let ℓ′(yh) ≡ µ – (ℓ′(y1) + … + ℓ′(yh – 1)) (% ). 
Similarly, ∀ ℓ′(x1), …, ℓ′(xm – 1) ∈ [1, ], let ℓ′(xm) ≡ µ – (ℓ′(x1) + … + ℓ′(xm – 1)) (% ). 
Further, from Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W ′ ℓ(xm) (% M), we can obtain a tuple (A′x1, …, A′xm), 

where A′x1, …, A′xm ∈ (1, M), and ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ). 
Thus, Property 4.1 is proven. 
e Let Gz ≡ Cx1…Cxm (Cy1…Cyh)

–1 (% M). Then in terms of Property 4.1, there is 
Cx1…Cxm (Cy1…Cyh)

–1 ≡ A′x1…A′xm W ′ ℓ(x1) +
 
…

 
+ ℓ(xm)(A′y1…A′yh W ′ ℓ(y1) + … + ℓ(yh))–1 

with ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ).  
Further, there is 

A′x1…A′xm ≡ Cx1…Cxm (Cy1…Cyh)
–1

 A′y1…A′yh (% M). 
The above equation manifests that the values of W ′ and (ℓ′(y1) + … + ℓ′(yh) or ℓ′(x1) + … + ℓ′(xm)) do 

not influence the value of the product A′x1…A′xm. 
If A′y1…A′yh ∈ [2h, Þ h] changes, the product A′x1…A′xm also changes, where A′y1…A′yh is a composite 

integer. Therefore, ∀ x1, …, xm, y1, …, yh ∈ [1, n], the number of potential values of A′x1…A′xm is 
roughly (Þ 

h – 2h + 1). 
Let M = qÞ m

 (A′y1…A′yh) 2n – m – h, where q is a rational number. 
According to (3), 

Gz / M – L / (A′y1…A′yh) = (A′x1 … A′xm) / (M A′y1 … A′yh) 
= (A′x1…A′xm) / (qÞ m

 2n – m – h
 (A′y1…A′yh)

2). 
When A′x1…A′xm ≤ qÞ m, there is 

Gz / M – L / (A′y1…A′yh) ≤ qÞ m / (qÞ m
 2n – m – h(A′y1…A′yh)

2) 
= 1 / (2n – m – h (A′y1…A′yh)

2), 
which satisfies (4). 

Assume that the value of A′x1…A′xm distributes uniformly on the interval (1, M). If A′y1…A′yh is a 
certain concrete value, the probability that A′x1…A′xm makes (4) hold at a specific value of A′y1…A′yh is 

qÞ m / M = qÞ m / (qÞ m(A′y1…A′yh)2
n – m – h) 

= 1 / ((A′y1…A′yh) 2n – m – h). 
In fact, it is possible that A′y1…A′yh take every value in the interval [2h, Þ 

h] when Cx1, …, Cxm, Cy1, …, 
Cyh are fixed. Thus, the probability that A′x1…A′xm makes (4) hold is 

P∀x1, …, xm, y1, …, yh ∈ [1, n] = (1 / (2n – m – h))(1 / 2h
 + 1 / (2h

 + 1) + … + 1 / Þ h) 
> (1 / 2n – m – h)(2(Þ h – 2h

 + 1) / (Þ h + 2h)) 
= (Þ h – 2h

 + 1) / (2n – m – h – 1(Þ h + 2h)) 
≈ 1 / 2n – m – h – 1. 

Obviously, the larger m + h is, the larger the probability is, and the smaller n is, the larger the 
probability is also.                                                                   

Property 5: Let h + m ≤ n. ∀ x1, …, xm, y1, …, yh ∈ [1, n], when ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), 
the probability that another Āy makes (4) with Āy ≤ Þ h hold is roughly 1 / 2n – m – h – 1. 

Proof. 
Let 

Gx ≡ Cx1 …Cxm ≡ (Ax1…Axm) W 
ℓ(x1) + … + ℓ(xm) (% M), 

Gy ≡ Cy1 …Cyh ≡ (Ay1…Ayh) W 
ℓ(y1) + … + ℓ(yh) (% M). 

Due to ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh), there is 
Gz ≡ Gx Gy

–1 ≡ (Ax1…Axm)(Ay1…Ayh) 

–1 ≡ (Ax1…Axm) Āy
–1 (% M). 

