
Exploring the Resilience of Some Lightweight
Ciphers Against Profiled Single Trace Attacks

Valentina Banciu, Elisabeth Oswald, and Carolyn Whitnall

University of Bristol, Department of Computer Science
Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK

{valentina.banciu, elisabeth.oswald, carolyn.whitnall}@bristol.ac.uk

Abstract. This paper compares attack outcomes w.r.t. profiled single
trace attacks of four different lightweight ciphers in order to investigate
which of their properties, if any, contribute to attack success. We show
that mainly the diffusion properties of both the round function and the
key schedule play a role. In particular, the more (reasonably statistically
independent) intermediate values are produced in a target implementa-
tion, the better attacks succeed. A crucial aspect for lightweight ciphers
is hence the key schedule which is often designed to be particularly light.
This design choice implies that information from all round keys can be
easily combined which results in attacks that succeed with ease.

1 Introduction

In our increasingly digitally interconnected world developing secure cryp-
tographic software is a key challenge in practice. The stakes at hand are
considerable: with the advent of ‘smart devices’ (e.g. smart meters, smart
appliances) cryptography becomes deeply embedded in consumers’ every-
day lives. Such devices’ primary functionalities are to provide commodi-
ties to consumers. Consequently, despite the importance of cryptography,
the resources remaining to implement it may be very limited. This re-
quirement for lightweight cryptography has inspired many new designs,
such as PRESENT [?] (recently standardised as ISO/IEC 29192-2:2012),
KLEIN [?] and LED [?] among many others. Some were designed with
suitability for hardware implementations in mind (such as PRESENT),
but by and large all of them are also considered for implementations in
software on small microprocessors as found in typical smart devices.

Deeply embedded systems are by nature very exposed to side-channel
adversaries: their market is such that millions of these devices can be
found ‘in the wild’ as part of applications, but many of the processors

This article is the final version submitted by the authors to Springer-Verlag. The
final published version is available at 10.1007/978-3-319-21476-4_4.



that are used in smart devices can be picked up off the shelf for only
a small cost. This makes them ideal targets for the most sophisticated
side-channel attacks, which are based on profiling. Profiling can be used
both in simple and differential style attacks. Differential style attacks
exploit leaking information associated with different plaintext data but a
fixed key and it is well understood that the choice of e.g. the substitution
function has an important impact on the vulnerability of a cipher [?].

In this paper we aim to investigate the security of specific implemen-
tations of lightweight ciphers against profiled single trace attacks. In par-
ticular, we are interested to discover which properties, if any, contribute
to the general vulnerability of a lightweight cipher against this particular
type of adversary.

Our Contribution. Using a pragmatic approach to assess the resilience
of ciphers against profiled single trace attacks, we conduct several exper-
iments for four ciphers: AES (to provide a well-known baseline for com-
parison), PRESENT (to see how ciphers which are attractive for hard-
ware implementations fare when implemented in software), KLEIN and
LED (sharing some features with AES and PRESENT while aiming at
resource minimisation). All experiments assume the same underlying ar-
chitecture (8-bit) and are based on publicly available implementations of
the investigated ciphers [?]. Apart from providing a common denomina-
tor, we regard this suite as relevant to a high proportion of real-life cases
since algorithm implementations are done in a ‘natural’ way. Note that
we work with simulated traces, which however does not imply perfect
measurements (see Sect. 3 for details on how inherent noise is taken into
account).

Our method, which we describe in Sect. 4.1, can be regarded as a
basic tool for evaluating the resilience of specific cipher implementations
against single trace attacks. As such, we draw inspiration from [?,?] which
independently suggested using a pragmatic key enumeration approach.
However, instead of enumerating single subkeys we test multiple candi-
dates at the same time, thus achieving 100% success rate and running
time of under 5 minutes for all test cases, which represent significant
improvements.

