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Abstract. In this work, we apply the sliced biclique cryptanalysis
technique to show 8-round collision attack on a hash function H
based on 4-branch, Type-2 Generalized Feistel Network (Type-2 GFN).
This attack is generic and works on 4-branch, Type-2 GFN with any
parameters including the block size, type of round function, the number
of S-boxes in each round and the number of SP layers inside the round
function. We �rst construct a 8-round distinguisher on 4-branch, Type-2
GFN and then use this distinguisher to launch 8-round collision attack
on compression functions based on Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel (MP) modes. The complexity of the attack on 128-
bit compression function is 256. The attack can be directly translated
to collision attack on MP and MMO based hash functions and pseudo-
collision attack on Davies-Meyer (DM) based hash functions. When the
round function F is instantiated with double SP layer, we show the �rst
8 round collision attack on 4-branch, Type-2 GFN with double SP layer
based compression function. The previous best attack on this structure
was a 6-round near collision attack shown by Sasaki at Indocrypt'12. His
attack cannot be used to generate full collisions on 6-rounds and hence
our result can be regarded the best so far in literature on this structure.

Keywords: Sliced Biclique cryptanalysis, hash functions, collision
attack, generalized Feistel network, double SP layer

1 Introduction

Feistel structure is one of the basic building blocks of block ciphers and block
ciphers based constructions. A Feistel network divides the input message into two
sub-blocks (or two branches). Generalized Feistel Networks (GFN) are variants
of Feistel networks with more than two branches, i.e., a k-branch GFN partitions
the input message into k sub-blocks. They are sometimes favored over traditional
Feistel scheme due to their high parallelism, simple design and suitability for
low cost implementations. Many types of generalized Feistel schemes have been
proposed and studied by researchers, e.g., unbalanced Feistel network [26],
alternating Feistel Network [2], type-1, type-2 and type-3 Feistel network [34]



etc. Type-2, GFN in particular has seen wide adoption in well known block
ciphers such as RC6 [23], SHAvite3 [3], CLEFIA [28], HIGHT [13] etc. Security
analysis of generalized Feistel network [4,30,32,11,27] has been an active area of
research for past many years. In fact, a comprehensive study done by Bogdanov
et al. in [6] suggests that Type-2 GFN and its variants are more robust and
secure against di�erential and linear cryptanalysis as compared to Type-1 GFN.
Hence, we choose Type-2 GFN (shown in Fig. 1) as the basis for our study.
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Fig. 2. Double SP Function.

Biclique cryptanalysis technique has garnered considerable interest amongst
cryptographic community in the past couple of years. This approach, which is
a variant of meet-in-the-middle attack, was �rst introduced by Khovratovich et
al. in [16] for preimage attack on hash functions Skein and SHA-2. The concept
was taken over by Bogdanov et al. [5] to successfully cryptanalyze full round
AES and has been subsequently adopted to break many other block ciphers
such as ARIA [33], SQUARE [19], TWINE [7], HIGHT [12], PRESENT [1]
etc. All these biclique related attacks are carried out under the �unknown
key settings� where the key used is unknown to the attacker and the main
motive is to recover the secret key. However, this may not always be the case.
Particularly, in the case of block cipher based hash modes such as Matyas-Meyer-
Oseas (MMO) and Miyuguchi-Preneel (MP), initial vector IV (which acts as the
key to the underlying block cipher) is a �xed public constant assumed to be
known apriori to the attacker. Such scenarios are called �known key settings�
in the attack model. Under such conditions, the aim of the attacker is to �nd
a property which distinguishes known key instantiations of target block cipher
from random permutations [17,20]. These settings are considered much stronger
from the attacker's point of view since he unwillingly loses some degree of
freedom reducing chances of carrying out actual generic attacks such as �nding
full collisions. Until recently, most of the collision attacks on hash functions
under MMO and MP modes were restricted to variants of generic attack such
as pseudo-collisions [18] and near collisions [29]. In [15], Khovratovich used
biclique technique to mount actual collision and preimage attacks on Grøstl
and Skein under known key settings. He proposed a variant of classical biclique
technique used in [5] to carry out his attack. He termed this variant as sliced

biclique technique (details of which are discussed in Section 3.3). Though the



results of this work are quite interesting, yet they have not been studied further.
Although the security of GFN have been studied earlier under known key
settings [25,9,14,24,8], all these previous studies have utilized rebound attack
technique [21] for their cryptanalysis. These factors motivated us to investigate
the use of sliced biclique framework to study Type-2, GFN based constructions
under known key settings.

