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Abstract. We reinvestigate a notion of one-time programs introduced
in the CRYPTO 2008 paper by Goldwasser et al. A one-time program
is a device containing a program C, with the property that the program
C can be executed on at most one input. Goldwasser et al. show how to
implement one-time programs on devices equipped with special hardware
gadgets called one-time memory tokens.
We provide an alternative construction that does not rely on the hard-
ware gadgets. Instead, it is based on the following assumptions: (1) the
total amount of data that can leak from the device is bounded, and
(2) the total memory on the device (available both to the honest user
and to the attacker) is also restricted, which is essentially the model
used recently by Dziembowski et al. (TCC 2011, CRYPTO 2011) to con-
struct one-time computable pseudorandom functions and key-evolution
schemes.
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1 Introduction

A notion of one-time programs was introduced by Goldwasser et al. [13]. Infor-
mally speaking, a one-time program is a device D containing a program C, that
comes with the following property: the program C can be executed on at most
one input. In other words, any user, even a malicious one, that gets access to
D, should be able to learn the value of C(x) for exactly one x at his choice. As
argued by Goldwasser et al., one-time programs have vast potential applications
in software protection, electronic tokens and electronic cash.

It is a simple observation that one-time programs cannot be solely software-
based, or, in other words, one always needs to make some assumptions about
the physical properties of the device D. Indeed, if we assume that the entire
contents P of D can be read freely, then an adversary can create his own copies
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of D and compute C on as many inputs as he wishes. Hence, it is natural to
ask what kind of “physical assumptions” are needed to construct the one-time
programs. Of course, a trivial way is to go to the extreme and assume that D is
fully-trusted, i.e. the adversary cannot read or modify its contents. Obviously,
then one can simply put any program C on D, adding an extra instruction to
allow only one execution of C. Unfortunately, it turns out that such assumption
is often unrealistic. Indeed, a number of recent works on side-channel leakage and
tampering [11] attacks have demonstrated that in real-life constructing leakage-
and tamper-proof devices is hard, if not impossible.

Therefore it is desirable to base the one-time programs on weaker physical
assumptions. The construction of Goldwasser et al. [13] is based on the following
physical assumption: they assume that D is equipped with special gadgets that
they call one-time memory (OTM) devices. At the deployment of D an OTM
can be initialized with a pair of values (K0,K1). The program P that is stored
on D can later ask the OTM for the value of exactly one Ki. The main security
feature of the OTMs is that the OTM under no circumstances releases both
K0 and K1. Technically, it can be implemented by (a) storing on each OTM
a flag f initially set to 0, that changes its value to 1 after the first query to this
OTM, and (b) adding a requirement that if f = 1 then an OTM answers ⊥ to
every query. Under this assumption one can construct a general complier that
transforms any program C (given as a boolean circuit) into a one-time program
that uses the OTMs. Hence, in some sense, Goldwasser et al. [13] replace the
unrealistic assumption that the whole device D is fully secure, with a much
weaker one that the OTM gadgets on D are secure. Here, by “secure” we mean
that they are leakage-proof (in particular: they never leak both K0 and K1) and
tamper-proof (and hence the adversary should not be allowed to tamper with
f).

Our Contribution. One can, of course, still ask how reasonable it is to assume
that all the OTMs placed on D are secure, and it is natural to look for other,
perhaps more realistic, models where the transformation similar to the one of [13]
would be possible. In this paper we propose such an alternative model, inspired
by recent work of Dziembowski et al. [8] on one-time computable self-erasing
functions. In contrast to the assumption used by Goldwasser et al., in our model
we do not assume security of individual gadgets onD, but rather impose “global”
restrictions on what kind of attacks are possible.

To explain and motivate the use of the model of [8] in our context, let us come
back to the observation that a “physical assumption” that is obviously needed
is that the adversary cannot copy the entire contents P of D, or more precisely,
that the amount of information f(P) about P that leaked to the adversary is
bounded. There has been lot of work recently on modeling such bounded leakage.
A common approach, that we follow in this paper, is to model it as an input
shrinking function, i.e. a function f whose output is much shorter than its input
(the length c of the output of f is a parameter called the amount of leakage).
Such functions were first proposed in cryptography in the so-called bounded-
storage model of Maurer [17]. Later, they were used to define the memory leakage



occurring during the virus attacks in the bounded-retrieval model [2, 5, 6]. In
the context of the side-channel leakages they were first used by Dziembowski
and Pietrzak [9] with an additional restriction that the memory is divided into
two separate parts that do not leak information simultaneously, and in the full
generality in the paper of Akavia et al. [1].

Obviously, if we want to incorporate the tampering attacks into our model
then we also need some kind of a formal way to define the class of admissible
tampering attacks. To see that some kind of limitations on tampering attacks
are always needed let us first consider the broadest possible class of such attacks,
i.e. let us assume that we allow the adversary to transform the contents P of the
device in an arbitrary way. More precisely, suppose the adversary is allowed to
substitute P with some g(P), where g is an arbitrary function chosen by him.
Obviously in this case there is no hope for any security, as the adversary can
design a function g that simply calculates “internally” (i.e.: on the device) the
values of the encoded program on two different inputs, and leaks them to the
adversary (if these values are short then this can be done even if the amount of
leakage is small). Hence, some limitations on g are always needed. Unfortunately,
it is not so obvious what kind of restrictions to use here, as currently, unlike in
the case of leakage attacks, there does not seem to be any widely-adopted model
for tampering attacks. In fact, most of the anti-tampering models either assume
that some part of the device is tamper-proof [12], or they are so strong that they
permit only very limited constructions [10].

