
Circuits Resilient to Additive Attacks

with Applications to Secure Computation

Daniel Genkin

Technion

danielg3@cs.technion.ac.il

Yuval Ishai

Technion

yuvali@cs.technion.ac.il

Manoj M. Prabhakaran

University of Illinois

mmp@uiuc.edu

Amit Sahai

University of California

sahai@cs.ucla.edu

Eran Tromer

Tel Aviv University

tromer@cs.tau.ac.il

February 24, 2015

Abstract

We study the question of protecting arithmetic circuits against additive attacks, which can add
an arbitrary fixed value to each wire in the circuit. This extends the notion of algebraic manipulation
detection (AMD) codes, which protect information against additive attacks, to that of AMD circuits
which protect computation.

We present a construction of such AMD circuits: any arithmetic circuit C over a finite field F
can be converted into a functionally-equivalent randomized arithmetic circuit Ĉ of size O(|C|) that

is fault-tolerant in the following sense. For any additive attack on the wires of Ĉ, its effect on the
output of Ĉ can be simulated, up to O(|C|/|F|) statistical distance, by an additive attack on just
the input and output. Given a small tamper-proof encoder/decoder for AMD codes, the input and
output can be protected as well.

We also give an alternative construction, applicable to small fields (for example, to protect Boolean
circuits against wire-toggling attacks). It uses a small tamper-proof decoder to ensure that, except
with negligible failure probability, either the output is correct or tampering is detected.

Our study of AMD circuits is motivated by simplifying and improving protocols for secure mul-
tiparty computation (MPC). Typically, securing MPC protocols against active adversaries is much
more difficult than securing them against passive adversaries. We observe that in simple MPC pro-
tocols that were designed to protect circuit evaluation only against passive adversaries, the effect of
any active adversary corresponds precisely to an additive attack on the original circuit’s wires. Thus,
to securely evaluate a circuit C in the presence of active adversaries, it suffices to apply the passive-
secure protocol to Ĉ. We use this methodology to simplify feasibility results and attain efficiency
improvements in several standard MPC models.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Our contribution . 3
1.3 Overview of techniques . 7
1.4 Related work . 11

2 Preliminaries 12
2.1 Definitions . 12
2.2 AMD codes . 13

3 AMD circuits over large finite fields 14
3.1 Simplifying the circuit model . 14
3.2 Protecting low-degree circuits over large finite fields . 15
3.3 Protecting arbitrary circuits over large finite fields . 25

4 AMD circuits over small finite fields 28
4.1 Correctness with constant error probability without a decoder 28
4.2 Improving efficiency and correctness using a decoder . 40

5 Secure MPC protocols from AMD circuits 45
5.1 Definitions . 46
5.2 Secret sharing schemes and randomness extraction . 50
5.3 From general adversaries to maximal adversaries . 52
5.4 Linear-based protocols . 54
5.5 Security of linear-based protocols . 56
5.6 MPC using linear-based protocols . 66
5.7 The semi-honest BGW protocol . 70
5.8 The semi-honest Damg̊ard-Nielsen protocol . 72
5.9 The semi-honest GMW protocol . 75
5.10 Securing multiparty computation with preprocessing . 81

Appendices 86

A A MIP-based construction 86

Acknowledgments 87

References 87

1 Introduction

1.1 Overview

The study of fault-tolerant circuits dates back to the work of von Neumann [vN56], who considered a
model where every gate in a circuit can fail with some constant, and independent, probability. Sub-
sequent works of Dobrushin and Ortyukov [DO77] and Pippenger [Pip85] showed how to construct
fault-tolerant circuits in this model with only a logarithmic overhead in the worst case and a constant
overhead in the typical case. Other models for fault-tolerant circuits, protecting against a bounded
number of adversarial faults, were studied in [KLM94, GS95, GLM+04, IPSW06, FPV11, LL12, DK12,
KLR12, DSK14].

In the present work we consider the goal of protecting boolean and arithmetic circuits against
adversarial faults that may apply to all wires in the circuit. Even if one settles for detecting faults
rather than fully protecting against faults, this goal would be too ambitious. Indeed, an attacker can
simply rewrite the input or the output of the circuit without being detected. But there is a natural
model, which is also motivated by the cryptographic applications discussed later, where achieving this
goal is conceivable. In this model we limit the attacker in two ways:

1. The attacker cannot directly attack the input and the output to the circuit; instead, the input is
fed to a small (randomized) tamper-proof input encoder and the output is obtained from a small
tamper-proof output decoder.1

2. The class of attacks – i.e., mappings from the original wire values to the new wire values – is
restricted.

Note that (1) alone is insufficient to remove the impossibility, since it does not rule out completely
rewriting the output of the input encoder or the input to the output decoder, and (2) alone is insufficient
since it does not rule out direct (albeit restricted) attacks on the input or output.

We instantiate (2) by considering additive attacks. That is, given a (possibly randomized) arithmetic
circuit over a finite field F, we allow an adversary to “blindly” add a field element of his choice to each
wire in the circuit. In the case of boolean circuits, this amounts to toggling an arbitrary subset of
the wires. Such additive attacks were previously considered in the context of error-correcting codes
by Karpovsky and Nagvajara [KN89] and more recently by Cramer et al. [CDF+08], who constructed
algebraic manipulation detection (AMD) codes which resist such attacks.2 The main objective of the
present work is to extend the notion of AMD codes, which protect information against additive attacks,
to AMD circuits, which protect computations against such attacks.

We will start by defining a simpler notion of security against additive attacks (see Definition 1.1)
that does not use any tamper-proof components (i.e., only the restriction (2) from above is used), but
(inevitably) allows additive attacks on the input and output of the circuit. We show how to compile
any arithmetic circuit C over a large finite field F into a functionally equivalent randomized arithmetic
circuit Ĉ of size O(|C|) which is secure in this sense. The effect any additive attack has on the output
of Ĉ can be simulated, up to O(|C|/|F|) statistical distance, by applying a (randomized) additive attack
to the input and output alone. Thus, as far as additive attacks are concerned, Ĉ is essentially as good
as a tamper-proof implementation of C in which only the input and output are exposed.

1By “small” we mean independent of the circuit complexity of the function being computed (but possibly depending
polynomially on the input/output size). This rules out a trivial solution where the entire computation is carried out by
tamper-proof hardware.