According to the derivation of (4″), Āy will occur in a convergent of the continued fraction of Gz / M. 
Let p1 / q1, …, px / qx = L /Āy, px + 1 / qx + 1, …, pt / qt be the convergent sequence of the continued 
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fraction of Gz / M, where t ≤ lg M. 
Because of Gz / M – L / Āy < 1 / (2 

n
 
–

 
m

 
–

 
h Āy

2), it will lead 
|Gz / M – px + 1 / qx + 1| < 1 / (2 

n
 
–

 
m

 
–

 
h

 qx + 1
2) with qx + 1 ≤ Þ h, 

……, or 
|Gz / M – pt / qt| < 1 / (2 

n
 
–

 
m

 
–

 
h

 qt
2) with qt ≤ Þ h 

to probably hold, and in terms of Property 4.2, the probability is roughly 1 / 2n – m – h – 1. 
Notice that in this case, there is ℓ′(x1) + … + ℓ′(xm) ≡ ℓ′(y1) + … + ℓ′(yh) (% ) with A′y1…A′yh ≤ Þ h, 

where ℓ′(x1), …, ℓ′(xm), ℓ′(y1), …, ℓ′(yh) satisfy 
Cx1 ≡ A′x1 W ′ ℓ(x1), …, Cxm ≡ A′xm W  ′ ℓ(xm), Cy1 ≡ A′y1 W ′ ℓ(y1), …, Cyh ≡ A′yh W ′ ℓ(yh) (% M). 

End.                                                                            
Property 5 illuminates that the nonuniqueness of Āy, namely there may exist the disturbance of Āy. 

The smaller m + h is, the less the disturbance is. 

4.2  Some Conditions Are Only Necessary But Insufficient 
Property 6: (4) is necessary but insufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) with x1, …, xm, 

y1, …, yh ∈ [1, n], namely for the powers of W and W –1 in Gz to counteract each other. 
Proof. Necessity: 
Suppose that ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh). 
Let {C1, …, Cn} be a public key sequence, and M be a modulus, where Ci ≡ Ai W ℓ

 
(i) (% M). 

Let Gx ≡ Cx1…Cxm (% M), Gy ≡ Cy1…Cyh (% M), and Gz ≡ Gx Gy
–1

 (% M). 
Further, Gz ≡ (Ax1…Axm)(Ay1…Ayh) 

–1 (% M). 
Denote the product Ay1…Ayh by Āy. Similar to Section 4.1, we have  

Gz / M – L / Āy < 1 / (2 
n

 
–

 
m

 
–

 
hĀy

2), 
Namely (4) holds. 

Insufficiency: 
Suppose that (4) holds. 
The contrapositive of the proposition that if (4) holds, ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) holds is 

that if ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) does not hold. 
Hence, we need to prove that when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), (4) still holds. 
In terms of Property 4.2, when ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + ℓ(yh), the (4) holds with the probability 

1 / 2n – m – h – 1, which reminds us that when {C1, …, Cn} is generated, some subsequences in the forms 
{Cx1, …, Cxm} and {Cy1, …, Cyh} which are verified to satisfy (4) with ℓ(x1) + … + ℓ(xm) ≠ ℓ(y1) + … + 

ℓ(yh) can always be found beforehand through adjusting the values of W and some elements in {A1, 
A2, …, Ai} or {ℓ(1), ℓ(2), …, ℓ(n)}. 

Hence, the (4) is not sufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh).                       
Property 7: (4′) is necessary but not sufficient for ℓ(x1) + … + ℓ(xm) = ℓ(y1) + … + ℓ(yh) with x1, …, xm, 

y1, …, yh ∈ [1, n], for the powers of W and W –1 in Gz to counteract each other. 
Proof.  
Because (4′) is derived from (4), and Property 6 holds, naturally Property 7 holds.               
Property 8: Let m = 2 and h = 1. ∀ x1, x2, y1 ∈ [1, n], when ℓ(x1) + ℓ(x2) ≠ ℓ(y1),  

c there always exist 
Cx1 ≡ A′x1 W ′ ℓ′ (x1), Cx1 ≡ A′x2 W ′ ℓ′ (x2), Cy1 ≡ A′y1 W ′ ℓ′ (y1) (% M), 

such that ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (% ) with A′y1 ≤ Þ ; 
d Cx1, Cx2, Cy1 make (4″) with A′y1 ≤ Þ hold in all probability. 
Proof.  
c It is similar to the proving process of Property 4.1. 
d Let  

Gz ≡ Cx1 Cx2 Cy1
–1

 ≡ A′x1 A′x2W ′ ℓ′ (x1)
 
+

 
ℓ′

 

(x2)
 (A′y1 W ′ ℓ′ (y1))–1 (% M) 

with ℓ′(x1) + ℓ′(x2) ≡ ℓ′(y1) (% ). 
Further, there is A′x1 A′x2 ≡ Cx1 Cx2 Cy1

–1
 A′y1 (% M). 