As mentioned before, in this paper we follow the approach of [8], where the
authors model the tampering attacks by restricting the size of memory available
to the tampering function g. More precisely, we assume that there is a general
bound s on the space available on D, that can be used by anybody who performs
computations on D, including the honest program P and the adversary. This
assumption can be justified by the following observations: (1) it is reasonable to
assume that in practice the bound on the memory size of the device is known,
and no adversary can “produce” additional space on it by tampering with it,
and (2) in general it is also reasonable to assume that the tampering function is
“simple”, and hence it cannot have a large space-complexity.

What remains is describing the way in which the restrictions c on leakage and
s on communication are combined into a single model. The way it is done by [8]
is as follows: they model the adversary as two entities: a big adversary Abig
and a small adversary Asmall. The small adversary represents the tampering
function, and hence it has a full access to the contents P of the device3. It
can perform any computation on D subject to the constraint that it cannot use
more memory than s. The fact that it can leak information to the outside is

3 In the work of Dziembowski et al. [8] the adversary Asmall is used to model the
malicious code executed on the device (e.g. a computer virus), while in our case it
models the tampering function. While in real life mallware is usually much more
powerful than hardware tampering functions, we adopt the model of [8] since we do
not see any other natural restriction on the tampering function that would lead to
better parameters or the simpler proofs.



modeled by allowing him to communicate up to c bits outside of the device.
This leakage information can later be processed by the big adversary Abig that
has no restrictions on his space complexity. In order to make the model as
strong as possible we actually allow Abig to communicate with Asmall in several
rounds (and we do not impose any restriction on the amount of information
communicated by Abig back to Asmall). We apply exactly the same approach
in our paper. Our main result (see Theorem 1) is a generic compiler that takes
any circuits C and transforms it into a one-time program P secure in the model
described above. As in the case of Dziembowski et al. [8], our construction works
in the Random Oracle Model, where we model as random oracles hash functions
of fixed input lengths. For a complete statement of our result see Theorem 1.
Let us only remark here that for a fixed circuit we get that the security holds
as long as s− 2nc ≥ γk, where γ is some constant and n is the number of input
bits of the circuit. Hence, the leakage size c has to be inversely-proportional to
n, which may be sufficient for practical applications where n is small, e.g., if
the input is a human-memorized PIN. In any case, for any realistic values of
other parameters it is super-logarithmic, and hence covers all attacks where the
leaking value is a scalar (e.g. the Hamming weight of the bits on the wires).

Related Work. Some related work was already described above. The feasibility
of implementing the scheme of Goldwasser et al. [13] was analyzed by Jarvinen
et al. [14]. The model of Dziembowski et al. [8] and related techniques were
also used in a subsequent paper [7] to construct leakage-resilient key-evolution
schemes. Finally, let us note that the main difference between [8] and our work is
that in [8] the authors construct a one-time scheme for a concrete cryptographic
functionality (i.e., a pseudorandom function), while here we show a generic way
to implement any functionality as a one-time program.

It has been recently pointed out by Bellare et al. [4] that the original security
proof of [13] had a gap. Informally speaking, this was due to the fact that the
scheme of [13] was based on a statically-secure Yao garbled circuit, and hence
did not provide security against the adversaries that can modify the input during
the computation. We note that this problem does not affect the security of our
construction. We elaborate more on this in Section 5.2.

Organization of the Paper. Some basic definitions we refer to later on are listed
in Section 2. In Section 3, we give a formal statement of what we mean by
a one-time device. Also, we announce the main theorem of the paper asserting
that our construction produces programs compliant with this definition. Sev-
eral tools we extensively use throughout the paper are synopsized in Section 4.
These include: circuit garbling [16, 19], universal circuits [15, 18], and one-time
computable pseudorandom functions [8]. In Section 5, we describe a compiler
that converts a boolean circuit to a one-time device. A proof-sketch of the main
theorem from Section 3 follows in Section 6.



2 Preliminaries

Across the paper, we often make use of boolean circuits. We use a capital C to
label such a circuit. If C has n inputs and m outputs then we identify C with
a function C : {0, 1}n → {0, 1}m. For simplicity, we confine the analysis to the
case where every gate of C has a fan-in of 2. Each wire, including the input and
output ones, and every gate is assigned a unique label. A size of C, defined as
a number of gates in C, is denoted by |C|.

We write C(x) for a result of evaluating C on a given input x, and, more
generally, A(x) for an outcome of running an algorithm A (modeled as a Turing
machine, possibly a non-deterministic one) on x. Occasionally, we add a super-
script H to A and write AH to signify that A is given access to an oracle that
computes some function H. Everywhere below it is assumed that there exists
a (programmable) random oracle H : {0, 1}∗ → {0, 1}k for a parameter k to be
specified later. Phrases: the random oracle H and the function H are then used
interchangeably. Although the declaration of H assumes that H accepts argu-
ments of an arbitrary length, we only apply H to inputs not longer that a fixed
multiple of k except for one case. In this particular case, however, the long input
can be split into smaller chunks which allows cascading of H. Overall, we can
invoke the oracle only for short inputs.