2In [CDF+08], algebraic manipulation detection codes were defined over an Abelian group, where the only manipulation
allowed is an additive attack. We too are considering additive attacks, but since we work over a field (which contains a
multiplication operation as well), a more appropriate term in our context would be “Additive Manipulation Detection”
codes. Indeed, allowing the attacker full algebraic manipulation of the field elements, or even just affine attacks, would let
it circumvent the security guarantee of the AMD codes of [CDF+08].

1

Combining the above construction with small tamper-proof encoder and decoder for AMD codes,
the input and output can be protected as well. That is, any arithmetic circuit C over a large finite
field can be compiled into a functionally equivalent randomized circuit of comparable size that uses
small tamper-proof input encoder and output decoder, and is guaranteed to either produce the correct
output of C or set an error flag, except with negligible failure probability. This construction has an
additional security feature that will be useful for our motivating applications: Even in the presence of
an additive attack, the field elements fed into the output decoder (and in particular the final output)
reveal essentially nothing about the input x beyond C(x).

The above construction offers no security guarantees when F is small. For the general case we
present a more complex construction which uses small tamper-proof encoder and decoder to ensure
that, except with negligible failure probability, either the output is correct or tampering is detected.
More concretely, to achieve 2−σ error probability, the size of the AMD circuit Ĉ is |C| · poly(σ). This
construction can be used for protecting boolean circuits against wire-toggling attacks. However, here
we do not realize the stronger security feature discussed above.

Cryptographic applications of AMD circuits. Our study of AMD circuits is further motivated
by observing that they are useful for the design of protocols for secure multiparty computation (MPC).
An MPC protocol allows two or more mutually distrusting parties to perform a distributed compu-
tation on their local inputs without compromising the secrecy of the inputs or the correctness of the
outputs. Following the seminal works from the 1980s that established the general feasibility of secure
computation [Yao86, GMW87, BGW88, CCD88, RB89], significant research efforts have been invested
into studying efficiency questions in this area.

It is typically much easier to secure MPC protocols against passive adversaries, who may try to learn
information about secret inputs but do not otherwise deviate from the protocol, than against active
adversaries who may arbitrarily deviate from the protocol. The security of protocols that were only
designed to withstand passive attacks may break down completely if the adversary is active. While
there are general techniques for strengthening security against passive attacks into security against
active attacks (most notably, the “GMW paradigm” [GMW87]), these involve a considerable overhead
and do not apply at all to the type of protocols considered here.

Our key observation is that in natural MPC protocols that offer information-theoretic security
against passive attacks, any cheating strategy of an active adversary can be modeled as an additive
attack on the underlying circuit that the parties are trying to compute. This holds both for protocols in
the setting of an honest majority, such as the “BGW protocol” [BGW88] and its more efficient variant
from [DN07], and for protocols in the setting of no honest majority, such as variants of the “GMW
protocol” over an ideal oblivious transfer oracle [GMW87, Gol04] or an OLE oracle3 [IPS09].

The above observation gives rise to a novel methodology for the design of MPC protocols with
security against active adversaries. Instead of designing a complex protocol for evaluating f that
explicitly protects against active attacks, apply a simple protocol, which was only designed to protect
against passive attacks, to evaluate an AMD circuit for f . (The role of the input encoder and the
output decoder can be emulated via local computation and does not require interaction.) Thus, the
most challenging aspect of MPC protocol design is reduced to the arguably cleaner problem of AMD
circuit design.

We demonstrate the usefulness of this methodology by applying it to simplify and improve on previ-
ous results in the area of MPC.4 For instance, we can derive the feasibility of active-secure MPC in the
presence of an honest majority [RB89] from the much simpler passive-secure BGW protocol [BGW88],

3An OLE oracle receives a, b ∈ F from one party and x ∈ F from another, and returns ax+ b to the latter. OLE can be
viewed as an arithmetic generalization of oblivious transfer.

4Here and in the following, we allow the adversary to abort the computation and do not attempt to guarantee output
delivery. This is often inevitable, e.g., when there is no honest majority, or there is an honest majority but no broadcast
channel, or in security models where the adversary can block messages exchanged between honest parties (cf. [Can01]).

2

as well as the feasibility of active-secure MPC protocols with no honest majority [GMW87, Kil88, IPS08,
IPS09] (given an OLE oracle) from their much simpler passive-secure counterparts. We also obtain a new
feasibility result for MPC with no honest majority using a corruptible source of correlated randomness.
On the efficiency front, we apply our methodology to a simplified variant of a passive-secure protocol
from [DN07] to obtain a simpler and more efficient alternative to a recent protocol from [BFO12]. We
also obtain the first active-secure two-party protocol for evaluating an arbitrary arithmetic circuit over
a large field using only a constant number of calls to an OLE oracle for each gate in the circuit.

1.2 Our contribution

We now give a more detailed outline of our results. In Section 1.2.1 we summarize results on protecting
circuits against additive attacks and in Section 1.2.2 we summarize the applications to secure multiparty
computation.

1.2.1 Protecting circuits against additive attacks

We start by defining our main notion of security with respect to additive attacks. Let f : Fn → Fk be
a function to be computed. We say that a randomized arithmetic circuit5 Ĉ : Fn → Fk is an ε-secure
implementation of f if Ĉ correctly computes f when it is not attacked, and moreover any additive attack
on Ĉ has the same effect on the output of Ĉ (up to an ε statistical error) as applying some additive
attack to the inputs and outputs alone:

Definition 1.1 (Additive-attack security). A randomized circuit Ĉ : Fn → Fk is an ε-secure imple-
mentation of a function f : Fn → Fk if the following holds:

• Completeness. For all x ∈ Fn it holds that Pr[Ĉ(x) = f(x)] = 1.

• Additive-attack security. For any circuit C̃ obtained by subjecting Ĉ to an additive attack, there
exists ain ∈ Fn and a distribution Aout over Fk such that for any x ∈ Fn it holds that

SD
(
C̃(x), f(x + ain) +Aout

)
≤ ε,

where SD denotes statistical distance between two distributions.

We naturally extend the definition to the case where f : Fn → Fk is a randomized function. In this
case completeness requires that the output distribution of Ĉ(x) and f(x) be identical. Finally,we say
that Ĉ is an ε-secure implementation of a circuit C if Ĉ is an ε-secure implementation of the (possibly
randomized) function f computed by C.

In Sections 3.2 and 3.3 we prove that every circuit C over a large finite field can be compiled into a
circuit Ĉ that is secure against additive attacks. Formally, we prove the following theorem.