We can show that the impact of choice of substitution boxes is neg-
ligible w.r.t. profiled single trace attacks and equally the impact of the
global diffusion characteristics over a single round have shown no impact
in the case of the four studied ciphers. We find however that simply the
number of statistically independent intermediate steps (i.e. the ‘attack



surface’) that are required on the architecture is a good predictor for the
vulnerability of a cipher against profiled single trace attacks. This shows
that ciphers that can be elegantly described on a variety of architectures
will be most resilient to such attacks as they provide a smaller attack
surface.

Related Work. As mentioned above, this work is strongly linked to
[?,?], but introduces significant improvements in terms of running time
and success rate. As such, and because the output of our attack is a re-
duced key space, our method represents an uncostly means of evaluating
the worst-case scenario of single-trace attacks such as solver-aided alge-
braic side-channel attacks [?,?,?]. The cited papers focus on AES and
PRESENT encryption, under the Hamming weight leakage model. Fur-
ther leakage models are considered in [?,?]. We are not aware of single
trace attacks on KLEIN and LED. The security of the (unprotected) AES
key schedule algorithm has been studied in [?,?]. More recently, [?] de-
scribed attacks on masked implementations in an ideal scenario where
noise is practically negligible. We are not aware of single trace attacks on
the KLEIN or PRESENT key schedule.

2 Overview of Ciphers, Notation and Implementation
Characteristics

The ciphers in our suite are instances of substitution-permutation net-
works (SPN), and therefore have similar components in their encryption
functions. In particular, three common types of operations are utilised by
all four ciphers:

– the key addition (bitwise xor between the round key and current
state), denoted by AddRoundKey;

– the n-bit substitution (a highly non-linear transformation which acts
upon groups of n bits substituting them via a lookup table called the
S-box, with n ∈ {4, 8} fixed), represented by SubBytes, SubNibbles,
sBoxLayer and SubCells;

– finally, the byte mixing (a linear transformation acting on sets of bits),
namely MixColumns, MixNibbles, pLayer and MixColumnsSerial.

Except PRESENT, the chosen ciphers utilise explicit byte (or 4-bit)
renumbering functions, i.e. ShiftRows and ShiftNibbles. Additionally,
the AddRoundConstant of LED xors the state with a round constant (can
be done at the same time as the key addition).



AES. The Advanced Encryption Standard (AES) is a symmetric block
cipher with a fixed block size of 128 bits and a variable key size of
128, 192, or 256 bits respectively corresponding to 10, 12 and 14 en-
cryption rounds. Throughout this document we refer to the 128-bit key
variant simply as AES. At the beginning of the encryption process, the
plaintext is xor-ed with the secret key. Subsequently, each encryption
round bar the last one consists of the successive application of SubBytes,
ShiftRows, MixColumns and AddRoundKey; the last encryption round
skips MixColumns. The key expansion is elegant. It reuses components
from the round function and operates on so-called ‘words’.

KLEIN. KLEIN is an AES-like lightweight block cipher, supporting a
fixed 64-bit state and 64, 80, or 96-bit keys for 12, 16, respectively 20
rounds. Throughout this document we refer to the 64-bit key variant
simply as KLEIN. Each encryption round consists of the successive ap-
plication of AddRoundKey, SubNibbles, RotNibbles and MixNibbles. A
final key addition is performed after the encryption rounds. Although the
order of operations inside an encryption round is different, their succes-
sion starting from the beginning of the encryption process is the same
as with AES; moreover, the MixNibbles of KLEIN is identical to the
MixColumns of AES. The key expansion process is fairly simple, each new
key byte depending on exactly two bytes from a previous key.

PRESENT. PRESENT consists of 31 rounds, has a 64-bit block size
and 80 or 128-bit keys. Throughout this document we refer to the 80-bit
key variant simply as PRESENT. An encryption round consists of the key
addition AddRoundKey, followed by the substitution and permutation lay-
ers, sBoxLayer and pLayer. The permutation layer is designed to match
the effects of the combination between ShiftRows and MixColumns of
AES. A final key addition is performed after the encryption rounds. The
key schedule is fairly minimal: each new round key is derived from the
previous key via a bit rotation, a single application of the S-box and a
single xor with a round constant.