When typesetting algorithms, we write R $← S for sampling a uniformly ran-
dom value from some set S and assigning it to a variable R. We assume that
every such a sample is independent of other choices. We conform to the common
bracket notation T [i] for accessing the ith element of an array T .

We say that a function is negligible in k if it vanishes faster than the inverse
of any polynomial of k. In particularly, we use this expression to indicate that
certain event can only occur with a small, i.e. negligible, probability in some
security parameter k. Also, we often write just: a negligible probability and omit
k when this parameter is clear from context.

As announced in Section 1, the model we adopt in the paper assumes splitting
an adversary A into two components: Asmall and Abig. Both parts are interactive
algorithms with access toH, where a total number of oracle calls made is limited.
Additionally, Asmall, which can see the internals of an attacked device, has:

– s-bounded space – a total amount of memory used by Asmall does not exceed
s bits, i.e., an entire configuration of Asmall (contents of all tapes, a current
state, and positions of all the tape heads), at any point of execution, can be
described using s bits;

– c-bounded communication – a total number of outgoing bits sent by Asmall
does not exceed c, assuming thatAsmall cannot convey any extra information
when communicating with Abig (e.g. by abstaining from sending anything
during some period of time).

Note that A = (Asmall,Abig) can have an unbounded computational power.
Also, the amount of bits uploaded by Abig to Asmall is not restricted. We write
AH(R) =

(
AHbig() � AHsmall(R)

)
to denote the interactive execution of Abig



and Asmall, where Asmall gets R as an input. We settle on a simplifying ar-
rangement that the contents of memory (e.g. the data on all the tapes) of Abig
after it finishes its run form a result of this execution. In particular, any infor-
mation computed by Asmall needs to be transmitted to Abig (contributing to
the communication quota) in order to be included as a part of the result. Such
an approach is justified by the real-world interpretation of Asmall and Abig as
a virus and a remote adversary controlling the virus. Here, only the data that
the external adversary can receive is considered valuable.

3 One-time Programs

In this section, we give a strict definition of one-time programs/devices. In-
tuitively, an ideal one-time program should mimic a black-box that internally
calculates a value of some boolean circuit C. It should allow only one execution
on an arbitrary input after which it self-destructs. Additionally, the black-box
should not leak any information about C whatsoever. As explained in Section 4.2,
there are theoretical obstacles that make this goal impossible to achieve in its
full generality. So instead, we show that any adversary that operates a one-time
device can evaluate it on a single argument x and can hardly learn anything
more about the underlying circuit C but n, m, and |C|. It therefore gains some
additional knowledge that goes beyond C(x), namely the size of the circuit. Ad-
mittedly, that information is not considered substantial in practice. Definition 1
makes this property formal in terms of a simulator that is permitted to call an
oracle evaluating C only once.

Definition 1. Let c, s, δ, q, and ε be parameters. Let C : {0, 1}n → {0, 1}m

be a boolean circuit with positive integers n and m. Write O for an oracle that
computes C(x) given x ∈ {0, 1}n. Consider an algorithm A = (Abig,Asmall)
which is (s + δ)-bounded in space, c-bounded in communication, and is allowed
at most q calls to the random oracle H. A string P is called a (c, s, δ, q, ε)–one-
time program for C if both of the following conditions hold:

– there exists a probabilistic polynomial-time decoder Dec that given x ∈ {0, 1}n

executes P using at most s bits of memory, so that Dec(x,P) = C(x), except
for probability ε (where the probability is taken over all possible choices of x
and P);

– there exists a simulator S with one-time oracle access to O, such that, for
any adversary A, no algorithm restricted to at most q oracle calls to H can
distinguish S(1n, 1m, 1|C|,A) and A(P) with a probability greater than ε.

Basically, the definition states that a user can honestly execute a device contain-
ing a one-time program on a single input of his choice. Yet, even for a compu-
tationally unbounded adversary A = (Abig,Asmall), with Asmall having extra δ
bits of memory, it is infeasible to break the device. We note that the one-time
property formulated above is slightly stronger than what one may need for the
applications. For instance, it could be safe to give the adversary some partial



information about the circuit (e.g. information about a single boolean gate). In
our definition, we disallow adversary to find out anything more than n, m, |C|,
and C(x) for a single x. We also remark that the definition provides adaptive
security, i.e., the adversary can freely choose x depending on the contents of P.

Shortly, in Section 5.3, we construct a compiler Compilek,s (C) that, for some
parameter k, converts any boolean circuit C to a one-time program P that can
be organized into a device with s bits of memory. The main result of this paper
is stated in the below Theorem 1 about Compilek,s (C). The theorem contains
a reference to circuits of uniform topology. A uniform version of C, denoted C̃, is
produced by the algorithm of Kolesnikov and Schneider [15], which is discussed
in Section 4.2. Transforming C to such a form introduces a small blow-up factor
(see (4) below) so that C̃ is slightly larger than C.