Theorem 1.1 (see Theorem 3.7). For any field F and (possibly randomized) arithmetic circuit C :
Fn → Fk there exists a randomized circuit Ĉ : Fn → Fk such that Ĉ is an ε-secure implementation of C
where ε = O(|C|/|F|). Moreover, |Ĉ| = O(|C|).

The notion of additive-attack security in Definition 1.1 above still allows for an attack on the inputs
and outputs of the circuit. This is because the adversary is allowed to attack every wire in the circuit,
and in particular input and output wires. Thus, we need a randomized, tamper-proof input encoder
Enc and output decoder Dec in order to prevent attacks against the inputs and outputs. We would like

5 An arithmetic circuit consists of field addition, subtraction, and multiplication gates. If it is randomized, it may also
include randomness gates that output uniformly random field elements. We write Ĉ : Fn → Fk to indicate that the input
of Ĉ consists of n field elements (not including randomness gates) and its output consists of k field elements.

3

the size of Enc and Dec to be kept as small as possible (and in particular much smaller than the circuit
being computed).

Notice that even in the presence of a decoder that cannot be attacked, the adversary is still allowed
to attack all the wires leading from the circuit to the decoder. Thus, we cannot hope for correcting the
result following an additive attack but must settle for a weaker guarantee of detecting the attack. We
capture this by allowing Dec to have a special output, denoted flag, where if this output is nonzero this
means that an attack has been detected.

The circuits Enc and Dec will perform an AMD encoding of the input and an AMD decoding of the
output, respectively. (See Section 2.2 for a formal definition and constructions of AMD codes.) The
circuit Ĉ, which gets input from Enc and produces output for Dec, is obtained by applying Theorem 1.1
to the circuit C ′ obtained from C by applying an AMD decoder to its input and an AMD encoder to
its output. See Theorem 3.8 for a formal statement of the result we get by applying this construction
to Theorem 1.1.

Theorem 1.1 does not provide any security guarantees for circuits over small fields. In particular,
it cannot be used to protect boolean circuits. To handle general fields, we need to rely on a small,
tamper-proof output decoder. Moreover, unlike the previous construction, here we only guarantee the
correctness of the output(unless an error is detected) and do not provide any guarantees regarding
the secrecy of the input in the presence of additive attacks. Below we define the stronger notion
of correctness, which does not require a tamper-proof input encoder. (As before, the input can be
protected by an input encoder via the use of AMD codes.) This feature will be useful when applying a
composition-based approach for constructing AMD circuits in this setting.

Definition 1.2 (Additive-attack correctness with decoder). Let F be a finite field and let f : Fn → Fk.
We say that a pair of circuits (Ĉ,D) are an ε-correct implementation of f with a decoder if the following
holds:

• Completeness. For all x ∈ Fn, we have Pr[D(Ĉ(x)) = (0, f(x))] = 1.

• Additive-attack correctness. For any circuit C̃ obtained by subjecting Ĉ to an additive attack there
exists ain ∈ Fn such that for all x ∈ Fn

Pr
[
D(C̃(x)) /∈ ERR ∪ {(0, f(x + ain))}

]
≤ ε

where ERR = {(z′, z) : z′ ∈ F \ {0}, z ∈ Fk} and the probability is taken over the internal random-
ness of C̃.

Like in Definition 1.1, we say that (Ĉ,D) is an ε-correct implementation of a (deterministic or ran-
domized) circuit C if (Ĉ,D) is an ε-correct implementation of the function f computed by C.

In Section 4.2 we prove the following theorem.

Theorem 1.2 (see Theorem 4.5). For any field F, positive integer σ and arithmetic circuit C : Fn → Fk
there exist (Ĉ,D) that form an ε-correct implementation of C with a decoder, where ε = 2−σ · |C|,
|Ĉ| = |C| · poly(σ), and |D| = k · poly(σ).

Notice the differences between Theorems 1.1 and 1.2 above. Theorem 1.1 guarantees security for
arithmetic circuits over large fields while Theorem 1.2 achieves the weaker notion of additive-attack
correctness, which allows information to leak via the error flag, but without requiring the underlying
field to be large. In particular, Theorem 1.2 can be used over the binary field.

Finally, in Appendix A we present an alternative construction based on a Multiprover Interactive
Proof (MIP) systems. The parameters that can be obtained from known MIP systems are summarized
by the following theorem.

4

Theorem 1.3 (see Theorem A.2). For any positive integer σ and for any circuit descriptor F describing
a circuit C : {0, 1}n → {0, 1}k there exists a 2−σ-correct implementation (Ĉ,D) of C such that |Ĉ| =
(σ + |C| · |F |) · polylog(σ, |C|, |F |) and |D| = (n+ k + |F |) · σ · polylog(|C|, |F |).

The advantage of the above construction over the previous one is that, for succinctly described
circuits (see Definition A.1), the multiplicative overhead to the circuit size is only polylogarithmic in
the security parameter σ. On the downside, the construction of Theorem 1.3 requires the decoder D
to grow with the description size of C, thus making it meaningful only for circuits that have a succinct
description. Moreover, D needs to grow linearly with the input size of C. Finally, this approach does
not produce a construction with full additive-attack security, but only additive-attack correctness.

1.2.2 Multiparty computation via AMD circuits

The notion of AMD circuits is motivated by the following application to secure multiparty computation
(MPC). Our goal is to construct MPC protocols that are secure against active adversaries, starting from
those which are secure only against passive adversaries. Unlike the prevalent approach of modifying
the protocol itself to directly handle any deviations of an active adversary, our approach is to use the
protocol as it is, but apply it to a modified circuit. That is, given an MPC protocol, secure against
passive adversaries, for a function f computed by a circuit C, we apply the same protocol to a modified
circuit ĈAMD. The circuit ĈAMD, in addition to computing the function, is also responsible for handling
any consequences resulting from the adversary’s deviations from the protocol. The circuit ĈAMD will
be essentially an additively secure version of the original circuit; we show that, for several simple MPC
protocols from the literature that were only designed to provide security against passive adversaries,
this approach suffices to handle general active adversaries. This is discussed in Section 5.

In the following we describe different applications of this methodology in the context of prior results
(see summary in Table 1).

For simplicity we consider an MPC model where the adversary can abort the execution of the
protocol, and do not attempt to provide guaranteed output delivery. The latter can be achieved when
there is an honest majority and a broadcast channel is available [RB89].6 We note, however, that
protecting against active attacks is highly nontrivial even in this setting, and moreover the efficiency
comparison with previous works takes this simpler model into account.