It is easily seen from the above equations that the values of W′ and ℓ′(y1) do not influence the value 
of (A′x1 A′x2). 

If A′y1 ∈ [2, Þ] changes, A′x1 A′x2 also changes. Thus, ∀ x1, x2, y1 ∈ [1, n], the number of potential 
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values of A′x1 A′x2 is Þ – 1. 
Let M = 2 q Þ 2 A′y1, where q is a rational number. 
According to (3), 

Gz / M – L / A′y1 = A′x1 A′x2 / (M A′y1) 
= A′x1 A′x2 / (2 q Þ 2 A′y1

2). 
When A′x1 A′x2 ≤ q Þ 2, there is  

Gz / M – L / A′y1 ≤ q Þ 2 / (2 q Þ 2 A′y1
2) 

= 1 / (2 A′y1
2), 

which satisfies (4″). 
Assume that the value of A′x1 A′x2 distributes uniformly on (1, M). Then, the probability that A′x1 A′x2 

makes (4″) hold is 
P∀ x1, x2, y1 ∈ [1, n] = (q Þ 2 / (2 q Þ 2))(1 / 2 + … + 1 / Þ) 

≥ (1 / 2)(2(Þ – 1) / (Þ + 2)) 
= 1 – 3 / (Þ + 2). 

Apparently, P∀ x1, x2, y1 ∈ [1, n] is very large, and especially when Þ is pretty large, it is close to 1.      
According to Property 8.2, for a certain Cy1 and ∀ Cx1, Cx2 ∈ {C1, …, Cn}, attack by (4″) will produce 

roughly n2
 / 2 possible values of Ay1, including the repeated, while attack by (4) may filter out most of 

the disturbing data of Ay1. Because every Ay1 ≤ Þ < n2
 / 2 in REESSE1, the number of potential values of 

Ay1 is at most Þ in terms of the pigeonhole principle, which indicates the running time of discriminating 
the original coprime sequence from the values of A1, …, the values of An is O(Þ 

n). 
Property 9: (4″) is necessary but not sufficient for ℓ(x1) + ℓ(x2) = ℓ(y1) with x1, x2, y1 ∈ [1, n], namely 

for the powers of W and W –1 in Gz to counteract each other. 
Proof. 
Because (4″) is derived from (4), and Property 6 holds, naturally Property 9 holds.               
It should be noted that Property 2, 3, …, 9 do not depend on the selection of codomain of the lever 

function ℓ(.), namely regardless of selecting the old Ω or the new Ω±, Property 2, 3, …, 9 still hold. 

4.3  Two Discrepant Cases 
The cases of h = 1 and h ≠ 1 need to be treated distinguishingly. 

4.3.1  Case of h = 1: Verifying by Examples 
The h = 1 means that Āy = Ay1. If Āy is determined, a certain Ay1 might be exposed directly. A single 

Ay1 may be either prime or composite, and thus “whether Ay1 is prime” may not be regarded as the 
criterion of the powers of W and W –1 counteracting each other. 

If take m = 2 and h = 1, in terms of Property 4.2, the probability P∀x1, x2, y1 ∈ [1, n] that A′x1 A′x2 makes (4) 
hold is roughly 1 / 2n

 
–

 
4, and the number of rationals formed as Gz / M which lead (4) to hold is roughly 

n3
 / 2n – 4 when the interval [1, n] is traversed by x1, x2, y1 separately. Notice that P∀x1, x2, y1 ∈ [1, n] is with 

respect to (4), but not with respect to (4′) or (4″). 
Notice that due to Ω± = {+/−5, +/−6, …, +/−(n + 4)}, the value of ℓ(x1) + ℓ(x2) ― (−5) + 6 = 1 for 

example does not necessarily occur in Ω±. 
In what follows, we validate Property 6 and 8 with two examples when m = 2 and h = 1. Especially 

assume that Ω± = {5, 6, …, n + 4} is selected to a turn. 
Example 1:  
It will illustrate the ineffectuality of continued fraction attack by (4). 
Assume that the bit-length of a plaintext block is n = 6. 
Let {Ai} = {11, 10, 3, 7, 17, 13}, and Ω± = {5, 6, 7, 8, 9, 10}.  
Find M = 510931 > 11 × 10 × 3 × 7 × 17 × 13. 
Stochastically pick W = 17797, and  