It is generally desired that round function F inside a generalized Feistel
network should provide good di�usion and confusion properties. This is often
realized by implementing F as a substitution-permutation network (nonlinear S-
box transformation followed by linear permutation) as part of the round function
design. There is a general belief that increasing the number of active S-boxes
provides more security against certain attacks. In [6], Bogdanov and Shibutani
stressed on the importance of double SP (substitution-permutation) layers in
the round function of Feistel networks as opposed to the single SP layer in
the traditional design. They analyzed several designs such as single SP, double
SP, SPS (substitution-permutation-substitution) and multiple SP layers and
showed that double SP (shown in Fig. 2) layer achieves maximum security with
respect to proportion of active S-boxes in all S-boxes involved against di�erential
and linear cryptanalysis. They especially compared double SP structure with
single SP and showed that for Type-1 and Type-2 GFNs, proportion of linearly
and di�erentially active S-boxes in double SP instantiations is 50% and 33%
higher respectively as compared to the single SP instantiation. Their research
advocated a possibility of designing more e�cient and secure block cipher
based constructions using double SP layer. In [24], Sasaki presented a 7-round
distinguisher attack on 4-branch, type-2 GFN with double SP layer and a 6-round
near collision attack on the compression function based on the same structure.
Kumar et al. [8] further improved the distinguishing attack on 4-branch, type-2
GFN with double SP layer by showing a 8-round distinguisher for the same.
However, the form of truncated di�erential trails followed in [24,8] cannot be
used to launch collision attack when the above GFN structure is instantiated in
compression function modes under known key settings.

Our Contributions. The main contributions of this work are as follows:

1. We apply sliced biclique technique to construct a 8-round distinguisher on
4-branch, Type-2 Generalized Feistel Network.

2. We use the distinguisher so constructed to demonstrate a 8-round collision
attack on 4-branch, Type-2 GFN based compression functions (in MMO and
MP mode) under known key settings with a complexity of 256 (on 128-bit
hash output). The attack can be directly translated to collision attacks on
MMO and MP mode based hash functions and pseudo-collision attacks on
Davies-Meyer (DM) mode based hash functions.

3. When the round function F is instantiated with double SP layer, we
demonstrate the �rst 8-round collision attack on 4-branch, Type-2 GFN
with double SP layer.



4. We investigate CLEFIA which is a real world-implementation of 4-branch,
Type-2 GFN and demonstrate an 8-round collision attack on CLEFIA based
hash function with a complexity of 256.

The paper is organized as follows. In Section 2 we give the notations used
in our paper followed by Section 3 which explains the important preliminaries.
In Section 4, we present our distinguishing attack on 8 rounds of 4 branch,
Type-2 GFN under �xed key settings. We use this distinguishing attack to
show collision attack on 4-branch, Type-2 GFN based compression function in
Section 5 followed by extension of this attack to hash functions in Section 6.
Finally in Section 7, we summarize and conclude our work. The collision attack
on CLEFIA based hash function is discussed in Appendix A.

2 Notation

We consider 4-branch, type-2, generalized Feistel network for our attack.
Following notation is followed in the rest of the paper.

N : Input message size (in bits)
n : Message word size (in bits) which is input to each branch, i.e.,

n = N/4
$R : Round R
$Rp : pth word in round R. Each round has 4 words corresponding to 4

partitions of 4-branch GFN, i.e., 1 ≤ p ≤ 4
$Rl

p : lth block of word p in round R

3 Preliminaries

In this section, we give a brief overview of the key concepts used in our
cryptanalysis technique to facilitate better understanding.