We begin by deriving a simple version of the feasibility result of [RB89], for MPC in the presence
of an honest majority, from the passive-secure BGW protocol with n = 2t + 1 parties. Formally, we
obtain the following theorem (see Section 5.7):

Theorem 1.4 (see Corollary 5.4). For any n-party functionality f represented by an arithmetic circuit
C over a sufficiently large F there exists an n-party protocol π that ε-securely computes f with abort in
the presence of an honest majority for ε = O(|C|/|F|). The protocol involves communication of O(n2|C|)
field elements.

Here and in the following, one can eliminate the dependence of the error on the field size by using
an extension field. This results in a multiplicative overhead of at most σ for reducing the error to 2−σ

(see Corollaries 5.5, 5.8, 5.9 and 5.11).
In Section 5.8 we obtain a more efficient variant which has a communication complexity of O(n|C|+

n2) field elements. This asymptotically matches the communication complexity of the best known
passive-secure protocol from [DN07], and is obtained by applying our methodology to this protocol.

6Our protocols can be modified to have this feature, whenever it is achievable, by using standard techniques; however,
the details are beyond the scope of this work.

5

Adv Resilience Security Communication complexity Model Ref

passive |T | < n/2 perfect O(n2|C|) plain [BGW88]

passive |T | < n/2 perfect O(n|C|+ n2) plain [DN07]

passive |T | < n perfect O(n2|C|) for boolean circuits OT [GMW87]

passive |T | < n perfect O(n2|C|) OLE [IPS09]

active |T | < n/2 statistical poly(n) · |C| plain [RB89]

active |T | < n/2 statistical O(n|C|+ n2 log n · dC) + poly(n) plain [BFO12]

active |T | < n/2 statistical O(n2|C|) plain §5.7

active |T | < n/2 statistical O(n|C| + n2) plain §5.8

active |T | < n statistical O(n2|C|+ log |F| · dC) OT+OLE [IPS09]

active |T | < (1/2− ε)n statistical O(log n · |C|) + poly(n, dC) plain [DIK10]

active |T | < n statistical O(n2|C|) OLE §5.9

active |T | < n or statistical O(n2|C|) plain §5.10
T = {dealer}

Table 1: Comparison of information-theoretic MPC protocols for arithmetic circuits. In the above, n is
the number of parties, ε is an arbitrary small positive constant, C is an arithmetic circuit over a finite
field F, dC is the multiplicative depth of C, and T is the set of parties corrupted by the adversary.
Statistical security means that the protocol securely realizes C (with abort) with at most O(|C|/|F|)
simulation error. The communication complexity column counts the total number of field elements that
are communicated between the parties (where in the plain model we assume only the availability of
secure point-to-point channels). An OLE oracle (an arithmetic generalization of OT) receives a, b ∈ F
from one party and x from another, and returns ax+ b to the latter. The results highlighted in boldface
are new.

Theorem 1.5 (see Corollary 5.7). For any n-party functionality f represented by an arithmetic circuit C
over a sufficiently large F there exists an n party protocol π with communication complexity of O(n|C|+
n2) field elements, where π ε-securely computes f with abort in the presence of an honest majority for
ε = O(|C|/|F|).

This gives a simpler alternative to a recent protocol from [BFO12] and improves its complexity by
eliminating a quadratic overhead for each layer of the circuit, as well as a large polynomial additive
term. See Table 1.

Next, we tackle the task of secure multiparty computation in the presence of an active adversary
without an honest majority. Unfortunately, this task is impossible to achieve for arbitrary circuits in the
plain model. Thus, we are forced to use some kind of a hybrid model or have an honestly-executed input-
independent preprocessing phase which is done before the execution of the protocol. In Section 5.9 we
present results for secure multiparty computation using an arithmetic generalization of the OT-hybrid
model, called the OLE-hybrid model [NP06, IPS09] (where an oracle receives a, b ∈ F from one party
and x from another, and returns ax+ b to the latter) and in Section 5.10 we present our results in the
preprocessing model.

Concretely, in Section 5.9 we use an arithmetic version of the GMW protocol [GMW87, IPS09] and
obtain an n-party protocol for securely computing any functionality (represented by an arithmetic circuit
C), without requiring an honest majority, using O(n2|C|) calls to the OLE oracle. This improves over
the protocol of [IPS09] that inherently requires Ω(σ) additional oracle calls for achieving 2−σ-security,
regardless of the field or circuit size. Formally:

Theorem 1.6 (see Theorem 5.7). For any n-party functionality f represented by an arithmetic circuit

6

C there exists a protocol π in the OLE-hybrid model that ε-securely computes C with abort for ε =
O(|C|/|F|). Moreover, π invokes the OLE oracle O(|C|n2) times.

Finally, in Section 5.10 we address the goal of secure multiparty computation in the preprocessing
model. We present a protocol for securely computing an n-party functionality (again represented as an
arithmetic circuit C) that utilizes a preprocessing phase which runs before the computation of f starts
and does not depend on the inputs to f . This phase can be implemented using an additional party
called the dealer that sends correlated randomness to the parties. We strengthen previous results in the
preprocessing model [IPS09, BDOZ11, IKM+13], which assume the dealer to be honest, by providing
security when either the dealer or any subset of the other parties may be corrupted (though not both).
Formally:

Theorem 1.7 (see Theorem 5.9). For any n-party functionality represented by an arithmetic circuit C
over F, there exists a protocol π that uses an additional dealer, such that π is an ε-secure protocol for
computing C with abort against an active adversary controlling either the dealer or any other parties,
where ε = O(|C|/|F|). The dealer in π only distributes correlated randomness to the other parties.

1.3 Overview of techniques

1.3.1 Additive-attack security

We first present our result for additive-attack security (see Section 3.2 for details) for a computation
over a large field F. Suppose we are given an arithmetic circuit C. In its secure version Ĉ, every wire of
C is paired with a wire that carries a “MAC tag.” Each gate in C is replaced by a small gadget which
computes the original gate’s output as well as a MAC tag for it; further, this gadget accepts the MAC
tags of the inputs to the original gate, and carries out a MAC verification computation. Note that this
verification circuitry itself is open to additive attacks. Nevertheless, we can arrange that Ĉ will produce
a random output if the MAC tag verification fails for a wire anywhere in the computation.

We present more details below. In the following we identify the gate g with its result; the meaning
will be clear from the context.