LED. LED accepts a 64-bit block and 64-bit or 128-bit keys, and con-
sists of 32, respectively 48 rounds. Throughout this document we refer
to the 64-bit key variant simply as LED. The structure of an encryption
round is the succession of AddRoundConstant, SubCells, ShiftRows and
MixColumnsSerial. Then, four rounds make a step, and the encryption
process consists of adding the round key and performing a step for a total



of 8 times, followed by a final key addition. LED has no key expansion
algorithm, and the secret key is used as a round key in each round.

As can be observed, the structure of the encryption algorithms is
highly similar: first, because homologous subroutines are used, and sec-
ond, because the order of the subroutines is virtually the same. We note
that the first AddRoundConstant of LED can be performed before the key
addition, i.e. directly on the plaintext.

2.1 Implementation Characteristics

SPA attacks are usually studied in the context of software implementa-
tions on serial microprocessors. Typical power models that are found in
practice are the Hamming weight (HW) and the Hamming distance (HD).
Leakages of this kind are observed mainly because of intermediate values
being written to or read from memory.

For AES, KLEIN and PRESENT, we target publicly available 8-bit
implementations, available at http://perso.uclouvain.be/fstandae/

lightweight_ciphers/. In the case of LED, the publicly available im-
plementations can be found at http://led.crypto.sg/software. In the
remainder of this section, we further discuss implementation details of the
substitution and byte mixing layers; we consider that implementing the
key or round constant addition is fairly straightforward and does not
require clarification.

The byte substitution layer. As described in Section 2, KLEIN,
PRESENT and LED use 4-bit lookup tables. In order to optimally fit
on 8-bit architectures two consecutive nibbles (2× 4 bits) are considered
a unit and new lookup tables are built [?].

The byte mixing layer. For all ciphers this is the most demanding com-
ponent w.r.t. efficient implementations on an 8-bit platform. We briefly
explain the approaches taken by the different ciphers in turn.

MixColumns (used in AES and KLEIN). The implementation that we are
targeting [?] follows the specification of the original AES proposal [?], and
is given in Alg. 1, where the index i wraps around 1 . . . 4, i.e. i + 1 = 1 if
i = 4. As mentioned before, KLEIN uses the same component but calls
it MixNibbles.



pLayer (used in PRESENT). A näıve implementation of pLayer would
consist of storing a table that describes the bit-level permutation. How-
ever, this takes up a considerable amount of memory and is unnecessary
because the pLayer permutation is highly structured. The targeted im-
plementation [?] uses this property and does not require any table-lookup.
Algorithm 2 shows how the implementation that we attack applies the
permutation to half of the state.

MixColumnsSerial (used in LED). In the specification paper of LED [?]
the authors suggest an 8-bit implementation of MixColumnsSerial using
lookup tables, see Alg. 4. Each element is regarded as part of GF(24) with
the underlying polynomial for field multiplication given by x4 + x + 1.

3 Assessing the Vulnerability to Profiled Single Trace
Attacks

Profiling can be used in both differential and simple side-channel analy-
sis, and it is well understood that in general it improves attack efficiency.
However, for some methods it is considered essential: so-called single trace
attacks such as e.g. SPA against the AES key schedule [?] or algebraic
side-channel attacks (ASCA, [?]) require the extraction of leakage val-
ues from traces and their assignment to specific intermediate values in
a cipher’s implementation. This is a demanding requirement which by
and large can only be satisfied by profiling an implementation, i.e. by ex-
tracting leakage models for all exploitable intermediate values, and then
using them during attacks. Such profiles hence contain information about
‘when’ an intermediate leaks (i.e. they have information about the timing
of instructions) as well as ‘how’ (i.e. the leakage model itself).