3.1 Type-2 Generalized Feistel Network (GFN) instantiated with
double SP layer

One round of Type-2 GFN is shown in Fig. 3. A GFN with 4 branches divides the
input B into four equal parts [B1, B2, B3, B4]. A round of Type-2 GFN with left
cyclic shift outputs [F (B1)⊕ B2, B3, F (B3)⊕ B4, B1] for some keyed nonlinear
function F [6]. On the other hand, a round of Type-2 GFN with right cyclic shift
outputs [F (B3)⊕ B4, B1, F (B1)⊕ B2, B3] (shown in Fig. 1) for round function
F .

The round transformation function F when de�ned by non-linear S-box layer
followed by a permutation layer P exhibits substitution permutation structure.
The permutation P is generally implemented using standard MDS matrix [22,31].
If this SP structure is applied twice one after another then it is called double
SP, as shown in Fig. 2. Few reasons favoring double SP over single SP function
are as follows [6]:
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Fig. 3. 4-branch, Type-2, Generalized Feistel Network with left cyclic shift.

� The second S-box in double SP provides larger number of active S boxes
when di�erential and linear attacks are applied.

� The second permutation layer in double SP structure limits the di�erential
e�ect, i.e., number of di�erential trails resulting in same di�erential is smaller
as compared to round function having single permutation layer.

3.2 t-bit Partial Target Preimage Attack

Let the output of a hash function H with initial chaining value IV and message
M be denoted by h, i.e., h = H(IV , M). In this attack, when the attacker is
given t-bits of h, his aim is to �nd a message M ′ such that the hash output h′ =
H(IV , M ′) matches these t-bits of h and at the same positions. The other bits
of hash output H(IV , M ′) are generated randomly.

3.3 Sliced Biclique Cryptanalysis

In this section, we describe sliced biclique cryptanalysis technique to show
preimage attack on hash function. Later, we use this preimage attack to launch
collision attack. We consider MMO mode for our explanation. In the MMO mode
H = EIV (M)⊕M , where IV is the initial chaining value acting as the key for
the block cipher E,M is the message and H is the hash value produced. Since we
assume IV to be public and hence known to the attacker, the cipher E becomes
a simple permutation, i.e., H = E(M)⊕M . Sliced biclique technique can then
be applied for preimage search as follows.

The attacker �rst selects an internal intermediate state Q and partitions the
full state space into sets of size 22d represented as Qi,j for some suitable range of
i and j. Each set is de�ned by its base state Q0,0 which is randomly selected by
the attacker. Let f be a sub-permutation within E which maps Qi,j to another
set of intermediate states Pi,j , i.e., Qi,j −→

f
Pi,j . These Qi,j and Pi,j are obtained

using 2d ∆i and ∇j di�erentials as follows:

1. Q0,0 −→
f
P0,0 ......................... (base computation),

2. Qi,0 = Q0,0 ⊕∆i,
3. Qi,0 −→

f
Pi,0,

4. Q0,j = Q0,0 ⊕∇j ,



5. Q0,j −→
f
P0,j ,

6. Qi,j = Qi,0 ⊕∇j ,

7. Pi,j = P0,j ⊕∆i, where 0 ≤ i, j ≤ 2d − 1.

It has been shown in [15] that Qi,j −→
f
Pi,j forms a biclique, if∆i and∇j trails

are non-interleaving, i.e., they do not share any active non-linear component
between them. 1 The parameter d is called the dimension of the biclique. Each
Q0,0 de�nes one biclique structure consisting of 22d intermediate states.

To �nd a valid preimage M , the attacker then applies meet-in-the-middle
(MITM) technique in the rest of the rounds. In the MITM stage, the attacker
chooses an internal state v ∈ {E \f} and computes its value both in the forward
direction as a function of P (denoted as −→vi,j ) and in the backward direction as
a function of Q (denoted as ←−vi,j) respectively for every (i, j) pair. This process
is shown in Fig. 4.

Qi,j Pi,j v−→vi,j ←−vi,j

IV E(M)

←−vi,j
f

Fig. 4. Biclique Attack.