The basic construction. For a gate’s output wire g, its MAC value will simply be g · vd, where
v is a randomly generated element of the underlying field F (fixed to the same value for all gates),
and d is the degree of the wire g (as a polynomial in the input variables). This MAC has property
that multiplications can be performed on the MAC value homomorphically to obtain a value that can
correspond to a MAC value of the result of a multiplication. Updating the MAC for an addition and
subtraction gate is implemented using a simple gadget. The consistency check is implemented as follows.
We first compute the result of the original gate, g. Next, we compute the MAC value in two ways. The
first way is by directly multiplying g to vd (in turn computed from v). The second way is using the
MAC values of the inputs (homomorphically for multiplication and via a simple gadget for the case of
addition and subtraction). We then check that the values are equal: more precisely, in each gate we take
the difference of these two values, and linearly combine them across all gates using random coefficients;
the result – which is a random field element if any inconsistency was detected, and 0 otherwise – is
added to the final outcome.

We show that any additive attack on Ĉ is either equivalent to an additive attack on the input wires
and /or output wires only, or else, results in the output being random, up to a statistical distance of
O(d/|F|) from the uniform distribution. Note that if the field is large (i.e., is of size exponential in the
security parameter) and if d is small (for e.g., polynomial), we obtain negligible error in security. The
security of the construction requires that the underlying circuit C be such that for every gate in C, the
joint values of its two inputs should be almost uniformly distributed over F×F. This is ensured by first
compiling C into an appropriately randomized circuit (see below).

7

One problem with the above basic construction is that the security error grows with the degree of
the circuit. Since the degree of a circuit can be exponential in its depth, this construction does not
yield a full solution to our problem. However, we show that bootstrapping from this construction for
low-degree circuits, we can indeed obtain a construction that is secure for all polynomial-sized circuits
(see below).

The randomization process. As noted above, the basic construction relies on the inputs to each gate
of the given circuit being uniformly random. We can enforce this as follows. Each wire a inside the circuit
C will be replaced by two wires, carrying values a+ r1 and a+ r2, where the masking values r1 and r2

are generated as random field elements (that are the same throughout the circuit). Next, we will replace
each multiplication and addition gate with a gadget that will get as input (a+ r1, a+ r2, b+ r1, b+ r2)
and output either (ab+ r1, ab+ r2), (a+ b+ r1, a+ b+ r2) or (a− b+ r1, a− b+ r2) respectively. These
gadgets have the property that the inputs of every internal gate are completely random. To complete
the modification of the circuit, two additional layers are added. First, a layer of addition gates is added
to the input wires to carry out the encoding. Next, a layer of subtraction gates is added to the output
wires to carry out the decoding. Note that the inputs to the gates in these additional layers do not
have the randomness property we set out to ensure for every gate (since the inputs and outputs are not
random). However, attacks on these addition and subtraction gates are equivalent to attacks on the
actual input and output of the circuit itself, and this is permitted by Definition 1.1.

From low-degree circuits to arbitrary circuits. Observe that additive-attack security could be
easily achieved if we were allowed to use tamper-proof gadgets to implement each gate. Then each gate
can be replaced by a tamper-proof component that gets two inputs encoded using an AMD code and,
after decoding them, computes an AMD encoding of the gate’s result. In our final construction, we
implement these gadgets using the above construction for low-degree circuits and obtain a construction
for arbitrary circuits.

1.3.2 Handling small fields

Our constructions for additive-attack security inherently fail when the underlying field is small, even
if we were willing to tolerate a small constant error (see Section 3.2.4 for details). In this section,
we present an alternative construction that achieves additive-attack correctness over small fields, with
negligible error (see Section 4.2 for details). Recall that correctness prevents the attacker from causing
the circuit to output a wrong value without being detected.

Basic construction without a decoder. Our final construction will achieve additive-attack cor-
rectness using a small tamper-proof output decoder. But first, we present a construction that does
not use any decoders but allows (inevitably) both inputs and outputs to besubject to additive attacks
(see Definition 4.1). This construction will have a constant error. Later we will show how to amplify
the correctness (and also improve the efficiency) of this construction, and meet the requirements of
Definition 1.2, by relying on a small tamper-proof output decoder.

The basic idea is that our new circuit would compute not only the output of the original circuit,
but also a proof that the output is correct; at the end of the computation, this proof will be verified
by another part of the circuit. We need a simple proof system that can be implemented in such a way
that soundness holds even when the verifier as well as the prover could be under (additive) attack.7 Our
proof system follows in the pattern of the Hadamard PCP system of [ALM+92], which turns out to
have the linearity properties suitable for our purposes. However, we cannot use this PCP system as it
is, since the proof is exponentially large. We use an alternate compact representation of the proof that
suffices if we can ensure that the prover indeed computes prescribed linear functions of a purported

7Even if we allowed a small tamper-proof decoder (which we do not for this basic construction), it would not be feasible
to house the verifier there, since the verifier would be at least as large as the original circuit itself; allowing such a large
tamper-proof component trivializes the problem.

8

witness and the verifier’s queries. This condition on the prover is enforced by a “matrix multiplication
gadget” (see below). The verifier’s computation is simple and results in an error flag to be set (to a
non-zero value) with at least a constant probability, if the proof is not valid.

It remains to ensure that under additive attack, the prover is restricted to computing the correct
linear functions (but possibly using an invalid witness). This is achieved using the following gadgets.

The multiplication gadgets. We sketch our ε-correct implementation (without output decoder) of
a matrix-by-vector multiplication. For this, first we construct a scalar-by-vector multiplication gadget.

The inputs to a scalar-by-vector multiplication gadget consist of a vector v and a scalar x, the output
is vx. The main idea of this construction is to make the circuit compute z = vx and q′ = (r · v)x
where r is a random vector. To verify that r · z = q′, we compute f = rz − q′ as an error flag. We
show that any attack that does not correspond to an additive attack on the inputs and outputs of the
scalar-by-vector multiplication gadget will cause the flag to be set randomly.

We next proceed to the matrix-by-vector multiplication gadget. The inputs to such a gadget are
a matrix M and a vector x, and the output is z = Mx. We implement this gadget using the scalar-
by-vector multiplication gadget. The main idea is as follows: we treat the columns of M as vectors
and multiply each column with the required coordinate of x using the scalar-by-vector multiplication
gadget. Afterwards, we sum up these intermediate values to obtain the output of the matrix-by-vector
multiplication. Since any attack on the scalar-by-vector multiplication gadget is equivalent to an attack
on its inputs and outputs and since the matrix-by-vector multiplication gadget only sums up the results
of the scalar-by-vector multiplication gadget, it will be the case that any attack on the matrix-by-vector
multiplication gadget is either equivalent to an attack on its inputs and outputs or it causes its error
flag to become non-zero with constant probability.