Theorem 1. Let k be a security parameter and let H : {0, 1}∗ → {0, 1}k be
modeled as a random oracle. Then, for any boolean circuit C : {0, 1}n → {0, 1}m

and P ← Compilek,s (C), the string P is a (c, s, δ, q, ε)–one-time program for C
with ε = O(q|C̃|2−k), provided that k ≥ max(m, 4n2 log q) and

s− 2nc ≥ 2nδ + 6k(2|C̃| log |C̃|+ 5n2 + 4nm) , (1)

where |C̃| denotes the number of gates in C̃ – a version of C with uniform
topology.

Remark 1. We note that the above theorem holds even if a potential distin-
guisher is given C. Also, we impose no limits on its running time as well as
on time-complexity of the adversary. A can be computationally unbounded but
he merely subjects to restriction on the number of oracle calls made. The con-
struction of S is universal, i.e., it is independent of C and P so no information
about C is hardwired in S. We also mention that with a minor modification of
our construction we can replace the factor 2n on the left-hand side of (1) with
2n/ logn. We do not present this modification here as it would make the proofs
considerably more complicated.

4 Tools

For completeness of the exposition, we outline several existing constructions the
architecture of one-time devices builds upon – circuit obfuscation techniques and
one-time computable pseudorandom functions.

4.1 Circuit Garbling

An important landmark in the theory of multi-party computations was set up by
Yao in mid ’80s. His seminal work [19] provided the first general protocol that
enabled two honest-but-curious users to jointly evaluate a function f without
disclosing their respective private inputs x. A so called circuit garbling process



accounted for an essential part of this method. Its role was to conceal all in-
termediate values that occur on internal wires (in particular: on certain input
wires) of a boolean circuit representing f during computation. Since the circuit
garbling seems to be well-known, we skip its description here and only give the
minimal relevant excerpt just to fix the notation.

Let k be a security parameter. For a boolean circuit C the garbling procedure
Garblek(C) associates two random stringsKw

0 andKw
1 of length k with each wire

w of C. These two keys correspond to bits 0 and 1, respectively, that could appear
on the wire w when evaluating C in its plain form. The mapping between input
and output keys for each gate is masked using an auxiliary encryption scheme
(E,D). We call it a garbling encryption scheme. It enjoys some extra properties,
given by Pinkas and Lindell [16], going a little beyond the standard semantic
security. In what follows, EK(·) denotes the encryption under a key K (similarly,
DK(·) stands for the decryption using K). We instantiate EK using the following
setting, compliant with the requirements listed by Pinkas and Lindell, based on
the oracle H:

EK(M) := (H(K), r,H(K, r)⊕M) where r $← {0, 1}k. (2)

A double-encryption under two keys, say K1 and K2, each of length k,
which is written as EK1;K2

(·) with DK1;K2
(·) being the complementary double-

decryption, is a paramount ingredient of the garbling process. Departing from
the original solution by Pinkas and Lindell for technical reasons, we specify
EK1;K2

(·) separately extending (2) with:

EK1;K2
(M) := (H(K1,K2), r,H(K1,K2, r)⊕M) for r $← {0, 1}k. (3)

In the remainder of this paper we assume that ciphertexts in a garbling encryp-
tion scheme are all of length 3k as implied by (2) and (3).

Below, we assume that the garbling procedure outputs a triple (I,C, O),
where C is the actual garbled circuit, while I and O are arrays mapping plain
bits to keys for input and output wires. C is just a list of encrypted keys and each
ciphertext on that list was produced using the double-encryption (3). Closely
related to Garblek(C) is the procedure for evaluating the garbled circuit C on
a given input x. We write Eval(C, O,Kx) to name this procedure.

4.2 Uniform Circuit Topology

One of the requirements a one-time program has to stand up to is ensuring
that no eavesdropping into program’s internals is possible. It is also a common
problem in practical computer science to create software invulnerable to reverse
engineering. Usually, satisfactory results can be achieved by ad-hoc techniques
that decrease readability of a program (e.g. by obscuring a source code syn-
tactically or inserting NOOPs). From a theoretical point of view, however, an
ideal obfuscator cannot exist. Barak et al. [3] provide an artificial example of
a family of functions that are inherently unobfuscatable. That is, there always
exists a predicate which leaks when we are given a function in its plain form but



cannot be reliably guessed if the function is implemented as a black-box. Fortu-
nately, some partial obfuscation is attainable. There are several works describing
methods for hiding circuit topology [15,18,20]. The most recognized one, which
is asymptotically optimal in terms of additional overhead it incurs, comes from
Valiant [18]. Recently, Vladimir Kolesnikov has pointed out to us that his con-
struction [15], while being slightly worse asymptotically than Valiant’s, achieves
a better implied constant and thus performs better for small circuits. We recall
his joint result on topology erasing algorithm UniformCircuit(C) below.

Theorem 2 (Kolesnikov and Schneider [15]). Let C : {0, 1}n → {0, 1}m

be a boolean circuit. Then, the topology erasing algorithm UniformCircuit(C)
constructs a circuit C̃ with

|C̃| =
(
1 + o(1)

)
· |C| log2 |C| . (4)

such that C̃(x) = C(x) for all x ∈ {0, 1}n and the topology of C (i.e., the con-
nectivity graph of C where each gate is stripped of information about what func-
tionality it actually implements) discloses (in the information-theoretic sense)
nothing more than n, m, and |C|.

The below Proposition 1 follows from the analysis given by Kolesnikov and
Schneider.

