
Key-Homomorphic
Constrained Pseudorandom Functions

Abhishek Banerjee1?, Georg Fuchsbauer2??, Chris Peikert1 ? ? ?, Krzysztof Pietrzak2 †,
and Sophie Stevens3 ‡

1 School of Computer Science, College of Computing, Georgia Institute of Technology
2 Institute of Science and Technology Austria

3 University of Bristol, UK

Abstract. A pseudorandom function (PRF) is a keyed function F : K × X →
Y where, for a random key k ∈ K, the function F (k, ·) is indistinguishable
from a uniformly random function, given black-box access. A key-homomorphic
PRF has the additional feature that for any keys k, k′ and any input x, we have
F (k+ k′, x) = F (k, x)⊕F (k′, x) for some group operations +,⊕ on K and Y ,
respectively. A constrained PRF for a family of sets S ⊆ P(X) has the property
that, given any key k and set S ∈ S, one can efficiently compute a “constrained”
key kS that enables evaluation of F (k, x) on all inputs x ∈ S, while the values
F (k, x) for x /∈ S remain pseudorandom even given kS .
In this paper we construct PRFs that are simultaneously constrained and key
homomorphic, where the homomorphic property holds even for constrained keys.
We first show that the multilinear map-based bit-fixing and circuit-constrained
PRFs of Boneh and Waters (Asiacrypt 2013) can be modified to also be key-
homomorphic. We then show that the LWE-based key-homomorphic PRFs of
Banerjee and Peikert (Crypto 2014) are essentially already prefix-constrained
PRFs, using a (non-obvious) definition of constrained keys and associated group
operation. Moreover, the constrained keys themselves are pseudorandom, and the
constraining and evaluation functions can all be computed in low depth.
As an application of key-homomorphic constrained PRFs, we construct a proxy
re-encryption scheme with fine-grained access control. This scheme allows storing
encrypted data on an untrusted server, where each file can be encrypted relative to
some attributes, so that only parties whose constrained keys match the attributes
can decrypt. Moreover, the server can re-key (arbitrary subsets of) the ciphertexts
without learning anything about the plaintexts, thus permitting efficient and fine-
grained revocation.

? Supported by the third author’s grants.
?? Research supported by ERC starting grant (259668-PSPC).

? ? ? This material is based upon work supported by the National Science Foundation under CAREER
Award CCF-1054495, by DARPA under agreement number FA8750-11-C-0096, and by the
Alfred P. Sloan Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, DARPA or the U.S. Government, or the Sloan Foundation.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

† Research supported by ERC starting grant (259668-PSPC).
‡ Work done while visiting the Institute of Science and Technology Austria.

1 Introduction

Pseudorandom functions (PRFs), like the AES block cipher, are the workhorses of
cryptography. They allow for efficient and elegant solutions to all the basic symmetric-
key cryptographic tasks, including authentication and encryption. Not surprisingly, PRFs
with additional properties have been intensively investigated, as those properties often
allow for useful additional functionalities. We discuss two such properties below.

Key-homomorphic PRFs. A PRF [GGM86] is an efficiently computable keyed function
F : K×X → Y . The security property requires that no efficient adversary can distinguish
F (k, ·) instantiated with a random key k ← K from a uniformly random function, given
oracle access.

A key-homomorphic PRF has the additional feature that for any keys k, k′ and any
input x, we have F (k + k′, x) = F (k, x)⊕ F (k′, x) for some group operations + and
⊕ on K and Y , respectively. Naor, Pinkas and Reingold [NPR99] observed that the
simple PRF F (k, x) = H(x)k, where H(·) is a random oracle that maps into a group
where the DDH problem is assumed to be hard, is a key-homomorphic PRF. The first
(almost) key-homomorphic PRFs in the standard model was constructed by Boneh et
al. [BLMR13] from lattice assumptions, and later generalized and improved by Banerjee
and Peikert [BP14].

Applications of key-homomorphic PRFs include an elegant solution to one-round
distributed PRFs for any threshold [BLMR13]. Here, for some parameters ` ≤ n, a
user sends an input x to ` servers, who each return a short answer from which the user
can compute F (k, x). Security requires that to any subset of ` − 1 servers, F (k, ·) is
pseudorandom. For ` = n, one can simply share the key as k = k1 + k2 + . . . + kn,
each server computes F (ki, x), and these can then be combined to

∑n
i=1 F (ki, x) =

F (
∑n
i=1 ki, x) = F (k, x). Boneh et al. [BLMR13] provide a solution for general ` ≤ n.

Symmetric-key proxy re-encryption is another interesting application, which we will
discuss in detail in Section 1.2.

Constrained PRFs. A constrained PRF for a family of sets S ⊆ P(X) has the property
that, given any key k and set S ∈ S, one can efficiently compute a “constrained” key
kS that enables evaluation of F (k, x) on all inputs x ∈ S, while the values F (k, x) for
x /∈ S remain pseudorandom even given kS .

Constrained PRFs were introduced independently in [BW13,KPTZ13,BGI14]. All
three papers note that the classical GGM construction [GGM86] already gives a prefix-
constrained PRF, where from a key k ∈ {0, 1}n, for any v ∈ {0, 1}≤n one can compute
a key kv that enables the computation of F (k, x) for all inputs x that start with v.
Boneh and Waters [BW13] construct bit-fixing and circuit-fixing constrained PRFs from
multilinear maps. In the bit-fixing construction, for every v ∈ {0, 1, ?} one can compute
a key kv that enables the computation of F (k, x) for any x for which xi = vi when
vi 6= ?. The more general circuit-constrained construction allows generating constrained
keys for any circuit C, where with kC one can evaluate the PRF on input x if and only if
C(x) = 1.

Prefix-constrained PRFs (or rather, “punctured” PRFs, which can be constructed
from them) are a main tool in almost all the applications of indistinguishability obfus-

cation [GGH+13b,SW14,PST14]. The papers [BW13,BGI14,KPTZ13] discuss many
more applications of constrained PRFs.

1.1 Results and Techniques

Key-Homomorphic Constrained PRFs. In this paper we construct PRFs that are
simultaneously key-homomorphic and constrained. The key-homomorphic property
holds not only for PRF keys, but also for constrained keys. We first show that the
multilinear-map-based bit-fixing and circuit-constrained PRFs due to Boneh and Wa-
ters [BW13] can be modified to also be key-homomorphic. We then show that the
LWE-based key-homomorphic PRFs of Banerjee and Peikert [BP14] are essentially al-
ready prefix-constrained PRFs, using a (non-obvious) definition of constrained keys and
associated group operation. Moreover, the constrained keys themselves are pseudoran-
dom, and the constraining and evaluation functions can all be computed in low depth. The
latter feature can be important for applications of obfuscation, e.g., [GGH+13b,SW14],
where the use of low-depth constrained/punctured PRFs may avoid the need for costly
“bootstrapping” operations and fully homomorphic encryption.

Given the usefulness of the individual key-homomorphic and constraining properties
for PRFs, we expect their combination to find even more exciting applications. We
discuss one such application, symmetric-key proxy re-encryption, in Section 1.2. We
next give a brief overview of our constructions, their salient features, and our proof
techniques.

Bit-Fixing PRFs from MDDH. Leveled multilinear maps [GGH13a] are defined over
a sequence of groups (G1, . . . ,Gκ), where Gi is generated by an element gi, as bilinear
maps ei,j : Gi ×Gj → Gi+j ; i.e., they satisfy ei,j

(
g ai , g

b
j

)
= (gi+j)

a·b for all a, b. The
multilinear decisional Diffie-Hellman assumption states that given random elements
gc11 , . . . , g

cκ+1

1 , it is hard to distinguish gκ
∏κ+1
j=1 cj from a random group element in Gκ.

Using such groups, Boneh and Waters [BW13] define a bit-fixing constrained PRF
for bit strings of length n as follows. A key K consists of a sequence of multilinear
groups of prime order p and values (k, {di,β}i∈[n], β∈{0,1}) from Zp. The PRF is defined
as F (K,x) := gn

k·
∏
i∈[n] di,xi . While this construction does not appear to be key-

homomorphic, in Section 3 we make it so, by observing that we can “outsource” the
values di,β as Di,β := g

di,β
1 to public parameters pp, and redefine

F (pp, k, x) := e
(
D1,x1 , e(D2,x2 , e(. . . , e(Dn−1,xn−1 , Dn,xn)))

)k
= gn

k·
∏
i∈[n] di,xi .

We show that the values Di,β can be published without compromising security, that is,
the function values are pseudorandom under the MDDH assumption. Because the secret
key is now just k, the PRF is easily seen to be key-homomorphic.

Low-Depth Prefix-Fixing PRFs from LWE. In Section 4 we construct key-homo-
morphic prefix-fixing constrained PRFs from the LWE assumption, and hence from
the conjectured hardness of worst-case lattice problems [Reg09,Pei09,BLP+13]. In

addition, natural instantiations of this construction have polylogarithmic circuit depth.
To our knowledge, these are the first sublinear-depth constrained PRFs (whether key-
homomorphic or not), and as such they can admit much more efficient obfuscation
under existing paradigms. (Recall that the basic GGM construction, which yields a
prefix-constrained PRF, is highly sequential.)

Our LWE-based construction is an extension of the recent class of key-homomorphic
PRFs of Banerjee and Peikert [BP14], which generalizes and improves a previous
construction of Boneh et al. [BLMR13]. We show that the BP construction can be
made prefix-constrained, and that the constraining algorithm is also key-homomorphic.
Notably, the approximation factors for the underlying LWE assumption are essentially
the same as in [BP14], e.g., they can be as small as quasi-polynomial λω(λ) in the
security parameter.

To show all this, we start with the observation that the security proof for the BP (and
BLMR) construction is very “GGM-like,” i.e., it proceeds in a sequence of hybrids, one
for each successive bit of the PRF input. However, the functions computed in the hybrids
do not quite fit the usual GGM paradigm, because each successive output of the PRG
is broken into two pieces: one piece is fed as input into the next PRG step, while the
“leftover” piece is retained and then later “folded” back into the final output of all the
PRG steps. A natural way to define a constrained key for a partial function evaluation,
then, is to include all the leftover pieces in the constrained key—and this is indeed the
approach we take.