Theorem 1.8 (informal; see Lemma 4.2). For any finite field F, the function f(M,v) = Mv admits a
0.95-correct implementation Ĉ.

Using this gadget to implement the prover in the above outline, we obtain the following result.

Theorem 1.9 (informal; see Theorem 4.1). Any circuit C over a finite field F admits a 0.997-correct
implementation without output decoder, Ĉ, where |Ĉ| = O(|C|2).

Correctness amplification. For small fields (in particular, the binary field), the above construction
has a high error probability. A naive attempt at reducing the error to εσ would be to repeat the ε-correct
construction σ times, and then use a (tamper-proof) decoder to check for consistency. However, it is
possible that different instances will be operating on different inputs, and therefore no amplification will
be achieved (see Section 4.2.1). This problem can be solved by asking each instance of the construction
to output its input in addition to the result and then using a decoder to verify that all the inputs
are consistent. However, in this case the complexity of the decoder will be polynomial in the input
size. Keeping the tamper-proof decoder size virtually independent (up to logarithmic factors) of the
input size is crucial for the efficiency improvement we discuss next. Thus, we use a family of (almost
pairwise independent) hash functions such that the circuit will output a hash digest of its input instead
of the actual input. Since input consistency is still verified, attacks that cause different instances of the
construction to operate on different inputs will cause inconsistency in the hash digests, and the decoder
will then set the error flag wire to be non-zero.

Theorem 1.10 (informal; see Theorem 4.3). Any circuit C : Fn → Fk admits a 2−σ-correct implemen-
tation (Ĉ,D) where |Ĉ| = |C|2 · poly(σ) and |D| = k · poly(σ).

From quadratic to linear overhead. The above construction has quadratic overhead in the circuit
size, since we use parts from the PCP prover of [ALM+92]. In particular, similarly to [ALM+92], our
construction will compute all possible multiplications of two intermediate wires inside the circuit. We

9

improve this using “bootstrapping”, as follows. We go over the gates of C in topological order. For
each input gate, we apply the above construction to the single-wire identity circuit, yielding an ε-correct
gadget, and a corresponding decoder. Then, for each subsequent gate g, we consider the small circuit
C ′ consisting of the decoders corresponding to the two gates of upstream of g, along with g itself, and
apply the above construction to C ′ to yield an ε-correct gadget and a new decoder, and so on. These are
wired together. Finally, the decoders corresponding to the output gates, taken together, are considered
the decoder for the resulting ε-correct implementation of C.

Since the substitution replaces a gate with a small gadget whose size is independent of C, the
resulting circuit size grows linearly with that of |C|.

Theorem 1.11 (informal; see Theorem 4.5). Any circuit C : Fn → Fk admits a (2−σ · |C|)-correct
implementation (Ĉ,D) where |Ĉ| = |C| · poly(σ) and |D| = k · poly(σ).

1.3.3 Secure multiparty computation

We review the main techniques used for applying AMD circuits towards secure computation in the
presence of an active adversary, as discussed in Section 1.2.2. (see Section 5)

Protecting the computation of circuits. We start from a protocol π that evaluates a circuit C
with security against passive adversaries. In Section 5 we prove, for several useful protocols π, that
when π is executed in the presence of an active adversary, π actually computes a circuit C̃ that is the
same as C up to some additive attack that is chosen by the adversary. Thus, by replacing the circuit C
with an additive-attack secure implementation Ĉ of C we obtain that any active attack on the protocol
corresponds to an additive attack on the inputs and outputs of C.

Protecting the inputs and outputs. To protect the inputs and outputs of C against additive
attacks, we construct another circuit CAMD from C so that CAMD gets its inputs in some AMD code,
decodes them, and then applies C. Finally, CAMD encodes the outputs of C using an AMD code. In
addition, if CAMD gets inputs that are not valid AMD encodings due to an additive attack by the
adversary, CAMD sets a special output flag to be random. This will notify the honest parties that they
should abort the computation since the results might have been corrupted by the adversary.

The final protocol. We construct an active-secure MPC protocol π′ for C as follows. First, all the
parties locally encode their inputs using an AMD code. Then they invoke π on an additive-attack secure
implementation ĈAMD of CAMD. Finally, the parties locally decode the outputs of CAMD obtained from
the execution of π and abort if the decoding fails or if the error flag is nonzero. The security of π′

is argued as follows. Notice that by the properties of π, the adversary is limited to only performing
additive attacks on ĈAMD. Since ĈAMD is additive-attack secure, these attacks are equivalent (up to
small statistical distance) to additive attacks on the inputs and outputs of CAMD. Finally, notice that
any additive attack on the inputs and outputs of ĈAMD will be detected by the AMD code, causing the
honest parties to abort.

Applications to existing semi-honest MPC protocols. While our approach can be possibly
extended to include many other protocols, in Section 5 we demonstrate our approach by using variants
of existing semi-honest MPC protocols. Namely a variant of the semi-honest BGW protocol [BGW88],
an arithmetic version of the semi-honest GMW protocol in the OLE-hybrid model [GMW87, IPS09]
and a simplified version of the semi-honest DN protocol [DN07]. Thus, we are able to obtain protocols
that are secure against active adversaries that have asymptotically the same communication complexity
and number of oracle calls as their semi-honest versions.

Applying our methodology to the semi-honest DN protocol we obtain an n-party protocol π for
O(|C|/|F|)-securely computing a circuit C over some field F with abort in the presences of an honest
majority whose communication complexity is O(n|C| + n2) field elements. Similarly, applying our
methodology arithmetic version of the semi-honest GMW protocol in the OLE hybrid model [GMW87,

10

IPS09] we obtain an n-party protocol π for O(|C|/|F|)-securely computing a circuit C over some field
F in the OLE hybrid model that invokes the OLE oracle O(n2|C|) times.

Next, replacing the OLE oracle in the above protocol with a random OLE oracle (while making
the necessary modifications to the protocol) and then asking an additional party called the dealer to
compute the outputs of the random OLE oracle for all the parties, we obtain a protocol for computing
a circuit C that is remains O(|C|/|F|)-secure even when the adversary is allowed to corrupt either the
dealer or any subset of the other parties (but not both).