To compute ←−v in the backward direction, the value of E(M) is required (as
shown in Fig. 4) which can be easily calculated by E(M) = H ⊕M . To reduce
the complexity of the attack, the attacker tries to choose the state v such that
in the forward direction it only depends on j and in the backward direction it
only depends on i, i.e., states Qi,j and Pi,j form a sliced biclique if the following
conditions hold [15] 2:

∀i, j : −→vi,j = −→v0,j ,
∀i, j : ←−vi,j =←−vi,0.

Let −→v0,j = −→vj and ←−vi,0 =←−vi . Finally, the attacker checks if:

∃i, j : −→vj =←−vi .

If such an (i, j) pair exists, the corresponding Qi,j becomes the preimage
candidate. If not, then the attacker picks up another set of states with di�erent
base value Q0,0 and repeats the whole procedure.

1 It is not necessary for independent biclique/sliced biclique attack to have ∆ and ∇
di�erentials start from distinct ends of the subcipher. The only requirement that is
essential is that both trails should be non-interleaving.

2 In the traditional biclique key recovery attack in [5], this special restriction on v is
not required.



Complexity of the attack. The sliced biclique attack comprises of 2 phases -
biclique construction phase and MITM phase. Let the block cipher E consist of y
rounds and the number of rounds covered in the biclique phase be x. This implies
the number of rounds covered in the MITM phase is y − x = z. For each set of
messages, in the biclique phase, since all ∆i 6= ∇j and ∆i trails are independent
of ∇j trails, the construction of biclique is simply reduced to computation of ∆i

and ∇j trails independently which requires no more than 2.2d computations of
f , i.e.,

Complexity of biclique phase = 2d × x

y
+ 2d × x

y
= 2d+1 × x

y
.

Similarly, in the MITM phase, the attacker needs to call each of −→vj and ←−vi
for 2d times, i.e., a total of 2d+1 times. Let the number of rounds covered in the
forward and backward direction be a and b respectively. Hence,

Complexity of MITM phase = 2d× a
y

+ 2d× b

y
= 2d× a+ b(= z)

y
= 2d× y − x

y
.

It is now easy to check that the overall complexity of sliced biclique preimage
attack for one set of messages does not require more than 2d full computations
of E, i.e.,

Total Complexity = 2d+1 × x

y
+ 2d × y − x

y
= 2d × (1 +

x

y
) ≈ 2d since, x� y.

Ifm bicliques are constructed, then the total cost ism×2d. For further reading on
sliced biclique and classical bicliques one can refer to [15] and [16,5] respectively.

4 Distinguishing Attack on 4-branch, Type-2 GFN based

Permutation using Sliced Biclique Cryptanalysis

Technique

In this section, we present a 8-round distinguisher on permutation Ek (where k
is the key) which is a 8-round, 4-branch, Type-2 Generalized Feistel Network.
We assume that the S-box layer has good di�erential property and the P-layer
implements standard MDS matrix. 3 We also assume that the key k (that is IV in
the overlying hash function construction) is a �xed constant. The distinguishing
property used by the distinguisher is as follows:

Distinguishing Property. Let Ek be a block cipher with message size N =
128-bits. The aim of the adversary is to collect 216 (plaintext, ciphertext) pairs
such that the XOR of the lower 16 bits of the third word in the plaintext and

3 In this line of work, implementation of P-layer as a standard MDS matrix having
optimal branch number is believed to be a good design choice [6,25,14,24]



the lower 16 bits of the third word in the ciphertext (where each word is of size
32-bits) is always a 16-bit constant value chosen by the attacker, i.e.,

(plaintext)23 ⊕ (ciphertext)23 = constant (1)

where, |constant| = 16-bits. 4

In case of random permutation. When Ek is a random permutation, the
probability that any (plaintext, ciphertext) pair satis�es the desired property (as
mentioned in Equation 1) is approximately 2−16. This means that the expected
time complexity to generate one such (plaintext, ciphertext) pair is 216. Hence,
expected time complexiy to generate 216 such (plaintext, ciphertext) pairs is 232.