The main technical challenge we face is in defining a suitable group structure on
the leftover pieces, for key homomorphism. At first sight, this appears easy: since the
leftover pieces are eventually combined with the final PRG output via a linear function, it
would appear that one could simply add constrained keys by adding their corresponding
leftover pieces. While this does indeed work—at least syntactically—it yields a useless
construction! The problem is that essentially any application of key-homomorphic
(constrained) PRFs (e.g., proxy re-encryption as described below in Section 1.2) will
require a statistical “secret sharing”-like property on the (constrained) secret keys. For
example, the sum of any fixed key with a uniformly random key must be uniformly
random, so that the original key is completely hidden. Formally speaking, for any
particular constraint we need the space of constrained keys to be a finite additive group
(so that it supports a uniform distribution), and for the function to be key-homomorphic
under this group structure.

Resolving the difficulty. Going back to the BP construction, the leftover pieces in
constrained keys come from a certain finite subset P ⊂ Zm, namely, a fundamental
region of a special lattice L. Obviously, the sum of two uniformly random P-elements is
not uniform in P—indeed, it is typically not in P at all! So we cannot naı̈vely use the
ambient group Zm (which is infinite). Another idea would be to use the finite quotient
group Zm/L, i.e., addition modulo the lattice. This also does not work, because the
function is not key-homomorphic under this form of addition.

Our solution to the above problem involves a novel method of adding moduloL “with
carries.” That is, the sum of two leftover P-elements is mapped back to P by reducing
modulo the lattice L, i.e., shifting by an appropriate lattice vector x ∈ L. The vector x
is then treated as a “carry” term that is “folded into” the sum of the next two P-elements

in the key, and so on. (The ultimate effect is analogous to grade-school addition, except
that here the “base” in which the “numbers” are written is a high-dimensional lattice.)
We show that by appropriately defining the effect of the carry terms, the PRF is indeed
key-homomorphic under this form of addition.

All of the above applies to the so-called “noisy” version of the BP construction, an
intermediate object that has perfect constraining, homomorphic, and pseudorandomness
properties, but high circuit depth and (even worse) exponentially large keys. Similar
to [BPR12,BP14], we show that by appropriately “rounding” this noisy construction, the
keys and depth can be made small while preserving the other desirable properties (at least
against computationally bounded attackers). Interestingly, this rounding transformation
requires us to work with a “geometrically nice” set P of representatives modulo the
special lattice L (which fortunately exists), whereas [BP14] works with any set of
representatives.

1.2 Applications

Using symmetric encryption, one can store data on an untrusted server simply by first
encrypting the files to be stored. Key-homomorphic and/or constrained PRFs enable
symmetric encryption schemes with additional properties which are useful in this setting.

Assume there are many parties who should get access to the stored data, but that
we occasionally need to revoke the access of some party. A simple solution is to re-
encrypt all the data with a fresh key, and then give this key to only the parties who
should continue to have access. Unfortunately, this requires either that the server knows
the secret key k, or that we must download, re-encrypt, and upload the entire database.
Boneh et al. [BLMR13] show how by using a key-homomorphic PRF, one can construct a
so-called proxy re-encryption scheme, where the server can locally transform ciphertexts
under a key k to ciphertexts under a new key k′ without learning the plaintexts. We
discuss their construction in Section 5.1.

The second functionality we consider is fine-grained access control, where different
parties should get access to different subsets of the stored data. The trivial but inefficient
solution is to encrypt each file under a separate key, and then send the appropriate keys to
each party. Constrained PRFs (CPRF) provide a more elegant solution: every encrypted
file is associated with some attribute vector x, and every party gets a constrained key kp
that allows her to evaluate the PRF on only those inputs satisfying an appropriate
predicate p. The PRF then allows her to decrypt only those files whose attributes x
satisfy her predicate. Of course, the expressive power of the system depends upon the
predicates supported by the CPRF. A circuit CPRF allows for any efficiently computable
predicate p, whereas prefix CPRFs allow for predicates that are satisfied by inputs starting
with a particular prefix. Using key-homomorphic constrained PRFs as constructed in this
paper, in Section 5 we construct a scheme for outsourced storage that supports proxy
re-encryption and fine-grained access control simultaneously. The “obvious” way to
outsource storage to an untrusted server using CPRFs is to encrypt a message m for
some attributes x as c = m⊕ F (k, x). Now, only a party who has a constrained key kp
where p(x) = 1 can decrypt the ciphertext (c, x), by computing m = c⊕ F (k, x). This
simple solution has two problems.

First, given two ciphertexts (c, x), (c′, x) for the same attributes x, one can compute
the XOR of the messages as c⊕ c′ = m⊕F (k, x)⊕m′⊕F (k, x) = m⊕m′, breaking
the security of the encryption scheme.

Second, a single ciphertext c = m⊕F (k, x) for a knownm reveals F (k, x) = c⊕m.
This is a problem because the security game for CPFRs only guarantees that F (k, x) is
pseudorandom if the adversary was given constrained keys (for predicates p(.) where
p(x) = 0), but does not guarantee anything if she is also given outputs F (k, x′) for some
x′ 6= x. For the GGM based prefix CPRF there is in fact a simple attack (cf. Footnote 4).

To handle these problems, we show how to “randomize” predicates, in the sense
that p+ is a randomization of p if there exists some encoding [·, ·] such that for all (x, r)
we have p+([x, r]) = 1 if and only if p(x) = 1. Let P denote the predicates supported by
the CPRF considered. We require p+ ∈ P as this will assure that the set of predicates for
the encryption scheme is the same as for the CPRF. We will need some other properties
from the encoding which we outline below. Although we don’t give a generic result
showing how to randomize any set of predicates, we show very simple constructions that
work for prefix, bit-fixing and circuit CPRFs (that is, all the predicates for which CPRFs
have been constructed to date). For bit-fixing and and circuit CPRFs the encoding is
simply concatenation [x, r] = x‖r. For prefix CPRFs the encoding is a simple prefix-free
encoding (cf. the paragraph above Thm. 4).

To solve the problems outlined above, we make encryption probabilistic: we encrypt
m as (r,m⊕ F (k, [x, r])) using randomness r. A constrained key for the predicate p(·)
for the encryption scheme is now defined as a constrained key for the predicate p+(.)
for the CPRF. Note that with this key we can compute F (k, [x, r]) and thus decrypt if
p(x) = 1 for any r.

Arguing security is more delicate, and will require two extra properties. First, we
want [·, ·] to be injective, which will ensure that the value F (k, [x, r]) used in the
challenge ciphertext has never been output before with high probability (i.e., unless we
happened to choose the same randomness r for a previous query). Second, we want
that for every [x, r], there exists a predicate p[x,r] ∈ P such that p[x,r]([x, r]) = 1 but
p[x,r]([x

′, r′]) = 0 for all (x′, r′) 6= (x, r) (but p[x,r](z) can be 1 for values z outside
the range of [·, ·]). In the reduction, this latter property allows us to learn the values
F (k, [x, r]) required to answer encryption queries in the CPA game by querying our
oracle (playing the CPRF security game) for the constrained key with predicate p[x,r].
The above property ensures that every such query will exclude at most one possible
candidate for our challenge ciphertext. Thus, if at some point the adversary asks for a
challenge ciphertext using attributes x, we can chose our CPRF challenge as [x, r] (which
will be answered either by F (k, [x, r]) or uniform), and as we chose r uniformly at
random, this query will most likely not be invalid (in the sense that it could be computed
using some previously issued constrained key).

Efficient re-encryption. Using proxy re-encryption as outlined above requires the server
to re-encrypt the entire database to ensure that a revoked party loses access. When
using fine-grained access control, a party to be revoked might have access to only a
small fraction of the database, so we could re-encrypt only that portion. This would
make re-encryption (potentially much) more efficient, but would require some extra

key-management, as now different parts of the database are encrypted under different
keys.

2 Preliminaries

2.1 Key-Homomorphic Constrained Pseudorandom Functions

We now formally define key-homomorphic constrained pseudorandom functions. We
model constrainability as a directed acyclic graph (DAG) on some (typically huge) set
of nodes. We restrict our attention to DAGs having a unique node that has no incoming
edges, called the root node.

Definition 1. A constrained function family C is given by:

– a directed acyclic graph D = (V,E) with unique root node r ∈ V ,
– for each node u ∈ V , a key space Ku with an efficiently samplable probability

distribution Du over it,
– for every edge (u, v) ∈ E, a constraining functionCu,v : Ku → Kv that is efficiently

computable.

The functions Cu,v must satisfy the following consistency property: for any u, v ∈ V
and any two paths P = (u = u0, u1, . . . , uk = v) and P ′ = (u = u′0, u

′
1, . . . , u

′
` = v)

from u to v, we have that

Cuk−1,uk ◦ · · · ◦ Cu1,u2
◦ Cu0,u1

= Cu′`−1,u
′
`
◦ · · · ◦ Cu′1,u′2 ◦ Cu′0,u′1 .

For notational convenience, we let Cu,v : Ku → Kv denote the above (composed)
functions, and also define Cu := Cr,u for any node u ∈ V that is reachable from
the root node r. For consistency with the typical PRF notation, we define Fk(u) =
Cu(k) (and to also cover constrained PRFs, if u represents a subset of inputs then
Constraink(u) = Cu(k)).

Lastly, a constrained function family may also have a Setup algorithm, which sam-
ples some (public) parameters that are provided as input to all of the other algorithms.

For the reader who may be familiar with constrained PRFs, we stress that in the
above definition, the DAG nodes roughly correspond with (subsets of) PRF inputs, while
the input ku and output kv of constraining function Cu,v correspond to (constrained)
secret keys. Despite these rough correspondences, we stress that in our model there are
no distinct notions of PRF “inputs” or “outputs,” only DAG nodes. This is without loss
of generality: a PRF input can simply be represented as a node w with no outgoing
edges, and the corresponding output is the key kw. In fact, our model is somewhat more
general because it allows for defining and proving the pseudorandomness of constrained
keys themselves (even for nodes having outgoing edges), which can be useful in certain
settings.

Definition 2. Pseudorandomness for a constrained function family C =
(
D = (V,E),

{Ku}, {Cu,v}
)

is defined as follows. It is parameterized by a subset R ⊆ V of what we
call “challenge” nodes. We consider two closely related experiments (“games”), called

“real” and “ideal,” which proceed as follows:

1. Initialize: For the root node r ∈ V we choose a value k = kr ← Kr according to
the associated distribution Dr. If the family has a Setup algorithm, it is run and its
output is provided to the adversary.