ℓ(1) = 9, ℓ(2) = 6, ℓ(3) = 10, ℓ(4) = 5, ℓ(5) = 7, ℓ(6) = 8. 
From Ci ≡ Ai W ℓ(i) (% M), we obtain  
{Ci} = {113101, 79182, 175066, 433093, 501150, 389033}. 
Stochastically pick x1 = 2, x2 = 6, and y1 = 5. 
Notice that there is ℓ(5) ≠ ℓ(2) + ℓ(6).  
Compute  
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Gz ≡ C2 C6 C5
–1 ≡ 79182 × 389033 × 434038 ≡ 342114 (% 510931). 

Presuppose that the power of W in C2 C6 is just counteracted by the power of W –1 in C5
–1, and then  

342114 ≡ A2 A6 A5
–1 (% 510931). 

According to (3),  
342114 / 510931 – L / A5 = A2 A6 / (510931 A5). 

It follows that the continued fraction expansion of 342114 / 510931 equals 

1 / (1 + 1 / (2 + 1 / (37 + 1 / (1 + 1 / (2 + … + 1 / 4))))), 
where the denominators 1 = a1, 2 = a2, 37 = a3, … . 

Heuristically let 
L / A5 = 1/ (1 + 1 / 2) = 2 / 3, 

which indicates it is probable that A5 = 3. Further, 
342114 / 510931 – 2 / 3 = 0.002922769 < 1 / (23

 × 32) = 0.013888889, 
which satisfies (4). Then A5 = 3 is deduced, which is in direct contradiction to factual A5 = 17, so it is 
impossible that (4) may serve as a sufficient condition. 

Meantime, in Example 1, we observe a2 = 2 and a3 = 37, and the increase from a2 to a3 should be 
sharp. However, even though the case is this, the continued fraction attack by (4) fails. 

Example 2:  
It will illustrate the ineffectuality of a continued fraction attack by a discriminant relevant to (4″). 
The following Algorithm 4.3.1 which is evolved from the analysis task in [12] describes a continued 

fraction attack on a simplified REESSE1+ private key. The attack rests on the discriminant  
qs ∆ < qs +1 and qs < Amax,                              (5) 

where qs, qs +1, ∆, and Amax are referred to Algorithm 4.3.1 for their meanings. 
In terms of [12], (5) is derived from (4″). Seemingly, (5) is stricter than (4″), and intended to 

uniquely determine Ay1. 
Algorithm 4.3.1: 
INPUT: a public key ({C1, …, Cn}, M). 
S1: Generate the first 2n primes p1, …, p2n of the natural set. 
S2: Set ∆ ← (M / (2∏ 

u   
i=n  –  2  pi))1

 
/

 
2, Amax ← M / ∏ 

n−1 
i=1  pi, 

where u meets ∏ 

u  
i=1 pi < M ≤ ∏ 

u  +1 
i=1  pi. 

S3: For (x1 = 1, x1 ≤ n, x1++) 
For (x2 = 1, x2 ≤ n, x2++) 
For (y1 = 1, y1 ≤ n, y1++) { 

Compute Gz ← Cx1 Cx2 Cy1
–1 % M; 

Get convergent sequence {r0 / q0, r1 / q1, …, rt / qt}  
of continued fraction of Gz / M; 

Get denominator sequence {q1, q2, …, qt}  
from the convergent sequence; 

For (s = 1, s ≤ t, s++) 
If (qs ∆ < qs +1) and (qs < Amax) then { 

Let Ay1 ← qs; 
Return (Ay1, (x1, x2, y1)). 

} 
} 

OUTPUT: entries (Ay1, (x1, x2, y1)). 
Notice that z++ denotes z ← z + 1, where z is any arbitrary variable. 
However, Algorithm 4.3.1 is ineffectual in practice. Please see the following example. 
Assume that the bit-length of a plaintext block is n = 10. 
Let {Ai} = {437, 221, 77, 43, 37, 29, 41, 31, 15, 2}, and Ω± = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}. 
Find M = 13082761331670077 > ∏ 

n 
i=1 Ai = 13082761331670030. 