In case of E instantiated with 4-branch, Type-2, GFN. For the
illustration of our attack, we consider N =128-bit and n = 32-bit each. The
attacker �rst chooses a random base value Q0,0 (as discussed in Section 3.3). Let
∆i = (0̄0̄ | i0̄ | 0̄0̄ | 0̄0̄) and ∇j = (0̄0̄ | 0̄j | 0̄0̄ | 0̄0̄) where (0 ≤ i, j ≤ 216 − 1) be
the ∆ and ∇ di�erences injected in Round 4. Here each 0̄ represents 016. The
propagation of ∆i trail (marked as `|' in green) and ∇j trail (marked as `-' in red)
is shown in Fig. 5 and Fig. 6 respectively. In these �gures, the four words shown
in each round are the corresponding inputs to four branches at each round. In
∇j trail, the attacker �rst injects the given j di�erence in $422 word only. As
the ∇j trail propagates as shown in Fig. 6, $41 and $44 words are subsequently
a�ected. The dimension of this biclique is d=16.

It is easy to check that ∆i and ∇j trails are independent and do not share
any non-linear components (shown in Fig. 7) between them in rounds 4 and
5. Thus, a 2-round biclique (consisting of 22d = 232 messages) is formed where
the biclique covers rounds $4 and $5. Now the aim of the attacker is to �nd
a matching variable v which only depends on ∆i trail in one direction and ∇j

trail in the other direction (as discussed in Section 3.3). Hence, from round 6
only ∇j trail is propagated in the forward direction and from round 3 only ∆i

trail is propagated in the backward direction (as shown in Fig. 8). At the end of
8th round it can be seen that $123 (marked in yellow in Fig. 8) in the backward
direction is not a�ected by ∆i trail (i.e., will be a�ected by ∇j trail only) and
$823 (marked in yellow in Fig. 8) in the forward direction remains una�ected by
∇j trail (i.e., will be a�ected by ∆i trail only). Through feed forward operation,
16 bits of $123 can then be matched with 16 bits of $823. Hence, in this attack we
choose $823 to be our matching variable v and |v| = 16 which is denoted by t.

Once the matching variable v is obtained, as mentioned above, through our
biclique attack, 22d = 232 (plaintext, ciphertext) pairs are generated in a set.
Out of these 22d (plaintext, ciphertext) pairs, there exists 22d−t = 216 (plaintext,
ciphertext) pairs which match on matching variable v. In other words, if we XOR
the lower 16 bits of the third word in the plaintext and the lower 16 bits of the
third word in the ciphertext (i.e., at positions $123 and $823 respectively ),

4 Here (plaintext)23 denotes second block of third word of plaintext as described in
Section 2. The term (ciphertext)23 can be understood similarly.
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Fig. 5. ∆i di�erence injection in Round 4 and its propagation.
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Equation 1 will always be satis�ed. These 216 (plaintext, ciphertext) pairs
will be generated with a computational complexity of 2d = 216 (as discussed
in � 3.3) which is lower than the computational complexity of 232 in case of
random permutation. Hence, a valid distinguisher for E when instantiated with
4-branch, Type-2, GFN is constructed.

Similarly, our attack can be applied to messages of other sizes as well. In
table 1, we report the complexity values for our distinguisher attack on message
inputs of di�erent size.

Table 1. Complexity values for our distinguishing attack on message inputs of di�erent
size. Here N represents the input message size in bits and #(P-C) pairs represent the
number of plaintext-ciphertext pairs needed for our attack. The number of plaintext-
ciphertext pairs depends on the size of matching variable v.

N n #(P-C) Complexity of Complexity of

pairs our attack random permutation

64 16 28 28 216

256 64 232 232 264

512 128 264 264 2128

5 Collision Attack on 4-branch, Type-2, GFN based

compression function

The distinguisher constructed in the previous section can be used to launch
collision attack on 4-branch, Type-2, GFN based compression function as
described below. Here the compression function is assumed to be in MMO mode
and the output is assumed to be of N = 128-bits.

� The attacker �rst chooses a t-bit constant of his choice.
� In the above attack, the attacker then �nds a matching variable v, where
|v| ≤ t. In our attack, |v| = t = 16 bits.

� There are 22d = 232 messages in a biclique set. Out of these 22d messages,
only 22d−t messages will match on v. This means that out of 232 messages
only 216 messages will survive the MITM phase.