2. Query: The adversary adaptively issues queries v ∈ V , subject to the condition that
no query in R and any other query have a common descendant in D. That is, there
are no distinct queries u ∈ R, u′ ∈ V and node w ∈ V such that there exists a
(possibly trivial) path from u to w and one from u′ to w.

– In the “real game,” every query v is answered with kv = Fk(v) = Cv(k).
– In the “ideal game,” if v ∈ V \ R then it is answered as in the real game,

otherwise it is answered with an independent value k∗v ← Dv. (Repeated
queries are answered consistently.)

The family C is said to be pseudorandom if for any polynomial-time adversary, its advan-
tage in distinguishing the real and ideal games is negligible in the security parameter.

In short, the definition above means that constrained keys for the set R of challenge
nodes are pseudorandom. The condition on legal queries is necessary to prevent trivial
distinguishers that work by observing the inconsistency of the ideal-game answers. In a
bit more detail, given answers ku, ku′ for some nodes u ∈ R, u′ ∈ V (respectively) that
have a common descendant w ∈ V , the distinguisher could check whether Cu,w(ku) =
Cu′,w(ku′). This always holds in the real game, but in the ideal game, where ku is chosen
independently of everything else, it would typically fail to hold.

Definition 3. A constrained function family is (key) homomorphic if all the key spaces
Ku are additive groups and if the constraining functions Cu,v are additive homomor-
phisms, i.e., for every (u, v) ∈ E and every k1, k2 ∈ Ku, we have

Cu,v(k1) + Cu,v(k2) = Cu,v(k1 + k2) .

For key-homomorphic PRFs, all applications we know of implicitly require the
key spaces Ku to be finite groups, and the associated distributions Du to be uniform
distributions. In short, this is because the security proofs all rely on statistical “secret
sharing”-type properties, e.g., the sum of any group element and a uniformly random
one is uniformly random. All our final constructions have finite key spaces with uniform
distributions.

3 Bit-Fixing and Circuit-Constrained Constructions from MDDH

Boneh and Waters [BW13] constructed a “bit-fixing” constrained PRF for input space
X = {0, 1}n, where one can derive constrained keys for any subset of inputs that can be
described by arbitrarily fixing the values of any desired input bits. Any such subset can
be described by a string v ∈ {0, 1, ?}n, as the set of all x ∈ {0, 1}n that match v at all
positions where v is different from ‘?’:

Sv :=
{
x ∈ {0, 1}n

∣∣ ∀i ∈ [n] : xi = vi ∨ vi = ?
}
. (1)

Although not considered in [BW13], their construction can easily be generalized to allow
computation of a constrained key for a set Sw not only from the root key, but also from
any key for a set Sv for which Sw ⊆ Sv. In our DAG-based model, then, the nodes of
the DAG consist of the strings v ∈ {0, 1, ?}n, and there is an edge (v,w) if and only if
Sv ⊇ Sw (equivalently, wi = vi whenever vi 6= ?).

The original BW construction does not appear to be key homomorphic. However,
we show how to make it so by defining public parameters for the function (which consist
of elements previously contained in the secret key), and only keeping one Zp element as
the original secret key.

After these two modifications, we show that the PRF remains a bit-fixing constrained
pseudorandom function family as defined in Definition 2. The set of challenge nodes is
R = {0, 1}n, corresponding to all “fully constrained” keys. That is, constrained keys for
terminal nodes in the DAG are pseudorandom, but for nodes with outgoing edges they
are not.

3.1 Preliminaries

Multilinear groups. Candidates for sequences of groups with leveled multilinear maps
were first proposed by Garg, Gentry and Halevi [GGH13a]. These constructions imple-
ment graded encodings, which could be viewed as approximate multilinear groups. We
present our results in the language of multilinear groups.

Leveled multilinear groups are generated by a group generator G, which takes as
input the security parameter 1λ and κ ∈ N, which determines the number of levels.
G(1λ, κ) outputs a sequence of groups G = (G1, . . . ,Gκ) of prime order p > 2λ. We
assume that the description of each group contains a canonical generator gi. For all
i, j ≥ 1 with i + j ≤ κ, there exists a bilinear map ei,j : Gi × Gj → Gi+j , which
satisfies:

∀a, b ∈ Zp : ei,j
(
g ai , g

b
j

)
= (gi+j)

a·b .

We will omit the indices of e and write e(h1, h2, . . . , hn) or e({hi}ni=1) as a shorthand
for e(h1, e(h2, e(. . . , e(hn−1, hn)))). We make the following hardness assumption:

Assumption 1 The κ-Multilinear Decisional Diffie-Hellman (κ-MDDH) assumption
states that given (G1, . . . ,Gκ)← G(1λ, κ) and g = g1, g

c1 , . . . , gcκ+1 for (uniformly)
random c1, . . . , cκ+1 ← Zp, it is hard to distinguish gκ

∏
j∈[κ+1] cj ∈ Gκ from a random

group element in Gκ.

3.2 Key-Homomorphic Bit-Fixing PRF

Setup(1λ, 1n): On input the security parameter λ and the input length n, run G(1λ, n) to
compute a sequence of groups G = (G1, . . . ,Gn) of prime order p, with generators
g := g1, . . . , gn. Choose (d1,0, d1,1), . . . , (dn,0, dn,1)← Z 2

p uniformly at random
and set Di,β := gdi,β for i ∈ [n] and β ∈ {0, 1}. Output the parameters of the
scheme as

pp :=
(
G = (G1, . . . ,Gn), {Di,β}i∈[n], β∈{0,1}

)
.

They define the domain as X = {0, 1}n and the range of the PRF as Y = Gn. For a
key k ∈ Zp, the PRF value on input x = (x1, . . . , xn) ∈ {0, 1}n is defined as

F (pp, k, x) := e
(
{Di,xi}i∈[n]

)k
= gn

k·
∏
i∈[n] di,xi .

Constrain(pp, k,w): On input pp, a key k ∈ Zp∪
⋃n−1
i=1 Gi and a vector w ∈ {0, 1, ?}n,

which describes the constrained set as Sw := {x ∈ {0, 1}n | ∀i ∈ [n] : xi = wi

∨wi = ?}, let W := {i ∈ [n] : wi 6= ?} be the set of indices that w fixes.
– If k ∈ Zp (that is, k is a master key) then return

kw := e
(
{Di,vi}i∈W

)k
= (g|W |)

k·
∏
i∈W di,wi .

– Otherwise, we have k = kv for some set v ∈ {0, 1, ?}n, for which we let V be the
set of fixed indices. If V 6⊆ W or vi 6= wi for some i ∈ V then return ⊥ (since
Sv 6⊇ Sw); else return

kw := e
(
kv, e({Di,vi}i∈W\V)

)
= e
(
(g|V |)

k·
∏
i∈V di,vi , (g|W\V |)

∏
i∈W\V di,wi

)
= (g|W |)

k·
∏
i∈W di,wi .

Eval(pp, k, x): – If k ∈ Zp, return F (pp, k, x) = e({Di,xi}i∈[n])k = gn
k·
∏
i∈[n] di,xi .

– Otherwise, k = kv for some v ∈ {0, 1, ?}n. Let V := {i ∈ [n] : vi 6= ?} and
V := {i ∈ [n] : vi = ?} be its complement. If xi 6= vi for some i ∈ V then return
⊥ (since x /∈ Sv); else return

e
(
kv, e

(
{Di,xi}i∈V

))
= e
(
(g|V |)

k·
∏
i∈V di,vi , (g|V |)

∏
i∈V di,xi

)
= (gn)k·

∏
i∈[n] di,xi = F (pp, k, x) .

3.3 Properties

Key homomorphism. The construction is key-homomorphic in the sense of [BLMR13],
but it also satisfies Definition 2, which requires that Constrain is homomorphic as well.
The PRF can be described in the language of Definition 1 as follows. (Note that we
identify the set Sv, defined in (1), with the vector v defining it.)

– The set of vertices of the graph D is defined as V := {v : v ∈ {0, 1, ?}n} and the
root node is r := (?, . . . , ?), representing the set X = {0, 1}n. There is an edge
from v to w if all bits fixed by v are fixed by w to the same value, i.e., for all i ∈ [n]:
if vi ∈ {0, 1} then wi = vi.

– The additive group associated to r is Kr := (Zp,+); for all other vertices v it is
Kv := (G|V |, ·) with V := {i ∈ [n] : vi 6= ?}, i.e., the positions of 0’s and 1’s in v.
For all v, the distribution Dv is the uniform distribution over Kv.

– Cv,w : Kv → Kw, for all v,w for which (v,w) is an edge in D, is defined as

Cv,w(k) := Constrain(pp, k,w) .

(Note that for w ∈ {0, 1} we have Constrain(pp, k,w) = Eval(pp, k,w).)

By construction, running Constrain(pp, kv,w) on any key kv ∈ Kv derived for some
v ∈ {0, 1, ?}n from some master key k ∈ Zp always yields (g|W |)

k·
∏
i∈W di,wi if (v,w)

is an edge in D. This shows consistency, which requires that for any nodes v,w ∈
{0, 1, ?}n and any two paths P = (v = v0,v1, . . . ,vk = w) and P ′ = (v = v′0,
v′1, . . . ,v

′
` = w) from v to w in D, we have

Cvk−1,vk ◦ · · · ◦ Cv1,v2
◦ Cv0,v1

= Cv′`−1,v
′
`
◦ · · · ◦ Cv′1,v

′
2
◦ Cv′0,v

′
1
.

Finally, our construction is homomorphic, that is, for every edge (v,w) in D:

Cv,w(k1) · Cv,w(k2) = Cv,w(k1 + k2) . (2)

To show this, let pp = (G, {Di,β}i∈[n], β∈{0,1})← Setup(1λ, 1n). For all k1, k2 ∈ Zp
we then have the following:

1. F (pp, k1 + k2, x) = gn
(k1+k2)·

∏
i∈[n] di,xi = F (pp, k1, x) · F (pp, k2, x).

2. For any v ∈ {0, 1, ?}n we have:

Constrain(pp, k1 + k2,v) = (g|V |)
(k1+k2)·

∏
i∈V di,vi

= Constrain(pp, k1,v) · Constrain(pp, k2,v) .

3. For any v,w ∈ {0, 1, ?}n for which vi = ? or vi = wi for all i ∈ [n]: if
kv = Constrain(pp, k,v) and k′v = Constrain(pp, k′,v) then

Constrain(pp, kv · k′v,w) = e(kv · k′v, DW\V (w)) = (g|W |)
(k+k′)·

∏
i∈W di,wi

= Constrain(pp, kv,w) · Constrain(pp, k′v,w) .