Proposition 1. The algorithm UniformCircuit(C) uses at most 4|C̃| log |C̃| bits
of memory. Put differently, given n, m, and |C| it is possible to generate a
uniform topology that is common for all circuits with n-bit input, m-bit output,
and |C| gates, within space of 4|C̃| log |C̃| bits.

4.3 One-Time Computable Pseudorandom Functions (PRFs)

A notion of the one-time computable pseudorandom functions was introduced
by Dziembowski et al. [8]. A salient development of this work is a construction
of a pseudorandom function, or, more generally, a set of n such functions, where
each function can be calculated for a single argument in the computation model
with Abig and Asmall having limited space and communication. Dziembowski
et al. assume the existence of the random oracle H. The underlying idea is to
store a long random key, say R, on a device that Asmall operates on. Now, R and
H determine n distinct pseudorandom functions (FH1,R, . . . , F

H
n,R). It is possible

to evaluate each one on any input but the computation forces an erasure of R
so that no one can viably compute both FHi,R(x) and FHi,R(x′) for any two points
x 6= x

′ and the same index i. Below, we borrow some basic definitions from the
original paper to formalize the mentioned properties.

Consider an algorithm WH that takes a key R ∈ {0, 1}µ as an input and
has access to the oracle H. Let (FH1,R, . . . , F

H
n,R) be a sequence of functions

depending on H and R. Assume that WH is interactive, i.e., it may receive
queries, say x1, . . . , xn, from the outside. The algorithm WH replies to such



a query by issuing a special output query to H. We assume that after receiv-
ing each xi ∈ {0, 1}

∗ the algorithm WH always issues an output query of
a form ((FHi,R(xi), (i, xi)), out). We say that an adversary breaks PRFs if a tran-
script of oracle calls made during its entire execution contains two queries
((FHi,R(x), (i, x)), out) and ((FHi,R(x′), (i, x′)), out), appearing at any point, for
some index i and x 6= x

′.

Definition 2 (Dziembowski et al. [8]). An algorithm WH with at most q
queries to the oracle H defines (c, µ, σ, q, ε, n)–one-time computable PRFs if:

– WH has µ-bounded storage and 0-bounded communication;
– for any AH(R) that makes at most q queries to H and has σ-bounded storage

and c-bounded communication, the probability that AH(R) (for a randomly
chosen R $← {0, 1}µ) breaks PRFs, is at most ε.

Basically, what this definition states is that no adversary with σ-bounded
storage and c-bounded communication can viably compute a value of any FHi,R
on two distinct inputs. Dziembowski et al. [8] prove the existence of the one-time
computable PRFs in the Random Oracle model under some plausible assumption
on parameters c, µ, σ, q, ε, and n.

The use case we investigate in the paper requires a slightly stronger primi-
tive than the PRFs of Definition 2. In this work, we introduce extended one-time
computable PRFs. An observation we come out with is that the limits on memory
available to an adversary can be relaxed moderately. Namely, once all FHi,R are
computed on some arguments, an adversary might be given unrestricted space,
yet it still gains no advantage in breaking PRFs in the remainder of its execution.
Now, the computing phase is a time interval between the beginning of an execu-
tion and the moment when all output queries of the form ((FHi,R(xi), (i, xi)), out)
were made (for some xi and every i = 1, . . . , n), provided that no i appears twice
in that part of transcript. The below Definition 3 strengthens the notion of one-
time computable PRFs.

Definition 3. An algorithmWH defines extended (c, µ, σ, q, ε, n)–one-time com-
putable PRFs if:

– WH defines (c, µ, σ, q, ε, n)–one-time computable PRFs;
– for any adversary AH(R) that makes at most q queries to H, has σ-bounded

storage and c-bounded communication during the computing phase, but is
not bounded on space afterwards, the probability that AH(R) breaks PRFs,
is at most ε.

In full version of the paper, we verify that the theorem about the extended
one-time computable PRFs holds with essentially the same parameters as in
the base theorem by Dziembowski et al. [8]. Here, we present one more result
about the existence of the extended PRFs that stems from the one proven in
the full version and provides a condition which is more convenient to use in our
particular application.



Theorem 3. Let c, µ, δ, q, and n be positive integers. Then, for any ε ≤ q2−4n2

,
there exist extended (c, µ, µ+τ, q, ε, n)–one-time computable PRFs, provided that

µ ≥ 2n · (τ + c+ 4 log q + 6 log ε−1 + 6) . (5)

A proof of Theorem 3 appears in full version of the paper.

5 The Construction

In this section, we give a high-level description of what a one-time device is made
up of. Our solution, in principle, combines the hardware-based construction [13]
and the primitive developed by Dziembowski et al. [8]. We replace the OTM
units present in the former work with the extended one-time computable PRFs
to achieve a purely software-based construction. There are, however, certain
subtleties that occur when attempting to compose these both worlds together.
Before proceeding to the correct construction we ultimately propose, we detail
why a security proof for the most straightforward solution simply does not work
out of the box.