1.4 Related work

Fault tolerant circuits. The goal of securing cryptographic hardware against active attacks has
motivated different models for fault-tolerant circuits that mainly aim to protect the secrecy of the data
stored inside the circuits. All prior works along this line somehow restrict the attacker so that some
of the wires in the circuit are unaffected. This could be done by either restricting the number of
attacked wires or by requiring that the attack fail with some probability. In our case, we eliminate this
requirement by only considering the restricted class of additive attacks.

Gennaro et al. [GLM+04] and, more recently, Tauman-Kalai et al. [KKS11] considered tampering
attacks that apply only to the memory but not to the circuit logic. The work of Liu and Lysyan-
skaya [LL12] considered the question of protecting circuits against leakage and tampering in the split-
state model, where the leakage and tampering functions are not allowed to operate on the entire circuit
at once but only on different parts of it. Ishai et al. [IPSW06], as well Dachman-Soled and Tauman-
Kalai [DK12, DSK14], considered a reactive setting where in each clock cycle, the circuit produces
outputs as well as updates its internal state. In their model, no part of the circuit must be free from
tampering, but the adversary is restricted to tampering with a bounded number of wires in each clock
cycle. Finally, Faust et al. [FPV11] considered a variant in which the adversary can attack every wire
in the circuit, but each attack fails with some constant probability.

Additive attacks. As noted above, the goal of protecting information against additive attacks was
previously considered in [CDF+08], who introduced AMD codes as a means of detecting such attacks.
One of the motivating applications of AMD codes was that of converting any (passive-secure) linear
secret sharing scheme into a similar scheme that offers error-detection in the presence of active tampering
with the shares. Our application of AMD circuits to MPC is conceptually similar: we use AMD circuits
to convert passive-secure MPC protocols with a certain “linear” structure into similar MPC protocols
that offer security against active corruptions.

A concurrent and independent work of Ikarashi et al. [IKHC14] also makes the observation that
in some natural passive-secure MPC protocols, any active attack on the protocol corresponds to an
additive attack on the underlying circuit. This is then used to immunize such protocols against active
attacks. The main result of [IKHC14] is a protocol with the same asymptotic complexity as the protocol
of Section 5.8, which offers active security in the presence of an honest majority with a communication
complexity of O(n|C|+ n2) field elements.

The protocol of [IKHC14] is simpler, has better concrete complexity than our corresponding protocol,
and slightly better security (O(1/|F|) vs. O(|C|/|F|)). It relies on the fact that the additive attacks
induced by active attacks on the passive-secure protocol from [DN07] (as well as the simpler BGW
protocol [BGW88]) have a limited form: only outputs of multiplication gates and output gates are
vulnerable to attacks, and the additive attack is consistent across all the wires connecting the output
of a gate to the inputs of other gates. The protocol from [IKHC14] implicitly relies on a simple
construction of AMD circuits that tolerate such restricted additive attacks. This construction does
not protect against more general additive attacks. Protecting against general additive attacks seems
necessary for securing other passive-secure protocols to which we apply our methodology, such as the
semi-honest GMW protocol in the OLE hybrid model [GMW87, IPS09].

11

2 Preliminaries

2.1 Definitions

We begin by defining the notion of arithmetic circuits. We extend the standard notion of arithmetic
circuits (Cf. [SY10]) by allowing randomness gates as well as gates the compute arbitrary functions.

Definition 2.1 (Arithmetic circuit). Let F be a finite field and let G be a set of functions gi : Fni → F.
An arithmetic circuit C over the gate set G and a set of variables X = {x1, · · · , xn} is a directed acyclic
graph whose vertices are called gates and whose edges are called wires. Every gate in C of in-degree 0 is
either labeled by a variable from X and is referred to as an input gate or is labeled by the constant one
and is referred to as one gate. All other gates are labeled by functions from G. Every gate of out-degree
0 is called an output gate. We assume that the output gates are ordered. In some cases we also allow
in-degree 0 gates labeled by rand and referred to as randomness gates. A circuit containing rand gates
is called a randomized circuit and a circuit that does not contain rand gates is called a deterministic
circuit.

Unless stated otherwise, we shall assume that G = {+,−,×}. Gates labeled by +, − and × are called
addition, subtraction or multiplication gates respectively. We assume that the in-degree of addition,
subtraction and multiplication gates is 2.

We write C : Fn → Fk to indicate that C is an arithmetic circuit over F with n inputs and k
outputs. We denote by |C| the number of gates in C. A one gate outputs the field element 1. Similarly,
a randomness gate outputs a random element from F. For an input x ∈ Fn we denote by C(x) the
result of evaluation C on x if C is deterministic and the resulting distribution if C is randomized. For a
pair of circuits C1 : Fn → Fk and C2 : Fk → Ft we define the circuit C2(C1(· · ·)) as the circuit obtained
from connecting the outputs of C1 to the inputs of C2.

The degree of each gate in C, as well as the degree of C are defined as follows.

Definition 2.2 (Degree). We use deg(g) to denote the degree of gates defined as follows. If g is an
input or rand gate then deg(g) = 1. If g is a one gate then deg(g) = 0. If g = ga+gb or g = ga−gb then
deg(g) = max(deg(ga), deg(gb)). Finally, if g = ga × gb then deg(g) = deg(ga) + deg(gb). The degree of
a circuit C, denoted by deg(C), is defined to be the maximal degree of all gates of C.

Attack model. Intuitively, an additive attack A on a deterministic or randomized circuit C changes
the computation by “blindly” adding a constant field element to every wire in C as well as to the outputs
of C. Let C : Fn → Fk be a circuit. An additive attack A on C assigns an element of F to each of its
internal wires as well as to each of the C’s outputs. We denote by Au,v the attack A restricted to the
wire (u, v). Similarly we denote by Aout the restriction of A to the outputs of C.

An additive attack A changes the computation performed by the circuit C as follows. For every
wire (u, v) in C, the value Au,v is added to the output of u before it enters the inputs of v. Similarly,
the value Aout is added to the outputs of C. For a circuit C : Fn → Fk and an additive attack A, we
denote by C̃ ← A(C) the circuit resulting from the additive attack A on C.