Randomly select W = 944516391, and  
ℓ(1) = 11, ℓ(2) = 14, ℓ(3) = 13, ℓ(4) = 8, ℓ(5) = 10, ℓ(6) = 5, ℓ(7) = 9, ℓ(8) = 7, ℓ(9) = 12, ℓ(10) = 6. 
By Ci ≡ Ai W ℓ

 

(i) (% M), obtain 
{C1, …, C10} = {3534250731208421, 12235924019299910, 8726060645493642, 10110020851673707, 

2328792308267710, 8425476748983036, 6187583147203887, 10200412235916586, 9359330740489342, 
5977236088006743}. 
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On input of the public key ({Ci}, M), the program by Algorithm 4.3.1 will evaluate ∆ = 506, Amax = 
58642670, and output Ay1 and (x1, x2, y1). Structure Table 1 with entries (Ay1, (x1, x2, y1)). On Table 1, 
the number of triples (x1, x2, y1) is greater than 100. 

Ay1 Triple (x1, x2, y1) 
A1 = 187125 (1, 1, 1) 
A1 = 121089 (2, 1, 1), (1, 2, 1) 
A1 = 77 (5, 3, 1), (3, 5, 1) 
A1 = 23 (8, 6, 1), (6, 8, 1), (10, 10, 1) 
A1 = 437 (10, 6, 1), (6, 10, 1) 
A2 = 1251 (1, 1, 2) 
A2 = 187125 (2, 1, 2), (1, 2, 2) 
A2 = 121089 (2, 2, 2) 
A2 = 17 (8, 4, 2), (6, 5, 2), (5, 6, 2), (10, 7, 2), (4, 8, 2), (7, 10, 2) 
A2 = 221 (10, 4, 2), (7, 6, 2), (6, 7, 2), (8, 8, 2), (4, 10, 2) 
A2 = 77 (9, 8, 2), (8, 9, 2) 
A2 = 4204 (10, 10, 2) 
A3 = 187125 (3, 1, 3), (1, 3, 3) 
A3 = 12 (7, 1, 3), (1, 7, 3) 
A3 = 121089 (3, 2, 3), (2, 3, 3) 
A3 = 77 (6, 4, 3), (4, 6, 3), (10, 8, 3), (8, 10, 3) 
A3 = 11 (10, 4, 3), (7, 6, 3), (6, 7, 3), (8, 8, 3), (4, 10, 3) 
A3 = 2113 (8, 7, 3), (7, 8, 3) 
A3 = 769 (9, 8, 3), (8, 9, 3) 
A4 = 187125 (4, 1, 4), (1, 4, 4) 
A4 = 121089 (4, 2, 4), (2, 4, 4) 
A4 = 76 (10, 6, 4), (6, 10, 4) 
A4 = 56 (10, 9, 4), (9, 10, 4) 
A5 = 187125 (5, 1, 5), (1, 5, 5) 
A5 = 630269 (6, 1, 5), (1, 6, 5) 
A5 = 121089 (5, 2, 5), (2, 5, 5) 
A5 = 41 (8, 2, 5), (2, 8, 5) 
A5 = 97 (4, 3, 5), (3, 4, 5) 
A5 = 37 (6, 6, 5), (10, 6, 5), (6, 10, 5) 
A6 = 187125 (6, 1, 6), (1, 6, 6) 
A6 = 121089 (6, 2, 6), (2, 6, 6) 
A7 = 187125 (7, 1, 7), (1, 7, 7) 
A7 = 121089 (7, 2, 7), (2, 7, 7) 
A7 = 3 (9, 3, 7), (3, 9, 7) 
A8 = 187125 (8, 1, 8), (1, 8, 8) 
A8 = 34945619 (6, 2, 8), (2, 6, 8) 
A8 = 121089 (8, 2, 8), (2, 8, 8) 
A9 = 187125 (9, 1, 9), (1, 9, 9) 
A9 = 121089 (9, 2, 9), (2, 9, 9) 
A9 = 5 (6, 4, 9), (4, 6, 9), (10, 8, 9), (8, 10, 9) 
A9 = 15 (8, 6, 9), (6, 8, 9), (10, 10, 9) 
A10 = 259970 (4, 1, 10), (1, 4, 10) 
A10 = 187125 (10, 1, 10), (1, 10, 10) 
A10 = 121089 (10, 2, 10), (2, 10, 10) 
A10 = 7629 (8, 3, 10), (3, 8, 10) 

Table 1: Ay1 and the Triple (x1, x2, y1) 

On Table 1, we observe that 
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Ay1 relevant to 5 triples is A2 = 221 or A3 = 11, 
Ay1 relevant to 4 triples is A3 = 77 or A9 = 5, 
Ay1 relevant to 3 triples is A1 = 23, A5 = 37, or A9 = 15, 
Ay1 relevant to 2 triples is A1 = 77, A2 = 77, A3 = 12, A4 = 56, A5 = 41, or A7 = 3 etc, 
Ay1 relevant to 1 triple is A1 = 187125, A2 = 1251, A2 = 121089, or A2 = 4204. 
Among these Ay1′s, there exist at least 2 

n − 5 compatible selections from which some elements of the 
coprime sequence {Ai} can be obtained. 