By 1. we have Cr,x(k1 + k2) = Cr,x(k1) · Cr,x(k2) for all x ∈ X ; by 2. we have
Cr,v(k1 + k2) = Cr,v(k1) · Cr,v(k2) for all v; and by 3. we have Cv,w(k1 + k2) =
Cv,w(k1) · Cv,w(k2) for v 6= r; together this shows Equation (2).

Security. We show that publishing part of the secret key as parameters does not make the
construction insecure. In particular, we show that our construction satisfies Definition 2,
when the challenge set R is {0, 1}n ⊆ V = {0, 1, ?}n, that is, the set of leaves of the
DAG, which corresponds to the PRF domain X = {0, 1}n.

We need to show that when pp← Setup and k ← Zp then an adversary that is given
an oracle, which when queried on v ∈ {0, 1, ?}n \ {0, 1}n returns Constrain(pp, k,v)
and when queried on x ∈ {0, 1}n returns either F (pp, k, x) or a random element, cannot
distinguish these two cases—provided it does not query a descendant x ∈ R of some
other query u ∈ V .

Theorem 1. If there exists a PPT adversary breaking security of the above key-homo-
morphic bit-fixing PRF for n-bit-inputs, with challenge set R = {0, 1}n, with advantage
ε(λ) and making q(λ) queries for challenge elements, then there exists a PPT algorithm
that breaks the n-Multilinear Decisional Diffie-Hellman assumption with advantage
2−n · q(λ)−1 · ε(λ).

The proof first reduces the original game to a game where the adversary can only ask
for one challenge query, which loses a factor q(λ), by a standard hybrid argument. That
game is then reduced to MDDH, following the proof from [BLMR13]; in particular,
since in the simulation the reduction knows the values {Di,β}, it can output them as
public parameters (which do not exist in the original proof). See the full version for a
detailed proof.

3.4 Circuit-Constrained PRF with Key-Homomorphic Evaluation

Boneh and Waters [BW13] give a second construction based on multilinear maps, which
allows for constraining keys to more expressive sets, namely, all sets that can be decided
by a circuit of some fixed depth. By defining public parameters, we construct a variant
that is key-homomorphic as defined by Boneh et al. [BLMR13]. That is, we have that
for all pp, k1, k2, x,

F (pp, k1 + k2, x) = F (pp, k1, x) · F (pp, k2, x) . (3)

However, our construction is not key-homomorphic in the sense of Definition 3, as the
key-constraining function is not homomorphic.

The PRF is set up for input length n and circuit depth `. The parameters are a
sequence (G1, . . . ,Gκ) of groups Gi of prime order p, generated by gi, where κ = n+`;
as well as elements Di,β , uniformly chosen from G1, for i ∈ [n] and β ∈ {0, 1}. The
secret-key space is Zp and the PRF on input x = (x1, . . . , xn) ∈ {0, 1}n is defined as

F (pp, k, x) := e
(
e({Di,xi}i∈[n])k, g`

)
= gκ

k·
∏
i∈[n] di,xi (4)

(with di,β such that Di,β = gdi,β). It is thus defined exactly as for the bit-fixing con-
struction, except that there are more groups in the sequence, and satisfies (3).

Removing the values di,β from the secret key of the construction in [BW13] entails
another syntactical change. Above, we defined the PRF value F in terms of k and the
parameter values Di,β , whereas in [BW13] they are defined directly as the last term of
Equation (4). In [BW13], components of constrained keys (those corresponding to input
wires) are defined as Kw := grw·dw,1 , which we replace by Kw := (Dw,1)rw .

The values di,β are not used anywhere else. Our construction still satisfies pseudo-
randomness, since, as for the bit-fixing PRF, in the security proof the simulator knows
the values Di,β .

4 Prefix-Fixing Construction from LWE

In this section we prove that variants of the LWE-based key-homomorphic PRF of
Banerjee and Peikert [BP14] also support prefix constraints, and that the constraining
functions are key-homomorphic as well. After recalling some standard background
and notation in Section 4.1, the contents of this section have the following high-level
structure:

– In Section 4.2 we define a key-homomorphic, prefix-constrained pseudorandom
function family called Constrain, which we refer to as the “noisy” family. However,
the functions in this family are highly sequential, with circuit depth proportional to
the input length. More significantly, they have huge keys, of size exponential in the
input length, so they cannot actually be used in reality. The purpose of defining this
family is to give us a baseline object that has “perfect” consistency, homomorphic,
and pseudorandomness properties (but terrible space and depth complexity), which
we rely upon in the later subsections.

– In Section 4.3 we specialize the noisy Constrain family to be “errorless,” i.e., all error
terms are set to zero. We call the resulting family PConstrain. As a specialization of
Constrain, it inherits that latter’s perfect consistency and homomorphic properties.
We show that the PConstrain functions (1) have small keys, (2) can be computed
in low depth (e.g., logarithmic in the input length) by a slight modification to the
Constrain algorithms, and (3) have outputs that are “close” to those of the noisy
Constrain functions (under a mild condition on the input). However, we are still not
quite done yet, because the errorless PConstrain functions are not pseudorandom.

– In Section 4.4 we combine the previous two families to obtain a family PConstrain
that has essentially all the desired properties: small keys, low depth, pseudorandom-
ness, consistency, and homomorphism. (The latter two of these properties do not hold
perfectly, but only computationally: no efficient adversary can make any queries that
reveal a violation of either property.) The PConstrain functions are defined simply
as appropriately rounded functions from errorless family PConstrain. As such, they
inherit the latter’s small keys and low depth. In addition, they are pseudorandom be-
cause they coincide with the rounded noisy pseudorandom Constrain functions; this
follows from the fact that the (unrounded) errorless PConstrain and noisy Constrain
functions have “close” outputs, and the rounding precision is taken to be sufficiently
coarse to conceal this difference. Finally, consistency and homomorphism hold for
PConstrain essentially because rounding can be seen as adding a particular kind of
(deterministic) error, so PConstrain may be seen as an instantiation of Constrain.

4.1 Preliminaries

We first recall some standard background from [MP12,BP14]. For an integer modulus
q ≥ 1, let Zq = Z/qZ denote the quotient ring of integers modulo q, where for
convenience we always let q = 2` be a power of two. For ` = log q ≥ 2, define the
“gadget” (row) vector

g = (1, 2, 4, . . . , 2`−1) ∈ Z`q ,

and the (deterministic) “binary decomposition” function g−1 : Zq → {0, 1}` as follows:
identifying each a ∈ Zq with its integer representative in {0, . . . , q − 1}, let g−1(a) =

(x0, x1, . . . , x`−1) ∈ {0, 1}` where a =
∑`−1
i=0 xi2

i is the binary representation of a.
Note that by definition, 〈g,g−1(a)〉 = a for all a ∈ Zq, which explains our choice of
notation.

Similarly, for vectors and matrices over Zq we define the function G−1 : Zn×mq →
{0, 1}n`×m by applying g−1 entry-wise. Notice that for all A ∈ Zn×mq we have

G ·G−1(A) = A, where G = In ⊗ g = diag(g, . . . ,g) ∈ Zn×n`q

is the block-diagonal matrix having n copies of g as diagonal blocks, and zeros elsewhere.
We let P ⊆ Zn` denote a certain set of canonical representatives of the additive quotient
group Zn`q /(Znq ·G). Specifically, as shown in [MP12], we can use4

P := {− q4 , . . . ,
q
4 − 1}n` .

We define a bijection Decode : Zn`q → P × Znq as Decode(u) = (v, s), where

u = v + s ·G .

As shown in [MP12], there is an efficient algorithm for computing Decode in depth
proportional to ` = log q, and clearly Decode−1(v, s) = v + s ·G.

We recall the following easy lemma about the spectral norm, denoted s1(·), of
binary matrices. (See, e.g, [BP14, Lemma 3.1] for a proof.) Recall that s1(M) =
max‖u‖=1‖uM‖, where the maximum is taken over real unit vectors u.

Lemma 1. If S is a binary (i.e., 0-1) m-by-m matrix, then s1(S) ≤ m.

Binary trees. A full binary tree T is one in which each node is either a leaf, or has
two (nonempty) children. We let |T | denote the number of leaves in T , and index the
leaves from 0 to |T | − 1 by the inorder traversal of T . If |T | ≥ 1, we let T.l and T.r
respectively denote its left and right subtrees, both of which are nonempty.

Given matrices A0,A1 ∈ Zn×n`q , we define the function AT (x) : {0, 1}|T | →
Zn×n`q as follows:

AT (x) :=

{
Ax if |T | = 1,

AT.l(xl) ·G−1(AT.r(xr)) otherwise,

where in the second case we parse the input x = xlxr where |xl| = |T.l| and |xr| =
|T.r|.

Rounding. For a positive integer e, we define the integer rounding function b·ee : Z→
eZ as bxee := bx/ee ·e, and extend it component-wise to vectors and matrices. In words,
bxe simply rounds x to the nearest integer multiple of e.5

4 This choice of P is possible because we have taken q to be a power of two. It may be possible
to generalize our results to other values of q using the alternative lattice bases given in [MP12],
but it seems to substantially complicate the proofs.

5 We point out that this function differs slightly from the “modular” rounding function considered
in prior works, which mapped Zq to Zp as bxep = bx · p/qe mod p. Here e corresponds with
q/p, but the rounding input and output have the same “scale.”

4.2 “Noisy” Function Family C

As in previous work [BPR12,BP14], we first define and analyze a certain family C of
“noisy” constraining functions, which have huge (exponential-size) keys, because each
key contains many error terms. To avoid technical complications related to efficient com-
putation on exponential-size inputs, throughout this section the error terms are always
sampled “lazily,” i.e., not until they are needed. In Section 4.2 we show that the con-
straining functions are consistent, in Section 4.2 we show that they are homomorphisms
under an appropriate group operation on the key spaces, and in Section 4.2 we show that
the family is pseudorandom.

The public parameters of the noisy family are two matrices A0,A1 ∈ Zn×n`q , chosen
uniformly at random. Following Definitions 1 and 3, to describe our family we need to
give a DAG with a unique root node, a key space with an additive group structure for
each node in the DAG, and a constraining function for each edge in the DAG.

DAG. For a full binary tree T , our DAG corresponds to prefix-fixing constraints on
{0, 1}|T |, i.e., the nodes are identified with the strings in {0, 1}≤|T |, and there is an edge
(w,wx) for every w and x 6= ε such that |wx| ≤ |T |. This DAG clearly has a unique
root node, namely, the empty string ε.