Whilst it remains an open problem to deal with errors related to when
leakages occur in profiling attacks, there has been some progress w.r.t.
dealing with errors that result from matching the profiling information
to new traces. For the two approaches to single trace attacks (which we
call pragmatic SPA and ASCA) previous work introduced the notion of
a ‘set size’ [?,?,?] to capture the impact of noise on attacks using pro-
filing information. The larger the set size, the less certain we are about
the assignment of a leakage value to an intermediate, e.g. a set size of
three implies that for a certain intermediate we have three possible leak-
age values as a result of using the profiling information. To assess then
the vulnerability to profiled single trace attacks we are hence interested
to experiment with different set sizes. For a study on the practical re-



Algorithm 1 MixColumns 8-bit implementation algorithm

Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: Tmp← in1 ⊕ in2 ⊕ in3 ⊕ in4;
2: for i = 1→ 4 do
3: Tm← ini ⊕ ini+1;
4: Tm← xtime(Tm);
5: outi ← ini ⊕ Tm⊕ Tmp;
6: end for

Algorithm 2 pLayer (permuting 32 bits)

Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: carry1 ← 0; carry2 ← 0;
2: out1 ← 0; out2 ← 0; out3 ← 0; out4 ← 0;
3: for i = 4→ 1 do
4: iTmp← ini;
5: pLayerByte(iTmp, out1, out2, out3, out4, carry2);
6: carry2 ← carry1;
7: end for

Algorithm 3 pLayerByte(iTmp, out1, out2, out3, out4, carry2)

Input: iTmp, out1, out2, out3, out4, carry2
Output: out1, out2, out3, out4, carry1
1: carry1 = mod(iTmp, 2);
2: iTmp = floor(iTmp/2) + carry2 × 128;
3: for repeat = 1→ 2 do
4: for i = 1→ 4 do
5: carry2 = mod(outi, 2);
6: outi = floor(outi/2) + carry1 ∗ 128;
7: carry1 = mod(iTmp, 2);
8: iTmp = floor(iTmp/2) + carry2 ∗ 128;
9: end for

10: end for

Algorithm 4 MixColumnsSerial 8-bit implementation algorithm

Input: in1, in2, in3, in4

Output: out1, out2, out3, out4
1: out1 ← 4× in1 ⊕ 1× in2 ⊕ 2× in3 ⊕ 2× in4;
2: out2 ← 8× in1 ⊕ 6× in2 ⊕ 5× in3 ⊕ 6× in4;
3: out3 ← B× in1 ⊕ E× in2 ⊕ A× in3 ⊕ 9× in4;
4: out4 ← 2× in1 ⊕ 2× in2 ⊕ F× in3 ⊕ B× in4;



quirements of extracting side-channel information to this end, we refer
the reader to [?].

As previously mentioned there are broadly two types of single trace
attacks in the literature at present. Pragmatic SPA-style attacks were
described early on [?] and essentially consist of enumerating key candi-
dates by exploiting the leakage information across a single trace. This
enumeration is by and large manually implemented and the result of such
attacks is hence information about the size of the key space left to search
through to find the secret key. In contrast, ASCA was developed later [?]
and essentially feeds side-channel information in addition to plain and ci-
phertext to a solver which will then return the secret key unless it halts.
ASCA was hoped to be more efficient as solvers are sophisticated software
tools. It should be evident however that to assess the vulnerability of ci-
phers they are less suitable than pragmatic attacks: they either return
the key or produce no information. In contrast pragmatic attacks allow
to assess the size of the remaining key space (i.e. remaining after all side-
channel information has been used to prune the overall key space) and so
give us some information about how much the side-channel information
has helped. This becomes particularly useful when considering larger set
sizes: recent work [?] shows how pragmatic attacks can produce useful in-
formation for set sizes up to 5, whereas ASCA is unable to cope with such
large set sizes. Consequently it seems most appropriate to use pragmatic
attacks as an evaluation tool with increasing set sizes (we report results
for set sizes up to 5).