5.1 Naïve Approach

A simple composition of techniques outlined in Section 4 one might conceive of
could be the following. Garble a circuit as per Yao’s method in the same way
as it is done by Goldwasser et al. [13], and conceal its input keys using one-
time computable PRFs. That is, let K ini

0 and K
ini
1 be two keys corresponding

to the ith input wire of the garbled circuit. Pick a long random string R and
calculate both FHi,R(0) and FHi,R(1) for each member function FHi,R of the one-time
computable PRFs. Then, a one-time device can store just the garbled circuit, the
key R together with both K ini

0 ⊕F
H
i,R(0) and K ini

1 ⊕F
H
i,R(1) for each i. Intuitively,

since the one-time PRFs only allow any space restricted algorithm to discover
each FHi,R(bi) for a single bit bi = 0 or 1, keeping its counterpart FHi,R(bi) entirely
random, we can guarantee that such an algorithm can learn at most one input
key K ini

0 or K ini
1 . In that way we simulate the OTM gadgets and the original

reasoning [13] should apply from this point. This would seemingly satisfy the
requirements of Definition 1.

However, there are several problems arising in the above construction. Firstly,
there is more space available on a device than just space needed to store the key
R for the one-time computable PRFs. For instance, the garbled circuit resides
in this additional memory. The extra space could be possibly used by an ad-
versary to break PRFs, i.e., to compute both F

H
i,R(0) and F

H
i,R(1) for some i.

There are several ways to fix this issue. Perhaps the most basic and the cleanest
one is asserting that the garbled circuit is read-only. This is not a viable op-
tion for us as long as we aim at a solution that does not assume any tamper-
nor even leakage-resistant components. Another way to circumvent the problem



would be increasing the amount of free memory (cf. the parameter δ in Defini-
tion 1) available to an adversary, which would, however, worsen the parameters
in Theorem 1 substantially. We take a different path and, in fact, ensure that an
adversary may not erase the garbled circuit partially, reuse the claimed memory
to break PRFs, and then still be able to evaluate the circuit. What makes estab-
lishing this property a bit tricky is an observation that a limited erasure is always
possible, e.g., a constant number of bits from the circuit can be safely dropped
and then guessed back correctly with large enough probability. A new element
we introduce in the construction secures that an adversary cannot reliably do
more than that. This is made formal in full version of the paper.

An important consequence of putting the garbled circuit into writable mem-
ory is that the basic one-time computable PRFs, as given by Definition 2, fall
short of providing suitable security. The reason is that once an adversary com-
putes each member function of the PRFs honestly for a single input and evaluates
the circuit, then it can erase the circuit and, again, break the PRFs soon after
using the increased amount of memory. This justifies turning to the extended
one-time computable PRFs of Definition 3. Studying the details of the construc-
tion by Dziembowski et al. it is not hard to notice that their PRFs effectively
self-destruct themselves when evaluating and thus prevent any further evalu-
ations even by space unrestricted algorithms. This makes a transition to the
extended PRFs rather straightforward.

Finally, it is not evident whether such a vague construction provides adaptive
security or suffers from the same issue Bellare et al. [4] identified in the work of
Goldwasser et al. [13].

5.2 One-time Device

Our concluding construction of one-time programs does not differ significantly
from the basic idea sketched above. Therefore, it involves garbling a circuit and
masking its input keys with the extended one-time computable PRFs. However,
it features an additional layer between these two components which is needed to
address the issues we have mentioned. This auxiliary element can be viewed as
a simple all-or-nothing transform. The main purpose it serves is splitting each
execution of a one-time program into two phases. In the first stage any user, an
honest or a malicious one, has to commit himself to the entire input he intends
to compute the program on. The garbled circuit can be evaluated in the second
phase, yet this process cannot begin before input bits for all the input wires are
decided.

The exact way how such a separation can be accomplished is not very com-
plex. Each input wire of the circuit is associated with an additional random key.
We refer to a set of these keys as to latchkeys. Then, every latchkey gets encrypted
using the outputs of the extended PRFs. We ensure that the ith latchkey can be
recovered given F

H
i,R(0) or FHi,R(1). Lastly, we apply n-out-of-n secret sharing,

where each latchkey forms a share, and combine the resulting secret with the
garbled circuit using the random oracle H. This produces a new string which
we call the master key. Intuitively, by the property of H, this value cannot be



determined without all the latchkeys and the circuit. We now require the master
key to be known to anyone attempting to discover the actual input keys of the
garbled circuit. Technically, we adjust the naïve approach and replace the one-
time pad encryption keys FHi,R(0) and FHi,R(1) present there with the keys that
also depend on the master key.

There are two goals we achieve with this transform. First, the garbled circuit
cannot be partially erased during the first phase as this would make computing
the master key impossible, block opening all its input keys and render the circuit
unusable. Second, it makes our construction immune to the attack devised by
Bellare et al. [4]. The fact that the one-time programs of Goldwasser et al.
permit what Bellare et al. call partial evaluations is the fundamental reason
that makes these programs susceptible to the attack. In our construction a user
cannot attempt to evaluate the circuit if he has learnt keys corresponding only
to a proper subset of input wires. In other words, partial evaluations are not
feasible. Also, we note that Bellare et al. consider a family garbling schemes and
construct an artificial scheme for which the proof of Goldwasser et al. fails. We,
in turn, use only a single, explicitly defined garbling scheme (3). It leaves no
room for attaching any security-exploiting superfluous data as Bellare et al. do.
Finally, our garbled circuits look entirely random to any adversary who does not
know the input keys. Seeing this random string does not help the adversary in
choosing his input.