� In other words, it can be said that the attacker has generated 216 t-bit partial
target preimages with these t-bits equal to an arbitrarily chosen constant
selected in �rst step.

� These 216 t-bit partial target preimages collide on t = 16 bits. Hence, if
the attacker generates 2(N−t)/2 such preimages which collide on t-bits, there
exists a colliding pair with high probability which collide on the remaining
N − t bits as well. Thus, the attacker will generate 2(128−16)/2 = 256 such
t-bit partial target preimages to obtain a collision on complete hash output
H with high probability.



� Now, one sliced biclique generates 216 t-bit partial target preimages. Hence,
to generate 256 such preimages, the attacker needs to construct 256−16 =
240 sliced bicliques (or, 2(N−t)/2−(2d−t) bicliques where, 2(N−t)/2 = 256 and
2(2d−t) = 216 ).

Complexity of the collision attack . Since the computational complexity of
performing sliced biclique attack once is 2d = 216 (as discussed in Section 3.3),
hence computational complexity of running sliced biclique attack 240 times is
240 × 216 = 256. Therefore, given IV , the complexity to �nd a pair of messages
(M , M ′) such that CF(IV , M) = CF(IV, M ′), when CF (i.e., compression
function) is instantiated with 8-rounds of 4-branch type-2 GFN is 256 (< 264

brute-force attack). Here, compression function output is of 128-bits size. In
general, the complexity of the attack is given by the following formula:

Complexity = 2
(N−t)

2 −(2d−t) × 2d.

For the purpose of illustration, we show the cost of our attack for various
message sizes in Table 2.

Table 2. Complexity values for our collision attack on message inputs of di�erent size.
Here N represents the input message size in bits, n represents the branch word size in
bits and t represents the size of matching variable v in bits. In our attack d = t always.

N n t Rounds Complexity of Brute force

our attack complexity

64 16 8 8 228 232

128 32 16 8 256 264

256 64 32 8 2112 2128

512 128 64 8 2224 2256

Since we need to store all partial preimages to �nd the colliding pair, memory
required is of the order of 256 (for 128-bit output). However, it is mentioned
in [15] that memoryless equivalents of these attacks do exist. In Appendix A, we
show the collision attack on CLEFIA which is a real world implementation of
4-branch, Type-2, GFN.

Collision Attack on 4-branch Type-2 GFN with Double SP layer . The
above attack technique is generic and independent of the internal F-function
structure. Hence, if we instantiate the round function F with double SP-layer,
the above attack can be directly translated to 8-round collision attack on 4-
branch, Type-2 GFN with double SP layer based compression function with a
complexity of 256. This betters the 6-round near collision attack on the same



Table 3. Comparison of our results with previous cryptanalytic results on 4-branch,
Type-2, GFN with double SP layer.

Rounds Attack Type Reference

6 Near Collisions [24]

7 Distinguishing [24]

8 Distinguishing [8]

8 Distinguishing This work, � 4

8 Full Collisions This work, � 5

structure shown by Sasaki in [24]. In Table 3 we compare our result with the
previous cryptanalysis results on 4-branch, Type-2 GFN with double SP layer.

As discussed above, since the attack technique is generic, presence of multiple
SP layers in the round function F does not provide any extra resistance against
sliced biclique attack as compared to double SP layer. In fact, in our collision
attack neither the attack complexity nor the the number of rounds attacked
change if double SP layer is replaced by multiple SP layers. This is in contrast
to attacks such as rebound attacks [21], where the number of SP layers inside
the round function F in�uence the number of rounds attacked [25,9,14,24,8] in
Generalized Feistel Networks.

6 Collision Attack on Hash Functions

M1 M2

H(M)IV E E
h1

M ′
1

M2

H(M’)IV E E
h1

Fig. 9. Collision Attack.