In the following sections we investigate three important characteris-
tics in turn. Firstly, is there any high level difference between the round
functions of ciphers w.r.t. profiled single trace attacks? This means we
look at attacks that only use some selected intermediates corresponding
to the key components of any substitution-permutation network. Next, we
investigate how the inclusion of additional intermediate leakages changes
attack outcomes. Thirdly, we study how key schedule characteristics im-
pact on the vulnerability.

For these attacks, we generated a set of 100 random 16-byte plaintext
and ciphertext pairs, which are the fixed inputs for the cipher suite; when
a smaller block is required, the pairs are truncated (i.e., for e.g. KLEIN
the secret keys will consist of the first 8 bytes of each 16-byte key). Note
that our attack actually utilises a single trace, thus the reported results
are in fact averaged over 100 experiments.



4 Attacking Selected Intermediates from a Single
Encryption Round

There are four steps across all ciphers in which side-channel relevant com-
putations occur:

– loading the secret key from memory (we assume the plaintext is always
known);

– performing the key addition (and the xor-ing with the round constant
if the case);

– performing the substitution;
– computing the output of the byte mixing layer (i.e., MixColumns,
MixNibbles, pLayer, MixColumnsSerial).

In the remainder of this section we describe our attack methodology
and show how the side-channel information reduces the key space when
considering these four steps for a single encryption round. Because all
ciphers effectively act on the state in some block-wise manner we first
explain what our basic ‘block’ is. In AES all but MixColumns act on
individual bytes of the state. MixColumns operates on columns which
implies that a suitable block would be a column (i.e. 4 bytes). Studying
how a pragmatic SPA reduces the key space with regards to this block
allows us to conclude on the result of the entire key because the blocks
are independent. It is easy to see that such a 4-byte block is also an
appropriate unit for the other ciphers when implemented on an 8-bit
platform. Consequently we settled for this choice and the tables in this
section show the reduction of the subkey space for a block (i.e. from 232).
Note that this definition overrides the one in Sect. 2 without contradicting
or hindering any of the inherent cipher properties.

4.1 Attack Strategy

As mentioned in Sect. 1, our attack is derived from [?] and therefore
similarly consists of two phases: first, extracting four independent sets of
key (byte) values based on the side-channel information up to the byte
mixing layer, and second, linking the extracted key bytes into 4-byte keys
based on the information from the byte mixing layer. Indeed, we also
build and use 8-bit tables that enable us to directly extract possible key
values based on the known plaintext and side-channel information from
the S-box for all ciphers. However, for the second part, instead of then
enumerating the (4-byte) keys and testing each one sequentially as in [?],
we generate all possible keys (corresponding to a block) as the Cartesian



product of the previously derived sets and simulate their action on the
inputs. With this we are able to reject several key candidates at the same
time based on the side-channel information, which allows us to report
a short running time for our attacks (under 5 minutes, but under one
second for set sizes up to 2) and a success rate of 100% (previous attacks
were liable to run out of memory, or to fail to complete within a fixed
time interval, e.g. 48 h). This is a significant improvement to previous
work.

All our experiments ran on a regular PC equipped with a Intel Core
i7-2600s processor at 2.80 GHz and 4 GB of RAM.

4.2 Exploiting the ‘Basic’ Attack Surface

We first consider that the sole available side-channel information is related
to the input and output values of the four steps outlined at the beginning
of this section. Then, Tab. 2a summarizes the reduced subkey space for
a block of the ciphers. It appears that the size of the reduced subkey
space strongly depends on the set size, and less so on the specific cipher
particularities (i.e. the quality of the S-box or byte mixing function are
by and large irrelevant). Of course the overall key space of the ciphers is
different and hence there is an additional penalty for AES as it requires
to replicate the attack for more subkeys than the other ciphers.

4.3 Exploring the Impact of Increased Numbers of
Intermediates

A natural question to ask is whether more leaking intermediate values
will make an implementation more vulnerable, and if so, whether there is
any clear relationship between the number of leaking intermediates and
the increase in vulnerability. We hence took all of the intermediate values
that occur in our implementations into account (i.e., the ‘maximum’ at-
tack surface). Previous work (e.g., [?]) studied the impact of using more
intermediate values by targeting more encryption rounds. Note that we
are still focusing on a single round. We now explain for each of the ciphers
in turn what and how many intermediates our implementations offer.