For instance, randomly select compatible Ay1′s: A3 = 11, A9 = 5, A1 = 23, A5 = 41, and A2 = 1251, and 
work out ℓ(y1)′s: ℓ(3) = 14, ℓ(9) = 13, ℓ(1) = 12, ℓ(5) = 11, and ℓ(2) = 10 according to the rule that the 
number of the triples (x1, x2, y1) tied to Ay1 equals (ℓ(y1) – 9) when ℓ(y1) ≥ 10 [12]. 

Obviously, such A1, A2, A3, A5, A9 are not original elements, which indicates (5) derived from (4″) is 
essentially insufficient even if a concrete Ω± = {5, 6, …, n + 4} is selected and known. 

4.3.2  Case of h ≠ 1 
The h ≠ 1 means Āy = Ay1…Ayh. It is well known that any composite Āy ≠ pk (p is a prime) can be 

factorized into some prime multiplicative factors, and many coprime sequences of the same length can 
be obtained from a prime factor set. 

For instance, let h = 3 and Āy = 210 with the prime factor set {2, 3, 5, 7}. We can obtain the coprime 
sequences {5, 6, 7}, {6, 5, 7}, {3, 7, 10}, {10, 3, 7}, {2, 15, 7}, {3, 2, 35}, etc. Which is the original? 

Property 4 makes it clear that due to the indeterminacy of ℓ(.), no matter whether the power of W and 
W –1 counteract each other or not, in some cases, one or several values of Āy which may be written as 
the product of h coprime integers, and satisfy (4) can be found out from the convergents of the 
continued fraction of Gz / M when the interval [1, n] is traversed respectively by x1, …, xm, y1, …, yh. 
Thus, “whether Āy can be written as the product of h coprime integers” may not be regarded as a 
criterion for verifying that the powers of W and W –1 counteract each other. 

Moreover, even if the k values v1, …, vk of the product Ay1 Ay2…Ayh are obtained, where y1 is fixed, 
and y2, …, yh are varied, gcd(v1, …, vk) can not be judged to be Ay1 in terms of the definition of a 
coprime sequence. 

If take m = 2 and h = 2, in terms of Property 4.2 and P∀ x1, x2, y1, y2 ∈ [1, n], the number of rationals formed 
as Gz / M which leads (4) to hold is roughly n4

 / 2n – 5 when the interval [1, n] is traversed by x1, x2, y1, y2 
respectively. What is most pivotal is that the value of ℓ(x1) + ℓ(x2) or ℓ(y1) + ℓ(y2) ∀ x1, x2, y1, y2 ∈ [1, n] 
does not necessarily occur in a concrete Ω±. 

4.4  Time Complexities of Two Attacks 
The continued fraction attack and indeterministic intersection attack on Ci ≡ Ai W 

ℓ
 

(i) (% M) are most 
efficient at present. 

4.4.1  Time Complexity of Continued Fraction Attack 
It can be seen from section 4.1 that continued fraction attack is based on the assumption that ℓ(x1) 

+ … + ℓ(xm) = ℓ(y1) + … + ℓ(yh). For convenience, usually let m = 2 and h =1. 
If Ω± is determined as {5, 6, …, n + 4}, the continued fraction attack by (4), (4′), (4″) or (5) contains 

five steps dominantly.  
Note that it is known from Example 2 that Ω± = {5, 6, …, n + 4} does not mean that the continued 

fraction attack will succeed. 
Algorithm 4.4.1: 
INPUT: a public key ({C1, …, Cn}, M);  

the set Ω± = {5, 6, …, n + 4}. 
S1: Structure Table 2 according to Ω±. 
S2: Get entries (Ay1, (x1, x2, y1)) by calling Algorithm 4.3.1. 
S3: Structure Table 1 with entries (Ay1, (x1, x2, y1)). 
S4: Find coprime Ay1 according to Table 1 and Table 2. 
S5: Find pairwise different ℓ(y1) according to Ay1 and Table 2. 
OUTPUT: coprime values of Ay1 and pairwise different values of ℓ(y1). 
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ℓ(y1) 10 11 …… n + 4 
ℓ(x1) + ℓ(x2) 5 + 5 5 + 6, 6 + 5 …… 5 + (n – 1), …, (n – 1) + 5 

Number of ℓ(y1) = ℓ(x1) + ℓ(x2) 1 2 …… n – 5 

Table 2: Number of ℓ(x1) + ℓ(x2) = ℓ(y1) over Ω± = {5, 6, …, n + 4} 

At S4, finding coprime values of Ay1 will probably take O(2 

n − 5) running time. 
At S1, when Ω± is indeterminate (in fact, Ω± is one of 2n potential sets), an adversary must firstly 

determine all the elements of Ω±, which will take O(2n) running time. 