In this attack, given the IV, the aim of the attacker is to �nd a pair of
messages (M , M ′) such that H(M) =H(M ′). To do so, the attacker �rst �nds
two messages M1 and M ′1 which collide to same hash value h1 using collision
attack technique described in Section 5 with a complexity of 256. Now he
concatenates any message M2 with M1 and M ′1 (as shown in Fig. 9) such that
H(M1‖M2) =H(M ′1‖M2). Message M2 can also be chosen such that it satis�es



padding restrictions (where length of input message is appended at the end) if
required. In this way, collision attack can be carried out on 4-branch, Type-2,
GFN with double SP layer based hash function with a complexity of 256. Since
we assume known key settings (i.e., key part to the underlying block cipher is
known to the attacker), hence this attack can be used to generate collisions in
MP and MMO based hash functions but pseudo collisions in DM based hash
functions.

7 Conclusions

In this work, we apply the sliced biclique technique to show collision attack on
8-rounds of 4-branch, type-2 GFN. When it is instantiated with double SP layer,
we present the �rst 8-round collision on 4-branch, type-2 GFN with double SP
layer. It would be interesting to apply sliced biclique technique to attack other
potential targets. One possible extension can be to apply this attack technique
on 2-branch, Type-2 GFN such as Shavite-3 etc.
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A 8-Round Collision Attack on CLEFIA based

Compression Function

In this section, we investigate CLEFIA which is a real world-implementation
of 4-branch, Type-2 GFN. In the attacks discussed in Section 4 and Section 5,
we considered 4-branch, Type-2 GFN with double SP layer where right cyclic
shift is applied on the message sub-blocks at the end of each round. This was
done to facilitate direct comparison with previous results [24,8] on the same
structure. However in [34], Type-2 GFN's have been de�ned with left cyclic shift
and is followed in all the practical implementations of Type-2 GFN structure -
e.g., RC6 [23], CLEFIA [28], HIGHT [13] etc. Yet, similar attack procedure (as
discussed in Section 5) can be applied on CLEFIA but with di�erent ∆i and
∇j trails. CLEFIA is a 128-bit block cipher and supports three key lengths -
128-bit, 192-bit and 256-bit. The number of rounds correspondingly are 18, 22



and 26. Here, in this section, we examine CLEFIA with 128-bit keysize. 5 WK0

and WK1 represent the whitening keys at the start of the cipher. Each round
has two 32-bit round keys RK2i−2 and RK2i−1 (where, 1 ≤ i ≤ 18).
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injection in Round 4 and
its propagation
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Fig. 11. ∇j di�erence
injection in Round 5 and
its propagation
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Fig. 12. 1-round biclique
placed in Round 4

In this attack, let ∆i = (i0̄ | 0̄0̄ | 0̄0̄ | 0̄0̄) be the ∆ di�erence injected in
Round 4 and ∇j = (0̄0̄ | j0̄ | 0̄0̄ | 0̄0̄) be the ∇ di�erence injected in Round 5
where (0 ≤ i, j ≤ 216−1). Here each 0̄ represents 016. The attacker �rst chooses a
random base value Q0,0 and then injects the ∆i and ∇j di�erences accordingly.
The propagation of ∆i trail (marked as `|' in green) and ∇j trail (marked as
`-' in red) is shown in Fig. 10 and Fig. 11 respectively. The dimension of this
biclique is d=16. It is easy to check that ∆i and ∇j trails are independent and
do not share any non-linear components (shown in Fig. 12) between them in
round 4. Thus a 1-round biclique (consisting of 22d = 232 messages) is formed
in $4 round.

From round 5 only ∇j trail is propagated in the forward direction and from
round 3 only ∆i trail is propagated in the backward direction (as shown in
Fig. 13). At the end of 8th round it can be seen that $123 (marked in yellow in
Fig. 13) in the backward direction is not a�ected by ∆i trail and $823 (marked
in yellow in Fig. 13 ) in the forward direction remains una�ected by ∇j trail.
Through feed forward operation, 16 bits of $123 can then be matched with 16
bits of $823. Hence, in this attack we choose $823 to be our matching variable
v. The steps of collision attack for CLEFIA are exactly the same as discussed
in Section 5 and Section 6. Therefore, we can generate collisions in 8-rounds of
CLEFIA based hash function with a complexity of 256.

5 The attack works on other key sizes as well since key is constant under known key
settings.
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