Key spaces. For any full binary tree T and 0 ≤ j < |T |, we define

RT,j :=

Znq if |T | = 1,

RT.l,j if j ≤ |T.l|,
P ×RT.r,j−|T.l| otherwise.

For convenience in our recursive algorithms, we also defineRT,|T | = P ×Znq . In words,
RT,j has one P-component for each left subtree “hanging off” the path from the root to
the jth leaf. (Recall that we number the leaves starting from zero.) We also define, for
0 ≤ j ≤ |T |,

ET,j :=
∏

y∈{0,1}≤|T |−j
Zn` = (Zn`)2

|T |−j+1−1
.

In ET,j , the several Zn` components (which represent the error vectors) are indexed
by the binary strings of length at most |T | − j, which is why there are 2|T |−j+1 − 1
components.

For each w ∈ {0, 1}≤|T |, the key space KT,w and associated distribution for w are
defined as:

KT,w := RT,|w| × ET,|w| ,

DT,w := U(RT,|w|)× (χnl)2
|T |−|w|+1−1 ,

where χ is some error distribution over Z that will be used in the security proof. Note
that KT,w does not depend on the actual bits in w, only on its length |w|.

To make KT,w an additive group (for |w| > 0), we stress that we do not simply treat
it as a product group of its components—indeed, P ⊂ Zn` is not even closed under

addition, so it is not a group. Instead, in Section 4.2 below we define a special addition
operation onRT,|w| to make it a group. Then KT,w is simply the product group of this
group with ET,|w|, with the usual addition operation on the latter.

Constraining functions. It now remains to define (consistent) constraining functions
ConstrainT,w,x : KT,w → KT,wx for all strings w, x such that x 6= ε and |wx| ≤ |T |;
for convenience, we also define ConstrainT,w,x to be the identity function for x = ε.
Functional pseudocode for the constraining functions is given in Algorithm 4.1. We
remark that it would have been sufficient to define functions ConstrainT,x,w for |x| = 1
alone. Indeed, by Lemma 2 below it follows that our pseudocode is actually equivalent
to the sequential composition of such functions, and hence has circuit depth proportional
to |x|. We choose to present the constraining functions for general x here because in
Section 4.4 we show that a slight modification yields highly parallel functions.

In summary, the constraining functions are defined recursively on the tree structure.
In the base case |T | = 1, for key (v, (ex)x∈{0,1}≤1) ∈ KT,w = Znq × (Zn`)3, we simply
compute and decode the “noisy” value vAx + ex ∈ Zn`q . There are three recursive cases,
depending on whether we are constraining entirely within the left subtree, within the
right subtree, or across the two subtrees. In the first two cases, we simply recurse on the
appropriate subtree. In the third case, we recursively constrain over the remainder of
the left subtree, then over the desired portion of the right subtree. Lastly, whenever we
finish constraining over an entire (sub)tree we need to appropriately “fold” the results,
which consist of some leftover value in P ⊂ Zn` from the left subtree and some value in
P × Znq from the completed right subtree, into a value in P × Znq for the entire tree.

We remark that although our presentation is (necessarily) quite different, our con-
straining functions correspond to the partial evaluations of the noisy function family
from [BP14], which the simulator computes internally when answering queries in the
security proof.

Consistency. We first show consistency.

Lemma 2 (Consistency). For any full binary tree T , parameters A0,A1, and strings
w, x, z where |wxz| ≤ |T |, we have that

ConstrainT,wx,z ◦ ConstrainT,w,x = ConstrainT,w,xz .

Proof. We proceed by induction on |T |. The base case of |T | = 1 is trivial, because
ConstrainT,w,ε is the identity function.

We have three inductive cases. In the first two cases, where |wxz| ≤ |T.l| or
|w| ≥ |T.l|, the claim follows immediately by the inductive hypothesis on T.l or T.r,
respectively. The last inductive case is |w| < |T.l| and |wxz| > |T.l|. We analyze this in
two subcases.

The first subcase is |wx| > |T.l|. Here we parse x = xlxr with |wxl| = |T.l|. By
definition, we have

ConstrainT,w,x = ConstrainT,wxl,xr ◦ ConstrainT,w,xl
ConstrainT,w,xz = ConstrainT,wxl,xrz ◦ ConstrainT,w,xl .

Algorithm 4.1 ConstrainT,w,x : KT,w → KT,wx for |wx| ≤ |T |, x 6= ε

Input: (v, (ey)|y|≤|T |−|w|) ∈ KT,w = RT,|w| × ET,|w|
1: if |T | = 1 then . base case, so v ∈ Znq
2: return Decode(v ·Ax + ex)

3: else if |wx| ≤ |T.l| then . constrains entirely in left subtree. . .
4: return

(
ConstrainT.l,w,x

(
v, (ey)|y|≤|T.l|−|w|

)
, (exy)|y|≤|T |−|wx|

)
. . . . so just

recurse.
5: else if |w| < |T.l| then . incomplete left subtree. . .
6: parse x = xlxr where |wxl| = |T.l|
7: let (vl, ?) = ConstrainT,w,xl

(
v, (ey)|y|≤|T.l|−|w|

)
. . . . complete left subtree

(self-recurse). . .
8: return ConstrainT,wxl,xr

(
vl, (exly)|y|≤|T.r|

)
. . . . and self-recurse to finish.

9: else . constrains entirely in right subtree. . .
10: parse w = wlwr where |wl| = |T.l| and v = (vl,vr) ∈ P ×RT.r,|wr|
11: let (kr, ?) = ConstrainT.r,wr,x

(
vr, (ey)|y|≤|T |−|w|

)
. . . . so recurse.

12: if |wx| = |T | then . constrains over entire tree (so kr ∈ P × Znq). . .
13: return Decode(vl ·G−1(AT.r(wrx)) + Decode−1(kr)) so fold results.
14: else . doesn’t complete the tree. . .
15: return (vl,kr) so append results.

The claim then follows by the inductive hypothesis on T.r, by composing ConstrainT,wx,z
on the left of the first equation above.

The second subcase is |wx| ≤ |T.l|. This proceeds essentially identically to the first
subcase, where we instead parse z = zlzr with |wxzl| = |T.l|.

Homomorphism. Before we can prove that the constraining functions are homomor-
phisms, we must make KT,w = RT,|w| × ET,|w| an additive group for |w| > 0. (Recall
thatRT,0 = Znq , which is already a group.) We do so by defining a special group oper-
ation AddT,w on the set RT,|w|—note that the operation depends on w itself, not just
its length. We then let KT,w be the product group with ET,|w|, under its usual addition
operation. For convenience, we overload AddT,w to also refer to the group operation for
this product group, where the intended domain should be clear by context.

For convenience in the recursive definitions, we let AddT,w take an auxiliary input
t ∈ Znq , which should be thought of as a kind of “carry” term that comes from reducing
the sum of two P-elements (in Zn`) back to P . Initializing this carry input to zero yields
the group operation. Formally, we define

AddT,w
(
t ∈ Znq ,v,v′

)
:=

t + v + v′ if |T | = 1, |w| = 0,

AddT.l,w(t,v,v′) if |w| ≤ |T.l|,(
v̄l,AddT.r,wr

(
t̄,vr,v

′
r

))
if |T.l| < |w| < |T |,

Decode
(
t ·AT (w) + Decode−1(v) + Decode−1(v′)

)
if |w| = |T |,

where in the third case we parse w = wlwr for |wl| = |T.l| and v = (vl,vr),v
′ =

(v′l,v
′
r) ∈ P ×RT.r,|wr|, and let (v̄l, t̄) = Decode(t ·AT.l(wl) + vl + v′l).

We now prove that the Constrain functions are homomorphisms.

Lemma 3 (Homomorphism). For any parameters A0,A1 and any full binary tree T ,
any bit strings w, x such that |wx| ≤ |T |, and any t ∈ Znq and k,k′ ∈ KT,w, we have

ConstrainT,w,x(AddT,w(t,k,k′))

= AddT,wx(t,ConstrainT,w,x(k),ConstrainT,w,x(k′)) . (5)

In particular, by setting t = 0 we have that ConstrainT,w,x is an additive homomor-
phism.

Proof. The claim is trivial for x = ε, so from now on we assume that x 6= ε. Let i = |w|
and j = |wx|, so 0 ≤ i < j ≤ |T |. Parse k = (v, (ey)), k′ = (v′, (e′y)), and let
k̄ = (v̄, (ēy)) = AddT,w(t,k,k′).

As usual, we proceed by induction over |T |. In the base case, where w = ε and
|x| = |T | = 1, we have

ConstrainT,ε,x(v̄, (ēy)) = Decode(v̄ ·Ax + ēx)

= Decode((t + v + v′) ·Ax + (ex + e′x))

= Decode(t ·Ax + (v ·Ax + ex) + (v′ ·Ax + e′x))

= AddT,x(t,Constrain(v, (ey)),Constrain(v′, (e′y))) .

We now consider the inductive cases. Because Constrain simply passes an appropri-
ate subset of the input error terms (the Zn` vectors in the key) to the output, for simplicity
of exposition we suppress the error terms in the remainder of the proof. The final claim
then follows by the product group structure of KT,w.