Overall, one-time devices we propose contain the following data:

– a garbled circuit C together with a table O mapping output keys of the
circuit back to plain bits;

– a random key R that determines the extended one-time computable PRFs;
– an array L of encrypted latchkeys;
– an array K consisting of one-time pad encrypted input keys for the garbled

circuit C – the encryption keys depend on all the latchkeys and C;
– the number m of output wires of the original circuit.

5.3 One-time Compiler

The purpose of a one-time compiler is to transform an arbitrary boolean circuit
C : {0, 1}n → {0, 1}m into a deliberately obscured form accompanied with some
additional logic (a procedure) that enables evaluations of the circuit on every
single n-bit input.

The compiler routine Compilek,s constructs a one-time program deployable
on a device with a grand total of s bits of writable memory (including registers,
RAM, flash memory, and any other persistent storage). We, however, introduce
no extra assumptions on the amount of read-only memory available. Compilek,s
is allowed unrestricted use of a source of random bits, as well as access to the
aforementioned random oracle H : {0, 1}∗ → {0, 1}k with k being a security
parameter. Algorithm 1 presents a listing of the one-time compiler procedure.

Firstly, the compiler prepares (Lines 2 and 3 of Algorithm 1) a set of random
latchkeys Lini . A value Lini corresponds to the ith input wire ini of C. A string



Algorithm 1 One-time compiler Compilek,s (C)
Input: a boolean circuit C : {0, 1}n → {0, 1}m, a security parameter k ≥ m,
a total amount of memory on the device s
Output: a one-time program P = (m,R,L,K,C, O)

1: procedure Compilek,s (C)
2: for i← 1 to n do
3: L

ini $← {0, 1}k

4: Latch← L
in1 ⊕ · · · ⊕ Linn

5: Mask← H(Latch)|m
6: C̃ ← UniformCircuit (C ⊕Mask)
7: (I,C, O)← Garblek(C̃)
8: Master← H(Latch,C)
9: µ← s− (12|C̃|+ 8n+ 2m)k − logm

10: round µ down to the largest multiple of k
11: R

$← {0, 1}µ

12: for each input wire ini of C do . ini is the ith input wire of C
13: (K ini

0 ,K
ini
1 )← I[i]

14: compute FHi,R(0) and FHi,R(1)
15: L[i]←

(
E
F

H
i,R(0)(L

ini), E
F

H
i,R(1)(L

ini)
)

16: K[i]←
(
K

ini
0 ⊕ H(FHi,R(0),Master),K ini

1 ⊕ H(FHi,R(1),Master)
)

17: end for each
18: return (m,R,L,K,C, O)
19: end procedure

Latch := L
in1⊕· · ·⊕Linn combines all the latchkeys into a single key. From Latch

we derive (Line 5), by means of the oracle, one more random value, denoted
Mask, trimming the output of H to the leading m ≤ k bits. The exact role
that all these auxiliary components play should become clear later, in Section 6.
Having calculated these values, the compiler enters its main phase in Line 6.
There, the obfuscation algorithm is run, yet on a biased version of C, say C∗,
defined as C∗(x) := C(x) ⊕ Mask. At this point Mask is merely a constant
that does not depend on x. Obviously, C∗ can be viewed as a boolean circuit
and implemented in such a way that |C∗| = |C| (it suffices to flip, if needed,
a functionality of each gate an output wire of C is attached to, depending on
the corresponding bit of Mask). The reason behind switching to C∗ instead of
working with C directly is that the simulator from Theorem 1 needs to alter
an output of a circuit when interacting with an adversary. This trick can be
exercised by changing the value of Mask in a transparent way, which is done by
S in Section 6.

The obfuscated circuit is garbled (Line 7) using Yao’s method. Next, extended
one-time computable PRFs (in the sense of Definition 3) are set up (Line 10).
Actually, this step boils down to picking a random string R that determines



(together with H) said pseudorandom functions FHi,R. The embedded extended
one-time computable PRFs are a primitive that protects input keys of the gar-
bled circuit. Namely, in order to evaluate a one-time program on some input
x = b1b2 . . . bn, one has to compute each F

H
i,R(bi) for i = 1, . . . , n. By virtue

of the property of extended PRFs, this computation erases an essential portion
of memory available on the device and makes evaluations of FHi,R(bi) infeasible.
The compiler, however, needs to find both: FHi,R(0) and FHi,R(1) for all i’s (this re-
quires a larger amount of memory than just s bits but still Compilek,s is clearly
polynomial in space and time).

Stored on the device are two encryptions of each latchkey Lini under FHi,R(0)
and FHi,R(1) as encryption keys. For this purpose, in Line 15 where these cipher-
texts are accumulated in array L, we use the garbling encryption scheme as given
by (2). The input keys for C generated by the garbling procedure get encoded too
before being placed on the device. That is: the ith entry of K contains, for b = 0
and 1, simple one-time pad encryptions of K ini

b under a key H(FHi,R(b),Master).
Here, Master := H(Latch,C) is a value that depends on all the latchkeys and
the garbled circuit C. This all-or-nothing construction ensures that a user can no
sooner determine K ini

b than he has computed all FHi,R(bi). Also, this allows us to
hold off the moment when an adversary can reclaim a part of memory occupied
by C and reuse it to enlarge space available for computing (or breaking) the
extended PRFs. In this way we control the amount of free memory during the
computing phase specified in Definition 3.