The implementation of MixColumns given in Alg. 1 leads to a set of 17
intermediate values, as follows: 4 corresponding to computing ini⊕ ini+1,
4 corresponding to computing xtime(Tm), 8 corresponding to computing
iv = ini ⊕ Tm and iv ⊕ Tmp (where iv is an auxiliary intermediate
value), and finally one corresponding to computing Tmp (n.b.: ini⊕ini+1



Table 1: Size of the attack surface (i.e., number of leaked intermediate
values) corresponding to the diffusion layer

```````````Attack surface
Cipher

AES KLEIN PRESENT LED

‘Basic’ 4 4 4 4
‘Maximum’ 21 21 12 32

have already been computed, therefore a single new value is leaked when
computing Tmp).

The implementation of pLayer given in Alg. 2 leaks as follows: the
pLayerByte procedure leaks 2 + 2 × 4 × 4 byte values, and is repeated
a total of 4 times, therefore leading to 116 intermediate values. Note,
however, that this set consists of values that differ in a single bit. This
implies that although many intermediate values are produced, they are
highly correlated. Consequently, given the 8-bit architecture that we work
on, we effectively observe multiple copies of only 8 intermediates.

The implementation of MixColumns given in Alg. 4 leaks 7 interme-
diate values (4 for the table lookup, and 3 for computing the binary xor

operations) for each output byte, thus leaking a total of 28 leakage points.

Table 1 gives an overview of the number of leaking intermediates per
cipher. We listed only 8 intermediates for PRESENT because of the ev-
ident high correlation between the intermediates. We note that also for
MixColumns there will be some correlated intermediates due to the fact
that e.g. the final sum is computed by xor-ing. From this table, we would
expect to see that LED should suffer most from including these additional
intermediates, followed by AES and KLEIN.

Table 2b shows the results when incorporating the additional inter-
mediates into the attack. All ciphers show that the simple intuition that
more statistically independent intermediates provide more efficient at-
tacks is true. The results for PRESENT also provide a clear example for
the importance of having statistically independent intermediate values:
although the total number of used intermediates is almost 7 times as
large as with AES and KLEIN, the sizes of the respective reduced key
spaces remain comparable.

It is thus evident that the relationship between the number of inter-
mediates and the attack efficiency does not follow a simple linear rule.
This is most likely because different intermediates are not entirely inde-
pendent from each other and so they do not equally contribute additional
information.



Table 2: Reduced key space when targeting the encryption function
(a) Targeting the ‘basic’ attack surface

HW model HD model
PPPPPPPCipher

Setsize
s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

AES 3 210 220 223 225 30 215 222 225 226

KLEIN 3 29 212 218 223 90 215 222 224 226

PRESENT 23 211 219 223 225 60 215 222 224 225

LED 2 210 218 221 224 35 216 221 223 225

(b) Targeting the ‘maximum’ attack surface

HW model HD model
PPPPPPPCipher

Setsize
s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

AES 1 1 210 218 224 1 1 212 219 224

KLEIN 1 1 27 212 220 1 1 29 214 221

PRESENT 1 1 28 212 220 1 1 210 213 222

LED 1 1 25 211 219 1 1 27 213 220

5 Attacking the Key Expansion

The key expansion algorithms are substantially different w.r.t. their dif-
fusion properties. We hence briefly run through them in turn to explain
what attack strategies are possible. Let the shorthand RK stand for round
key. We use RKi(j) for the j-th byte of the i-th round key.

Our principal contribution in this section is describing single trace
attacks on the key schedule of KLEIN and PRESENT. We remind the
reader that the first attack on the key schedule of AES (which we repro-
duce here as well, considering larger set sizes) has been described in [?].
As mentioned in Sect. 2, LED uses the same secret key for all encryption
rounds.

5.1 Attack Strategies

AES. The particularities of AES make it possible to target 5-byte sub-