The first inductive case, where i < j ≤ |T.l|, follows immediately from the inductive
hypothesis on ConstrainT.l,w,x. For the second inductive case, where i < |T.l| < j, we
defer to the final paragrap of the proof. For the third inductive case, where |T.l| ≤ i,
parse w = wlwr and v = (vl,vr),v

′ = (v′l,v
′
r), v̄ = (v̄l, v̄r), and note that by

definition,

v̄r = AddT.r,wrx(t̄,vr,v
′
r) , (6)

v̄l + t̄ ·G = t ·AT.l(wl) + vl + v′l (7)

for some t̄ ∈ Znq . As in the code for Constrain, let kr = ConstrainT.r,wr,x(vr) and simi-
larly for k′r, k̄r. Then by the inductive hypothesis on ConstrainT.r,wr,x and Equation (6),
we have

k̄r = ConstrainT.r,wr,x(v̄r) = AddT.r,wrx(t̄,kr,k
′
r) . (8)

Now if j = |wx| < |T |, then by definition of ConstrainT,w,x and AddT,wx (respectively),
the left- and right-hand sides of Equation (5) are respectively just v̄l prepended to the left-
and right-hand sides of Equation (8), so they are equal. But if j = |wx| = |T |, then the
output of ConstrainT,w,x(v̄) is “folded,” (i.e., in P × Znq), as are kr,k

′
r, k̄r as defined

above. We proceed by applying the folding operation to both sides of Equation (8),
namely, apply Decode−1, add v̄l ·G−1(AT.r(wrx)), and apply Decode. For the left-
hand side we get exactly ConstrainT,w,x(v̄), which is the left-hand side of Equation (5).
On the right-hand side, by definition of AddT.r,wrx, by Equation (7), and by definition
of AT (·), we get Decode applied to

v̄l ·G−1(AT.r(wrx)) + Decode−1(AddT.r,wrx(t̄,kr,k
′
r))

= (v̄l + t̄ ·G) ·G−1(AT.r(wrx)) + Decode−1(kr) + Decode−1(k′r)

= (t ·AT.l(wl) + vl + v′l) ·G−1(· · ·) + Decode−1(kr) + Decode−1(k′r)

= t ·AT (wx) + (vl ·G−1(· · ·) + Decode−1(kr))

+ (v′l ·G−1(· · ·) + Decode−1(k′r)) .

As desired, this is the right-hand side of Equation (5), by definition of ConstrainT,w,x
and AddT,wx.

Going back to the second inductive case, where i < |T.l| < j, it follows by
writing ConstrainT,w,x = ConstrainT,wxl,xr ◦ ConstrainT,w,xl where x = xlxr for

|wxl| = |T.l|, then applying the inductive hypothesis on T.l and T.r. This completes
the proof of Lemma 3.

Pseudorandomness. We now show that the function family C defined above is pseudo-
random according to Definition 2, with all nodes R = {0, 1}≤|T | as challenge nodes.
This follows immediately from the PRG-like property demonstrated in Lemma 4 be-
low, together with the fact (shown in prior works [BGI14,KPTZ13,BW13]) that the
GGM construction [GGM86] instantiated with such a PRG family yields a prefix-
constrained PRF.6 In a bit more detail: in the following lemma we show that for
any string w ∈ {0, 1}<|T |, the function GT,w : KT,w → KT,w0 × KT,w1 defined as
G(k) = (ConstrainT,w,0(k),ConstrainT,w,1(k)) is a pseudorandom generator, under
the LWE assumption. Instantiating the GGM construction with these PRGs yields our
constraining functions ConstrainT,w,x, therefore they are pseudorandom.

Lemma 4. Let T be any full binary tree and w ∈ {0, 1}<|T | be any string. Then
assuming the hardness of decision-LWEn,q,χ, for k← DT,w we have

(ConstrainT,w,0(k),ConstrainT,w,1(k))
c
≈ DT,w0 ×DT,w1 .

The proof of this lemma involves a simulator embedding the appropriate LWE
challenge in the base case in the computation of ConstrainT,w,b. The rest of the proof
consists of showing the outputs corresponding to each distribution (LWE vs uniform) are
distributed accordingly. We defer the details to the full version.

4.3 Parallel Errorless Constrain

In this subsection we consider the “errorless” variants of our Constrain functions, which
we call PConstrain, and show that they can be computed in low depth. We also show
that the output of PConstrain is typically close to that of Constrain, when the errors
used in the latter are small.

Parallel Evaluation. The PConstrain functions simply correspond to the Constrain
functions when all the error vectors are set to zero, that is, PConstrainT,w,x(v, s) =
ConstrainT,w,x(v, s,0). In particular, this implies that the PConstrain functions are both
consistent and homomorphisms, because the Constrain functions are. In addition, the
errorless setting allows PConstrain to be computed with good parallelism (i.e., in low
depth) by an alternative algorithm that “short circuits” the computation via a base case
that constrains over an entire (sub)tree in just one step. More specifically, we modify the
base case (Lines 1 and 2) of Algorithm 4.1 as shown in Algorithm 4.2 below. The rest of
the algorithm remains unchanged, apart from the fact that PConstrain does not take or
output any error terms.

In Lemma 5 we prove that the alternative algorithm is correct. Then in Section 4.3
we describe how PConstrain can be evaluated in low depth.

6 It is easy to verify that this remains true even for our slightly stronger definition, where the
adversary can query the function at inputs corresponding to internal nodes of the GGM tree.

Algorithm 4.2 PConstrainT,w,x : RT,|w| → RT,|wx| for |wx| ≤ |T |, x 6= ε

Input: v ∈ RT,|w|
1: if w = ε and |x| = |T | then . base case
2: return Decode(v ·AT (x))

3: The remaining code is the same as in Algorithm 4.1, but without any error terms
(ey).

For convenience, we define the function ProjectT,w : KT,w → RT,|w|, which just
outputs the RT,|w|-component of its input (dropping the ET,|w|-component, i.e., the
errors), and PrjConstrainT,w,x = ProjectT,wx ◦ ConstrainT,w,x.

The following lemma states that what the algorithm above does is indeed correct. It
is proved by a simple induction for complete inputs only, that is, for inputs x = ε and
w ∈ {0, 1}|T |. The complete proof appears in the full version.

Lemma 5. For any fully binary tree T , any bit strings w, x with |wx| ≤ |T |, and any
v ∈ RT,|w|,

PConstrainT,w,x(v) = PrjConstrainT,w,x(v,0) .

Parallel Evaluation of PConstrain. We now analyze the parallel complexity of the
PConstrain functions according to Algorithm 4.2 (and Algorithm 4.1) above. Our main
goal is to bound what we call the “nonlinear depth” of PConstrainT,w,x in terms of the
topology of T and the strings w, x. Nonlinear depth only takes into account the nonlinear
Decode and G−1 operations; the remaining operations are all linear over Zq. For an
implementation of PConstrain by an arithmetic or boolean circuit, the depth will depend
on the precise circuit model used and the implementation of the linear and nonlinear
operations, but in any case the final depth will be proportional to the nonlinear depth.

To state our claim we recall from [BP14] the notions of “left depth” and “right depth”
of the jth leaf in a binary tree T , and of T itself. The left depth lT (j) (respectively,
right depth rT (j)) of the jth leaf is the number of edges from a parent to its left (resp.,
right) child on the path from the root to that leaf. The left and right depths l(T), r(T)
are respectively the maximum left and right depths over all leaves in T .

Lemma 6. The function PConstrainT,w,x(v) can be computed via (1) a preprocessing
phase (independent of v) of nonlinear depth at most r(T), and (2) an online phase
(dependent on v) of nonlinear depth at most lT (|w|) + rT (|x|) ≤ l(T) + r(T).

We remark that in [BP14], the nonlinear depth of computing the (non-constrained)
PRF is just r(T), so one can obtain an extremely parallel PRF using a “left spine” tree
with r(T) = 1 and l(T) = |T | − 1 (this corresponds to the function from [BLMR13]).
But here, evaluating the PRF from a constrained key can require nonlinear depth propor-
tional to the sum of T ’s left and right depths. Therefore, to get good parallelism for all
w, x we must use a shallow tree T , e.g., one with depth O(log|T |). We defer the proof
of this Lemma to the full version.

Closeness. We next analyze the size of the P-components of d discussed above, as they
relate to the errors in the original key kε = (s, (ey)). Recalling that each P-component
of d corresponds to some left-child subtree in T , it is therefore sufficient to analyze
the accumulated error in fully constrained keys over arbitrary trees. For this purpose
we define a “growth factor” ΦT associated with an arbitrary full binary tree, defined
recursively as follows:

ΦT :=

{
1 if |T | = 1,√

(ΦT.l · n`)2 + (ΦT.r)2 otherwise.
(9)

We next state a lemma that is essentially a restatement of [BP14, Lemma 3.7].

Lemma 7 (Error Bound). For any w such that |w| = |T |, let

(k, ?) = ConstrainT,ε,w(0, (ey))

for (ey)← ET,0, where the error distribution χ is subgaussian with parameter r. Then
Decode−1(k) = e (mod q) for some e ∈ Zn` that is subgaussian with parameter r ·ΦT .

More generally, let d = PrjConstrainT,ε,w(0, (ey)) ∈ RT,|w| for nonempty w ∈
{0, 1}≤|T |. Then if q ≥ 4r · ΦT · ω(

√
log λ), the following are true with 1 − negl(λ)

probability over the choice of (ey)← ET,0: (1) the Znq -component of d is 0, and (2) each
P-component of d for subtree T ′ is subgaussian with parameter r · ΦT ′ .

4.4 “Rounded” Function Family C

We now define our final “rounded” family of constraining functions, denoted C, which
we prove to be pseudorandom, as well as (computationally) key-homomorphic and
consistent. In C we use the same DAG on {0, 1}≤|T | as in the noisy function family, but
we define somewhat different “rounded” (and errorless) key spaces, and thereby different
constraining functions and group operations.

We note that in this scenario, we would only be able to achieve a computational
version of consistency and homomorphism. That is to say that it is computationally in-
feasible to find inputs on which our family is not consistent (respectively, homomorphic).
We discuss about these properties in more detail in the full version.

Rounding and key spaces. The family C is parameterized by a “rounding factor” eT ′
for each subtree T ′ of T . For convenience of analysis, we choose these factors to all
divide q, hence they are also powers of two. The factors are defined recursively to satisfy
the inequalities

eT ′ ≥

{
r · λω(1) if |T ′| = 1,

(eT ′.l · (n`) + eT ′.r) · λω(1) otherwise.
(10)

Note that by inspection of Equations (9) and (10), for all subtrees T ′ we have

eT ′ ≥ r · ΦT ′ · λω(1) .

Next, mirroring the definitions from Section 4.2, we define the “rounded” domain
KT,j for 0 ≤ j < |T | as follows

RT,j :=

Znq if |T | = 1,

RT.l,j if j ≤ |T.l|,
bPeeT.l ×RT.r,j−|T.l| otherwise.

As withR, we also defineRT,|T | = bPeeT × Znq . Note that for every subtree T ′ of T ,
we have that bPeeT ′ ⊆ P (because every eT ′ divides q), we have RT,j ⊆ RT,j . The

key space for w ∈ {0, 1}≤|T | and its associated distribution are then defined to be

KT,w := RT,|w| ,
DT,w := U(KT,w) .