Now that we have described the one-time compiler, we present a decoder
Dec = Deck which is capable of evaluating a program produced by Compilek,s
on an arbitrary input x = b1b2 . . . bn. As the first step, Deck determines FHi,R(bi)
for each i = 1, . . . , n. This is accomplished by computing labels of output vertices
under a random oracle labeling of a certain on-line constructed graph (the exact
method follows from the work of Dziembowski et al. [8]). The key R that settles
a labeling of input vertices of this graph gets erased during the process, and
the region of memory that contained R can be reused by Dec. Next, the decoder
decrypts a matching entry of each L[i] to find Lini . Based on these latchkeys, Dec
computes Latch, Mask = H(Latch)|m, Master = H(Latch,C), and reveals, using
K[i], input garbled keys K ini

bi
that correspond to each bit bi. Let Kx be a vector

consisting of all K ini

bi
. The decoder then executes Eval(C, O,Kx) subroutine and

calculates a bitwise exclusive or of the result with Mask to obtain the final
value, i.e., C(x). As for evaluating C, the garbled circuit kept on the device only
includes a list of garbled tables without its actual topology. Prior to running
Eval, the decoder needs to generate the unique uniform topology distinctive
for all circuits of n inputs, m outputs, and |C| gates. That is, Dec simulates
the topology erasing algorithm on such an arbitrarily chosen circuit. A memory
that has to be supplied by Dec for this step is located exactly in the same
region the key R was previously stored in. By Proposition 1, this space, which
is considered free after computing the extended PRFs, has a sufficient size if
µ = |R| ≥ 4|C̃| log |C̃|. The sizes of the remaining components of P can be easily
counted: |L| = 6nk, |K| = 2nk, |C| = 12|C̃|k, and |O| = 2mk. In total, the space



that P occupies is

|P| = µ+ (12|C̃|+ 8n+ 2m) · k + logm . (6)

6 Universal Simulator for One-time Programs

In this section, we focus on the more intricate part of Definition 1 and describe an
explicit simulator S. We employ a similar approach to the one that appears in the
work of Goldwasser et al. [13]. A notable difference, however, is that our construc-
tion includes a component, i.e., the extended one-time computable PRFs, which
does not offer a black-box security, in opposition to the aforementioned OTMs.
The condition (1) of Theorem 1 ensures that our replacement of the OTMs per-
forms nearly equally well. Namely, it is possible to achieve ε = (q + 1)2−k in
Theorem 3 so that the corresponding extended one-time computable PRFs can
only be broken with a small probability. By the analysis given in full version of
the paper, the extra memory the adversary can retain in the computing phase
(see Definition 3) can be bounded above by τ = δ + (8n + 2m + 3)k. Now,
combining (5) and (6) we get the following constraint

s− 2nc ≥ 2n(δ + τ + 6k + 6) + (12|C̃|+ 8n+ 2m)k + logm (7)

But (1) guarantees this condition is met.
Now, we give an outline of how the simulator S of Definition 1 works given

1n, 1m, 1|C|, and an (s+δ)-space bounded, c-communication bounded adversary
AH. Plus, S has access to H. The simulator begins with assembling a uniformly
random circuit C ′ : {0, 1}n → {0, 1}m of size |C ′| = |C|. Then, it runs the one-
time compiler Compilek,s on C

′ obtaining a protocol P ′ = (m,R,L,K,C, O).
The simulator maintains two exact copies of P ′. In the next step S starts exe-
cuting AH on a copy of P ′, recording each oracle call to H. Depending on what
the resulting transcript contains, the simulator picks one of the following paths:

1. There exists at least one index i such that none of the associated values
F
H
i,R(0) nor FHi,R(1) has been computed. Then, S simply outputs a result AH

has returned.
2. AH has broken the PRFs (in the sense given in Section 4.3). In this case an

outcome of the simulation is again the same as the result AH has produced.
3. For each i = 1, . . . , n, the adversary AH has issued an output query to H

computing FHi,R(bi) either for bi = 0 or bi = 1 (but not both – therefore
AH has not broken PRFs). As S has learnt all these values in the process,
it can decrypt each of the latchkeys Lini just to pinpoint for which bi the
function F

H
i,R has been computed. All the FHi,R(bi)’s correspond to a single

value xA := b1b2 . . . bn that AH has committed to by evaluating the extended
one-time computable PRFs. Thus, S is also able to find out xA, compute
C
′(xA) on its own, and query O on argument xA. Let∆x := C

′(xA)⊕C(xA).
If ∆x happens to be 0m then S continues by returning the value AH has



outputted. Otherwise, the simulator discards this result. Using the latchkeys
and querying the oracle H on Latch = L

in1 ⊕ · · · ⊕ L
inn , the simulator

determines the genuine value of Mask = H(Latch)|m. Then, it reprograms
H so that H(Latch)|m := Mask⊕∆x. Next, S rewinds AH and runs it again
on a leftover copy of P ′ with substituted H. No matter which of the above
conditions 1-3 this second execution matches, an output of AH becomes the
final result of the simulation.

In full version of the paper we prove that the output of S is indistinguishable
from a result of AH running on P, except for O(q|C̃|2−k) probability.
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