keys and a set of 5 consecutive round keys, as first described in [?]. Thus,
the results that we report are on one round key (as in [?]) and on 5 rounds
(as in [?]) considering sets of up to 5 values. Because of the properties



of the AES key expansion, attacks utilising all 10 round keys become
computationally demanding for larger set sizes [?].

KLEIN. The KLEIN key schedule is relatively simple to attack. One
can target 2-byte subkeys and use as many round keys as available (see
Fig. 1). Thus, we list results for the attack utilising one round key, all
round keys and half of the round keys.

RKi+1(1) RKi+1(2) RKi+1(3) RKi+1(4) RKi+1(5) RKi+1(6) RKi+1(7) RKi+1(8)

RKi(1) RKi(2) RKi(3) RKi(4) RKi(5) RKi(6) RKi(7) RKi(8)

update key update key update key update key

update key update key update key update key

Fig. 1: Targeted KLEIN subkey

PRESENT. The key expansion of PRESENT is almost non-existent:
each round key is derived from the previous via a cyclic shift of bits, a
single application of the 4-bit S-box and an xor-ing with a round constant.
Thus, reporting an attack on a single round key makes no sense, and we
give the results on the full key schedule.

5.2 Attack Outcomes

Table 3 contains the outcomes of all attacks following the previously out-
lined attack strategies. We can observe that the diffusion properties, which
impact on how much information from the key schedule we can incorpo-
rate given our computational abilities, play a significant role in attack
outcomes. Consider AES for example: for larger set sizes we can only
utilise the leakages from the first five round keys. Consequently the re-
maining key space is considerable, albeit much reduced. KLEIN in con-
trast is very vulnerable as we can effectively utilise all leakages across the
key schedule and so we can tolerate high set sizes. PRESENT not only
has a weak diffusion but also highly correlated intermediates in its key
schedule and hence suffers much less from the lack of diffusion: it remains
more resilient to attacks utilising leaks from the key expansion.



Table 3: Reduced key space when targeting the key expansion
(a) AES

HW model HD model
PPPPPPP# RK

Set size
s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

1[?] 258 274 295 2106 2115 260 275 299 2107 2118

5 10 215 235 258 n.a. 30 217 237 255 n.a.

11[?] 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

(b) KLEIN

HW model HD model
PPPPPPP# RK

Set size
s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

1 235 245 250 257 260 240 248 255 257 261

6 28 215 235 245 255 212 221 237 249 257

12 1 24 220 232 245 1 24 222 237 250

(c) PRESENT

HW model HD model
PPPPPPP# RK

Set size
s = 1 s = 2 s = 3 s = 4 s = 5 s = 1 s = 2 s = 3 s = 4 s = 5

31 210 216 245 260 273 214 216 245 260 273

6 Conclusion

In this paper we investigated, using pragmatic SPA attacks as an evalua-
tion tool, how different lightweight ciphers compare with regards to their
vulnerability against profiled single trace attacks. The aim was to tease
out which of their properties, if any, have an influence on the efficiency
of such attacks.

We found that for both the encryption round function and the key
schedule the diffusion properties were decisive for attack success: the more
reasonably statistically independent intermediate values occur in a con-
crete implementation, the better a profiled single trace attack could fare.
This means that such attacks not only reduce the key space further for a
subsequent brute force search, but also cope better with erroneous side-
channel information i.e. they can tolerate larger set sizes. The fact that
most lightweight ciphers feature a particularly lightweight key schedule



with little diffusion means that attacks can easily exploit the information
from all round keys; this implies stronger attacks.

Acknowledgements V. Banciu has been supported by EPSRC via grant
EP/H049606/1. E. Oswald and C. Whitnall have been supported in part
by EPSRC via grant EP/I005226/1. The authors would like to thank the
anonymous reviewers for the useful comments and suggestions.