Constraining functions. We first define RoundT,j : RT,j → RT,j for 0 ≤ j < |T | as
follows:

RoundT,j(v) :=

v if |T | = 1

RoundT.l,j(v) if 0 < j ≤ |T.l|
(bvleeT.l ,RoundT.r,j−|T.l|(vr)) otherwise,

where we parse (v, s) = (vl,vr) ∈ P × RT.r,j−|T.l| in the last case above. For
(v, s) ∈ RT,|T |, we simply define RoundT,|T |(v, s) := (bveeT , s).

With this definition in mind, the “rounded” constraining functions PConstrainT,w,x :
RT,|w| → KT,w are simply defined as

PConstrainT,w,x := RoundT,|wx| ◦ PConstrainT,w,x .

Pseudorandomness. We now show that the construction of the family C from Sec-
tion 4.4 is a constrained PRF, according to Definition 2. Here, we prove selctive security
of the function as defined in Definition 2, and use the Security of the Constrain family
of functions, as defined in Section 4.2 above. We note that this theorem is very similar to
analogous ones proved in prior work [BPR12,BP14], and thus we defer the proof to the
full version.

Theorem 2. The family C described above is pseudorandom for the set of challenge
nodes {0, 1}≤|T |, assuming that the family C is also pseudorandom over the same set of
challenge nodes, where the χ distribution of C is a subgaussian distribution over Z with
parameter r, where r is the number used to define the rounding factors in Equation (10).

5 Proxy Re-Encryption with Fine-Grained Access Control

Below we explain the symmetric proxy re-encryption scheme as defined by Boneh et al.
[BLMR13]. Using this scheme as a starting point, we then construct our scheme which
additionally allows for fine-grained access control.

5.1 Symmetric-key Proxy Re-Encryption from Key Homomorphic PRFs

As an application of key homomorphic PRFs Boneh et al. [BLMR13] construct a
symmetric-key proxy re-encryption scheme, a symmetric-key analogue of public-key
proxy re-encryption [BBS98,CH07,ABH09,LV08]. A symmetric proxy re-encryption
scheme is a symmetric encryption scheme, where given a ciphertext c = Enc(k,m) of
some message m under key k, a proxy can translate this ciphertext to a new ciphertext
c′ = Enc(k′,m) under a new key given only some re-encryption token ∆. The security
definition requires roughly that the token only allows to translate ciphertexts in this way,
but does not reveal anything about the encrypted message or the involved keys. Given a
key-homomorphic PRF F : K ×X → Y , where (K, ◦), (Y,⊗) are groups such that

F (k ◦ k′, x) = F (k, x)⊗ F (k′, x)

and any symmetric encryption scheme (enc : Y ×M→ C, dec : Y × C →M) we con-
struct Πproxy = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) as follows. Setup(1λ)
outputs public parameters pp to be used by F . All algorithms will have pp as input, which
we will not denote explicitly. The key generation algorithm KeyGen simply outputs a
random key k ← K for F . Encryption of the proxy re-encryption scheme is defined as
Enc(k,m) = (r, c1, c2) where

c1 = κ⊗ F (k, r) , c2 = enc(κ,m) for random (r, κ)← X × Y (11)

Decryption is Dec(r, c1, c2) = dec(c1 ⊗ F (k, r)−1, c2) = m . The re-encryption-key
generation ReKeyGen takes two keys k, k′ and outputs a re-encryption token

ReKeyGen(k, k′) = k−1 ◦ k′ .

The re-encryption procedure ReEnc takes a re-encryption token ∆ = ReKeyGen(k, k′)
and a ciphertext under key k and outputs a ciphertext of the same plaintext under the key
k′ as

ReEnc(∆, (r, c1, c2)) = (r, c1 ⊗ F (∆, r), c2) .

Note (r, c1 ⊗ F (∆, r), c2) = (r, κ⊗ F (k, r)⊗ F (∆, r)), c2) = (r, κ⊗ F (k′, r), c2) is
indeed an encryption ofm under key k′ as required. We refer the reader to [BLMR13] for
a formal definition of symmetric-key proxy re-encryption and the proof of the following

Theorem 3 ([BLMR13]). If F is a secure key-homomorphic PRF where the input space
X is of superpolynomial size, then Πproxy is a secure proxy re-encryption scheme.

The superpolynomial domain is required in order for the probability that any two of the
randomly chosen r ∈ X collide to be negligible.

5.2 Fine-Grained Access Control from Constrained PRFs

Assume the PRF F from the previous section is not only key-homomorphic, but also a
constrained PRF. That is, there is a function Constrain : K × P → KP which given a
key k and some predicate p outputs a constrained key kp that allows to evaluate F (k, ·)
on all inputs x where p(x) = 1.

Consider the proxy re-encryption scheme outlined above, but where we slightly
change the encryption procedure from Eq. (11), and now instead of choosing r at random
during encryption, it is given as part of the input. We call this input x the attributes of
the ciphertext. I.e., we let Enc(k,m, x) = (x, c1, c2) with

c1 = κ⊗ F (k, x) , c2 = enc(κ,m) for random κ← Y .

This little change now gives us an extra property: given a constrained key kp for a
predicate p, one can decrypt ciphertexts with attribute x iff p(x) = 1. The correctness
property of Enc as a proxy re-encryption scheme is not affected by this change.

Informally, the security notion (which we will define formally later) requires that
ciphertexts encrypted for some attributes x under key k hide the plaintext as long as it
cannot be trivially computed from the outputs of the queries of the adversary (where we
allow adversaries to make re-encryption queries and ask for constrained keys).

The security notion of constrained PRFs implies that given keys kp1 , . . . , kp` for
predicates where pi(x) = 0 for all i = 1, . . . , `, the output F (k, x) is pseudorandom.
It might therefore seem that the key κ is pseudorandom given the encapsulated key
c1 = κ ⊗ F (k, x). Unfortunately, as discussed in the introduction, this is not true,
because in a CPA attack the adversary can not only ask for constrained keys, but also
for ciphertexts which reveal function values. We therefore will use a carefully defined
probabilistic encoding of attributes such that the functionality of the scheme is preserved,
while solving the problems discussed in the introduction.

Randomizable Predicates. How to appropriately define the required encoding is best
explained by an example: Consider a bit-fixing CPRF F with inputs from {0, 1}n. Recall
that given a constrained key kp ← Constrain(k, p) for a predicate p ∈ {0, 1, ?}n, we
can compute F (k, x) for any attribute x where for every i ∈ [n] we have (x[i] = p[i] ∨
p[i] = ?). For any such predicate p, we denote with p+ the predicate on n+λ bits (where
λ is a statistical security parameter) as p+(x‖α) = p(x), so p+ simply evaluates p on
the first n bits.

In the encryption scheme, the predicate space is still {0, 1}n, but F is evaluated
on inputs of length n + λ and a constrained key for p ∈ {0, 1, ?}n is computed as
kp+ ← Constrain(k, p‖?λ). During encryption we now compute the encapsulated key
as c1 = κ⊗ F (k, x‖α) for some random α (α is also output as part of the ciphertext).
Note that this preserves the proxy re-encryption property: given kp+ one can compute
F (k, x‖α) on any (x, α) where p(x) = 1. On the other hand, we’ll show that the
c1 = κ ⊗ F (k, x‖α) part of the challenge ciphertext hides the encapsulated key κ
because F (k, x‖α) is pseudorandom.

Definition 4. A randomization of a set of predicates P is given by an efficient injective
encoding [·, ·] : Pin×{0, 1}λ → Pout (Pin,Pout ⊆ P and λ being a statistical security
parameter) and a mapping φ : Pin → Pout (we’ll use p+ as shortcut for φ(p)) such
that p+([x1, x2]) = 1 ⇐⇒ p(x1) = 1. For every [x, r] we require that there exists
a p[x,r] ∈ P s.t. p[x,r]([x, r]) = 1 but p[x,r]([x′, r′]) = 0 for all (x′, r′) 6= (x, r) ∈
Pin × {0, 1}λ.

For a CPRF for predicates P that can be randomized, we define Constrain+(k, p) ≡
Constrain(k, p+). Note that a key k[x′,r′] ← Constrain(k, p[x,r]) allows to evaluate

F (k, ·) only on the value [x, r] in the range of [·, ·] (but might allow to evaluate it on
other points not in the range of the encoding).7

With this definition, the encoding for bit-fixing CPRFs we discussed above can be
cast as a randomized predicate with [x1, x2] = x1‖x2 simply being concatenation and
p+ = p‖?λ for any p ∈ {0, 1, ?}n.

For prefix CPRF, we let τ : {0, 1, 2} → {0, 1}2 be an encoding of a ternary to a
binary alphabet (say, 0, 1, 2 maps to 00, 01, 10). Then we can use the encoding [x1, x2] =
τ(x1‖2‖x2) and set φ(x) = τ(x) (so Constrain+(k, x) = Constrain(k, τ(x))). 8

We will prove the following theorem.

Theorem 4. If F is a secure key-homomorphic constrained PRF, the scheme Πfg-proxy

defined in Section 5.4 is a secure proxy re-encryption scheme with fine-grained access
control (as defined in Section 5.3).

5.3 Definition of Proxy Re-Encryption with Fine-Grained Access Control

A proxy re-encryption scheme with fine-grained access control for predicates P over X ,
where for p ∈ P, x ∈ X we denote by p(x) = 1 that p holds on x, is given by algorithms

Πfg-proxy = (Setup,KeyGen,Enc,Dec,Constrain,ReKeyGen,ReEnc) .

Setup(1λ). Setup outputs a set of public parameters pp, which are an implicit input to
all other algorithms.

KeyGen(1λ). Key generation outputs a key k ∈ K.
Enc : K ×X ×M→ X × C. Encryption takes a key k, attributes x and a message m

and outputs a ciphertext (x, c)← Enc(k, x,m).
ConstrainENC : K × P → KP . Constraining takes a key k and a predicate p and outputs

a constrained key kp ← ConstrainENC(k, p) (we use the subscript ENC to avoid
confusion with the Constrain algorithm of the CPRF).

Dec : (KP ∪ K)×X × C →M. Decryption takes k and a ciphertext (x, c) and outputs
m← Dec(k, x, c); except when k = kp ∈ KP and p(x) = 0, then it outputs ⊥.

ReKeyGen : K ×K → K. Re-encryption key-generation takes two keys and outpus a
re-encryption key k∆ ← ReKeyGen(k, k′).