4.4.2  Time Complexity of Indeterministic Intersection Attack 
Due to Ci ≡ Ai W 

ℓ
 

(i) (% M) with Ai ∈ Λ = {2, …, Þ} and ℓ(i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} for i 
= 1, …, n, and elements in the sets Λ and Ω± being small, an adversary may attempt the following 
attack with indeterminacy. 

Algorithm 4.4.2: 
INPUT: a public key ({C1, …, Cn}, M); the set Λ. 
S1: Let ℓ(i) traverse {5, …, n + 4, −5, …, −(n + 4)},  

and Ai traverse Λ for every i: 
S1.1: Compute W such that W 

ℓ
 

(i) ≡ Ci Ai
−1 (% M)  

for every possible value of (Ai, ℓ(i)). 
S1.2: Place the triple (W, Ai, ℓ(i)) into the set Θi 

for every possible value of (Ai, ℓ(i)). 
S2: Seek the intersection Θ = Θ1 ∩ … ∩ Θn on W. 
S3: If W unique in Θ, and relevant (Ai, ℓ(i)) unique in every Θi, then 

a private key ({Ai}, {ℓ(i)}, W) is extracted; 
else (W nonunique in Θ, or relevant (Ai, ℓ(i)) nonunique in some Θi) 

check whether every possible {A1, …, An} is a coprime sequence, 
and whether every possible {ℓ(1), …, ℓ(n)} is a lever function. 

OUTPUT: private keys ({Ai}, {ℓ(i)}, W). 
When the number of private keys is larger than 1, the original private key need to be verified. 
Note that at S1.1, may compute W by the Moldovyan root finding method [13], and the time 

complexity of the method is O(ℓ(i)1
 
/

 
2

 lgM) ≈ O(n1 / 2lgM). 
The size of every Θi is about O(Λ Ω±

2) ≈ O(Þ n2) due to q2 |  ∀ q (prime) ∈ |Ω±|.  
At S2, seeking the intersection Θ will take O(Þ n3) running time which is polynomial in n. 
At S3, seeking a coprime sequence will take O(n) running time in the best case with low probability, 

but it will take O(2n) running time in a worse case. The low probability can be guaranteed through the 
selection of some private parameters in the process of a key pair generation. 

Thus, the adversary cannot extract a simplified REESSE1+ private key in determinate polynomial 
time. 

4.5  Relation between a Lever Function and a Random Oracle 
4.5.1  What Is a Random Oracle 

An oracle is a mathematical abstraction, a theoretical black box, or a subroutine of which the running 
time may not be considered [11][14]. In particular, in cryptography, an oracle may be treated as a 
subcomponent of an adversary, and lives its own life independent of the adversary. Usually, the 
adversary interacts with the oracle but cannot control its behavior. 

A random oracle is an oracle which answers to every query with a completely random and 
unpredictable value chosen uniformly from its output domain, except that for any specific query, it 
outputs the same value every time it receives that query if it is supposed to simulate a deterministic 
function [14]. 

Random oracles are utilized in cryptographic proofs for relpacing any irrealizable function so far 
which can provide the mathematical properties required by the proof. A cryprosystem or a protocol that 
is proven secure using such a proof is described as being secure in the random oracle model, as 
opposed to being secure in the standard model where the integer factorization problem, the discrete 
logarithm problem etc are assumed to be hard. When a random oracle is used within a security proof, it 
is made available to all participants, including adversaries. In practice, random oracles producing a 
bit-string of infinite length which can be truncated to the length desired are typically used to model 
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cryptographic hash functions in schemes where strong randomness assumptions of a hash function′s 
output are needed.  

In fact, it draws attention that certain artificial signature and encryption schemes are proven secure in 
the random oracle model, but are trivially insecure when any real hash function such as MD5 or SHA-1 
is substituted for the random oracle [15][16]. Nevertheless, for any more natural protocol, a proof of 
security in the random oracle model gives very strong evidence that an attacker have to discover some 
unknown and undesirable property of the hash function used in the protocol. 