7 Looking forward, this condition will allow us to replace (in the reduction) an output value
F (k, [x, r]) with a constrained key, while only excluding one possible challenge ciphertext.
We observe that without this condition simple concatenation [x1, x2] = x1‖x2 would already
give a randomized predicate for prefix predicates, but this would lead to a trivially insecure
encryption scheme Enc(k, x,m) = (r,m⊗ F (k, [x, r])) if using a GGM based prefix CPRF.
In such CPRFs, given some F (k, x‖r) (that an adversary can learn via an encryption query) one
can compute F (k, x‖r‖r′) for any r′. Using this fact we can break security of the encryption
scheme by asking for a challenge for attribute x′ = x‖r which we’ll be able to decrypt.

8 The extra symbol 2 in-between the prefix x1 and the randomness part x2 is there so the
condition from Def. 4 is satisfied. In particular, note that for any z = [x1, x2] = τ(x1‖2‖x2),
the constrained key kz = Constrain(k, z) allows to evaluate F (k, ·) only on inputs of the form
z‖w, but this is in the range of the encoding [·, ·] only if w is empty (i.e., only on the unique
input z in the range of [·, ·]). Note that with this encoding the attack from Footnote 7 does no
longer work.

ReEnc : K × C → C. Re-encryption takes a re-encryption key (from k to k′) and a
ciphertext under k, and outputs a ciphertext of the same plaintext under k′.

Correctness. For any pp output by Setup (which is an implicit input to all algorithms)
and all k, x,m and p with p(x) = 1, let c ← Enc(k, x,m). Then we require the
following: Dec(k, x, c) = m. For all kp ← ConstrainENC(k, p): Dec(kp, x, c) = m. For
any k′, k∆ ← ReKeyGen(k, k′), c′ ← ReEnc(k∆, c) we have Dec(k′, c′, x) = m.

Security. The notion of security for proxy re-encryption with fine-grained access control
below is a generalization of the security notion for proxy re-encryption of [BLMR13].

We consider a game between an adversary A and a challenger. The challenger runs
pp← Setup(1λ) (and pp is given to A and to all other algorithms as input), initializes a
counter ctr := 1 and samples a random bit b ∈ {0, 1}. Then A can make the following
queries.

Uncorrupted Key-Generation: Challenger samples kctr ← KeyGen(1λ) and increases
ctr (the key is not given at A).

Corrupted Key-Generation: Challenger samples kctr ← KeyGen(1λ) and increases ctr.
The key is given to A.

Re-encryption Key-Generation: On input (i, j), i, j ≤ ctr return ReKeyGen(ki, kj) to
A. We require that both keys ki, kj are uncorrupted.

Constrained Key Request: On input (i, p) return ConstrainENC(ki, p) to A.
Encryption: On input (i, x,m) return Enc(ki, x,m) to A.
Re-Encryption: On input (i, j, c) return ReEnc(ReKeyGen(ki, kj), c) to A. We require

that kj was generated using uncorrupted key generation.
Challenge: This oracle is queried only once in an input (i∗, x∗,m∗0,m

∗
1), we require

that ki was generated using uncorrupted key generation, and for every “Constrained
Key Request” query (i, p) where ki was generated using uncorrupted key generation,
we have p(m∗0) = p(m∗1) = 0 (this also holds for queries to be made after this
challenge query).
The challenger returns Enc(ki, x∗,m∗b) to A.

Guess: A outputs a guess bit b′ (the experiment stops at this point).

Definition 5. Πfg-proxy is a secure proxy re-encryption scheme with fine-grained access
control if for all polynomial-time adversaries A, the advantage |Pr[b = b′]− 1/2| in
the above game is negligible in the security parameter λ.

A Remark on Selective Security. Note that the above notion considers selective security
in the sense that the adversary must commit whether a key is corrupted or not during its
generation (the challenge is chosen adaptively, and for this we’ll have to assume adaptive
security of the underlying constrained PRF). This will be useful in the security proof,
where the reduction will sample corrupted keys itself, and implicitly uses the key of
the challenger in the constrained PRF security game to generate uncorrupted keys. We
can get selective security via “complexity leveraging”, but this loses a huge exponential
(in the number m of generated keys) factor in the security reduction9 as we have to

9 That is, an attacker with advantage ε against the scheme is turned into an adversary with
advantage ε/2m against the constrained PRF.

guess initially which keys will be corrupted. When the encryption scheme is actually
used to outsource data to an untrusted server, we can assume that re-encryption-key
generation queries are not arbitrary, but only applied to consecutive keys, i.e., we only
can ask for re-encryption keys ReKeyGen(ki, ki+1). In this case, adaptive security can
be proven losing only a quadratic factor (as for the reduction it will be sufficient to only
guess which key will be the first corrupted key before and after the key chosen for the
challenge.)

5.4 Construction of Proxy Re-Encryption with Fine-Grained Access Control
from Key-Homomorphic Constrained PRFs

We now describe how to construct a scheme Πfg-proxy from a key-homomorphic con-
strained PRF F for predicates P that can be randomized (cf. Def. 4) and any symmetric
encryption scheme (enc, dec).

Setup(1λ) samples and outputs public parameters pp as used by F .
KeyGen(1λ) outputs a random key k ∈ K for F .
Enc(k, x,m) picks a random α ∈ {0, 1}λ, a random key κ for enc and sets (with [·, ·]

as in Def 4)

Enc(k,m, x) = ([x, α], c1, c2) , where c1 = κ⊗F (k, [x, α]) and c2 = enc(κ,m)

Dec(kp, x, c = ([x, α], c1, c2)) checks if p(x) = 1. If so, it computes κ = c1 ⊗
F (kp, [x, α])−1 and returns dec(κ, c2).

ConstrainENC(k, p) returns kp ← Constrain+(k, p) (cf. Def. 4)
ReKeyGen(k, k′) returns k∆ = k′ ◦ k−1.
ReEnc(k∆, c = ([x, α], c1, c2) returns c′ = ([x, α], F (k∆, [x, α])⊗ c1, c2).

Proof of Theorem 4. We now show that the scheme constructed in Section 5.4 satisfies
the security notion from Definition 5. We construct an adversary B, who given an
adversary A that breaks the security of the scheme, breaks the security of the underlying
constrained PRF with almost the same advantage (we lose an exponentially small additive
term due to the possibility of collisions in the randomness used for encryption).

At setup, adversary B gets the public parameters pp for F , and forwards them to A.
Now, B has access to an oracle Constrain(k, ·) (below Constrain+(k, ·) is as in Def. 4).
B will answer A’s queries as follows.

Corrupted Key-Generation: B samples a key kctr ← KeyGen(1λ), increases ctr and
gives the key to A.

Uncorrupted Key-Generation: B samples a key kctr∆ and implicitly sets kctr = k ◦ kctr∆
where k is the key used in the Constrain(k, ·) oracle of the security game against
the CPRF. Note that kctr is uniform.

Re-encryption Key-Generation: On input (i, j) where i, j ≤ ctr are uncorrupted keys,
B must return ReKeyGen(ki, kj) to A. It can compute these without knowing k as

ReKeyGen(ki, kj) = k ◦ kj∆ ◦ (k ◦ ki)−1 = kj∆ ◦ (ki∆)−1

Constrained Key Request: On input (i, p) B queries its oracle for the key kp+ ←
Constrain+(k, p), then computes kip+ = kp+ ◦ Constrain+(ki∆, p) and returns this
key to A.

Encryption: On input (i,m, x) compute ([x, α], c1, c2)← Enc(k,m, x) as in Sect. 5.4,
note that for this we have to learn F (k, [x, α]). For this B queries for the constrained
key k[x,α] ← Constrain(k, p[x,α]) (cf. Def. 4), and then computes F (k, [x, α]) using
this key.
Return c = ([x, α], c′1, c2) toA where c′1 = c1⊗F (ki∆, [x, α]) (this step re-encrypts
from k to ki).

Re-Encryption: On input (i, j, c) return ReEnc(ReKeyGen(ki, kj), c) to A (note that
we already explained how to compute ReEnc(ReKeyGen(ki, kj), c)).

Challenge and Guess: If A outputs the challenge (i∗, x∗,m∗0,m
∗
1) (where for any pred-

icate p where there was a constrain key-request (i, p) we have p(x∗) = 0).
B samples a random α and forwards the challenge [x∗, α] to its CPRF challenger
(note that as α is random, with overwhelming probability B hasn’t made the query
Constrain(k, p[x,α]) in a previous encryption query, and thus this is a legal challenge.
B gets from his challenger a value γ which is either F (k, [x∗, α]) or a uniformly
random, depending on whether the challenger’s bit b was 0 or 1.
B samples a random bit β, a random key κ and computes c = ([x, α], κ ⊗ γ,
enc(κ,m∗

b̂
)). B sends c to A, who answers with β′.

If β = β′ B outputs the guess bit b′ = 0 (guessing γ is pseudorandom), otherwise
b′ = 1 (guessing γ is uniform).

We analyze the probability that b = b′. Conditioned on b = 0, c is correctly generated
and thus A has some non-negligible advantage δ in guessing correctly. If b = 1, the
c1 = κ⊗ γ part of the ciphertext is independent of κ, and thus A’s advantage is some
negligible εenc (by the security of enc).

Pr[b = b′]− 1/2

1 ≥ Pr[b = b′|β = 0]− 1/2

2
+

Pr[b = b′|β = 1]− 1/2

2
≥ δ

2
− εenc

2
,

which is non-negligible assuming εenc is negligible but δ is not.

References

ABH09. Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private proxy re-
encryption. In Marc Fischlin, editor, CT-RSA 2009, volume 5473 of LNCS, pages
279–294. Springer, April 2009.

BBS98. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of
LNCS, pages 127–144. Springer, May / June 1998.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, March 2014.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, August 2013.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In STOC, pages 575–584, 2013.

BP14. Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudo-
random functions. In CRYPTO, pages 353–370, 2014.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In EUROCRYPT, pages 719–737, 2012.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, December 2013.

CH07. Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption.
In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
CCS 07, pages 185–194. ACM Press, October 2007.

GGH13a. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, May 2013.

GGH+13b. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33:792–807, 1986.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press,
November 2013.

LV08. Benoı̂t Libert and Damien Vergnaud. Unidirectional chosen-ciphertext secure proxy
re-encryption. In Ronald Cramer, editor, PKC 2008, volume 4939 of LNCS, pages
360–379. Springer, March 2008.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT, pages 700–718, 2012.

NPR99. Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions
and KDCs. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages
327–346. Springer, May 1999.

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC, pages 333–342, 2009.

PST14. Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer,
August 2014.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):1–40, 2009. Preliminary version in STOC 2005.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