A function or algorithm is regarded random if its output depends not only on the input but also on 
some random ingredients, namely if its output is not uniquely determined by the input. Hence, to a 
function or algorithm, randomness contains indeterminacy. 

4.5.2  Design of a Random Oracle 
Correspondingly, the indeterminacy of the ℓ(i) may be expounded in terms of a random oracle. 
Suppose that Ōd(y, g) is an oracle on solving y ≡ g 

x (% M) for x, and Ōℓ is an oracle on solving Ci ≡ 
Ai W ℓ

 
(i) (% M) for ℓ(i), where M is prime, and i is from 1 to n. 

Let Ḏ be a database which stores records ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) computed already. If the 
arrangement order of some Ci′s is changed, {C1, …, Cn} is regarded as a distinct sequence. 

The structure of Ōℓ is as Algorithm 4.5.2: 
INPUT: a public key ({C1, …, Cn}, M). 
S1: If find ({C1, …, Cn}, M) in Ḏ then 

retrieve {ℓ(1), …, ℓ(n)}, goto S6. 
S2: Randomly produce a coprime sequence A1, …, An  

with each Ai ≤ Þ and ∏ 

n 
i=1 Ai < M. 

S3: Randomly pick a generator W ∈ * 
M. 

S4: Evaluate ℓ(i) by calling Ōd(Ci
 Ai

–1, W) for i = 1, …, n. 
S5: Store ({C1, …, Cn}, M, {ℓ(1), …, ℓ(n)}) to Ḏ. 
S6: Return {ℓ(1), , 　 ℓ(n)}, and end. 
OUTPUT: a sequence {ℓ(1), …, ℓ(n)}. 
Of course, {Ai} and W as side results may be outputted. 
Obviously, for the same input ({C1, …, Cn}, M), the output is the same, and for a different input, a 

related output is random and unpredictable. 
Since Ci

 Ai
–1 is pairwise distinct, and W is a generator, the result {ℓ(1), …, ℓ(n)} will be pairwise 

distinct. Again according to Definition 2, every ℓ(i) ∈ [1, ] may be beyond Ω±. Thus, {ℓ(1), …, ℓ(n)} 
is a lever function although it is not necessarily the original. 

The Ōℓ is perhaps strange to some people because they have never met any analogous oracle in 
classical cryptosystems. 

Section 4.5 explains further why the continued fraction attack by (4), (4′), (4″), or (5) and the 
indeterministic intersection attack is ineffectual on Ci ≡ Ai W ℓ

 
(i) (% M). 

5 Conclusion 
Indeterminacy is ubiquitous. For example, for x + y = z, given x = –122 and y = 611, computing z = 

489 is easy, and contrarily, given z = 489, seeking the original x and y is intractable since there exists 
indeterminacy in x + y = z. Indeterminacy in Ci ≡ Ai W ℓ

 
(i) (% M) is similar, and triggered by the lever 

function ℓ(.). 
Inequation (4) is stricter than (4″) although both (4) and (4″) are only necessary but insufficient for 

ℓ(x1) + ℓ(x2) = ℓ(y1). Property 4 and 8 show that attack by (4) is more effectual than attack by (4″) 
theoretically. However, Section 4.3 shows that when Ω± = {+/−5, +/−6, …, +/−(n + 4)} is indeterminate, 
the continued fraction attack by (4), (4′), (4″), or (5) will take O(2n) running time, and is practically 
infeasible. 

Section 4.4.2 manifests that the indeterministic intersection attack cannot extract a private key in 
determinate polynomial time although it unveils some lowly probabilistic risk. 

Therefore, the lever function ℓ(.) from {1, 2, …, n} to {+/−5, +/−6, …, +/−(n + 4)} is necessary and 
sufficient for resisting the continued fraction attack and the indeterministic intersection attack. 

Resorting to Ci ≡ Ai W ℓ
 
(i) (% M), we expound theoretically the effect of the lever function with 

indeterminacy. In practice, to strictly assure the security of a private key and to decrease the length of 
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modulus of the cryptosystem, the key transform should be strengthened to Ci ≡ (Ai W ℓ
 
(i))δ (% M) with δ 

∈ [2, ], Ai ∈ Λ = {2, 3, …, Þ}, and ℓ(i) ∈ Ω± = {+/−5, +/−6, …, +/−(n + 4)} for i = 1, …, n [6][17]. 
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