Notation. Let F be a finite field, we use F∗ to denote both F \ {0} and the multiplicative group of
F. The meaning will be clear from the context. Let u,v ∈ Fn. Denote by vi the i’th coordinate of v.
Denote by v · u the inner product over F of v and u. When appears inside a circuit construction we
define v · u to be the circuit computing

∑n
i=1 vi · ui by multiplying the coordinates of v and u using n

multiplication gates and then summing up the result using addition gates.
Notice that in the case of addition gates, any attack on their input wires has an equivalent attack

on their output wires. Thus, we can assume without loss of generality that only the input wires of
multiplication and output gates are attacked since the attack on inputs of addition gates can be pulled
“downstream” through them until the inputs of multiplication or output gates.

12

Lemma 2.1. Let C be a randomized arithmetic circuit and let A be an additive attack. Then there
exists an additive attack A′ that only attacks the inputs of multiplication and outputs of output gates of
C such that for all x it holds that

C̃(x) ≡ C̃ ′(x)

where C̃ ← A(C) and C̃ ′ ← A′(C).

Distributions. Denote by Un the uniform distribution over Fn and denote by U∗ the uniform distri-
bution over F∗. If two distributions D1 and D2 are the same we denote that by D1 ≡ D2. We will rely
on the following standard claims.

Claim 2.1. Let ∆1,∆2,∆3 be distributions such that SD(∆1,∆2) = ε and SD(∆2,∆3) = ε′. Then,
SD(∆1,∆3) ≤ ε+ ε′.

Claim 2.2. Let ∆1,∆2 be two distributions such that SD(∆1,∆2) ≤ ε. Then, for any function f it
holds that SD(f(∆1), f(∆2)) ≤ ε.

2.2 AMD codes

In this section we study the goal of encoding information in a way that will allow us to pass it from
one part of the circuit to the other without the adversary being able to alter the information in an
undetectable way.

Intuitively, we would like to find a pair of arithmetic circuits (Enc,Dec) over some field F with
the following two properties First, Dec can always recover x from the output of Enc invoked on input
x. Second, any additive attack mounted on the outputs of Enc will be detected with some non-zero
probability. Finally, we require that the size of (Enc,Dec) does not depend on the size of F. Formally,

Definition 2.3. An (n, k, ε)-AMD code is a pair of circuits (Enc,Dec) where Enc : Fn → Fk is random-
ized and Dec : Fk → Fn+1 is deterministic such that the following properties hold:

• Perfect completeness. For all x ∈ Fn,

Pr[Dec(Enc(x)) = (0,x)] = 1.

• Additive robustness. For any a ∈ Fk, a 6= 0, and for any x ∈ Fn it holds that

Pr[Dec(Enc(x) + a) /∈ ERR] ≤ ε.

We also define the notion of private (n, k, ε)-AMD code that has the same completeness and security
requirements as well as additional privacy requirement that for any a ∈ Fk, a 6= 0, y ∈ F∗× Fk, and for
any x,x′ ∈ Fn it holds that

Pr [Dec(Enc(x) + a) = y |Dec(Enc(x) + a) ∈ ERR] = Pr
[
Dec(Enc(x′) + a) = y |Dec(Enc(x′) + a) ∈ ERR

]
.

Notice that private AMD codes could be easily constructed from AMD codes by requiring the
decoder to output random values in the case where a corruption is detected. Formally, consider
Construction 2.1 below.

Construction 2.1. Let (Enc,Dec) be a (n, k, ε)-AMD code. Consider the circuits (Enc′,Dec′) that are
defined as follows.

• The circuit Enc′ on input x outputs Enc(x).

• The circuit Dec′ on input x performs the following.

13

1. Compute (b,y)← Dec(x).
2. Output (0,y) + br where r is generated uniformly from Fn+1.

The following theorem can be easily verified.

Theorem 2.1. For any pair of circuits (Enc,Dec) that are an (n, k, ε)-AMD code, the pair of circuits
(Enc′,Dec′) defined in Construction 2.1 are a private (n, k, ε)-AMD code.

Asymptotically optimal constructions of such codes have been introduced by [DKRS06] and by [CDF+08].

Theorem 2.2 (Implicit in [CDF+08] Corollary 1). For any positive integers n, σ and field F there exists
a pair of circuits (Enc,Dec) over F that are an (n,O(n+ σ), 1

|F|σ)-AMD code. Moreover, the size of Enc

and Dec is O(n+ σ).

In fact, [CDF+08] consider a slightly weaker definition of AMD codes where is it guaranteed that
Pr[Dec(Enc(x)+a) /∈ ERR∪{(0,x)}] ≤ ε. However, their construction actually has the stronger security
property of Definition 2.3. Combining Theorem 2.2 with the construction of private AMD codes
outlined above we obtain the following:

Corollary 2.1. For any positive integers n, σ there exists a pair of circuits (Enc,Dec) such that for any
finite field F it holds that (Enc,Dec) are a private (n,O(n+ σ), 1

|F|σ)-AMD code. Moreover, the size of

Enc and Dec is O(n+ σ).

3 AMD circuits over large finite fields

3.1 Simplifying the circuit model

Our constructions below assume that G is composed out of addition, subtraction and multiplication
gates and do not consider circuit that contain one gates. It is possible to apply our constructions on a
circuit C over a field F containing one gates as follows.

Construction 3.1 (Removing constants). Let C be a circuit containing one gates, construct the ε-secure
implementation Ĉ of C as follows.

1. Replace the one gates in C with an input gate g and obtain the circuit C ′ that outputs the output
of C if the output of g is 1 and a random value otherwise (this can be implemented by generating
a random value r and outputting z + (gr − r) where z is the output of C).

2. Notice that C ′ does not contain one gates but assumes that the constant 1 is given in the input
gate g. Let Ĉ ′ we an ε-secure implementation of C ′.

3. Construct the circuit Ĉ obtained from Ĉ ′ by connecting a one gate to g.

The following lemma immediately follows from the fact that any additive attack on Ĉ is equivalent
to an additive attack on the inputs and outputs of C ′ and is therefore equivalent to an additive attack
on the inputs and outputs of C and on the one gate used in C. Notice that any attack on the on one is
caught by C ′ causing the outputs of Ĉ to become random.

Lemma 3.1. For any circuit C containing one gates, the circuit Ĉ constructed in Construction 3.1 is
an (ε+ 1

|F|)-secure implementation of C.

Remark 3.1. Our constructions for additive-attack correctness below also do not deal with circuits
containing one gates. However, it is possible to apply them on circuits that contain one gates using an
analog of Construction 3.1 and Lemma 3.1.

14

Unless stated otherwise, in the sequel we will assume that our constructions will be only applied on
deterministic circuits that do not contain randomness gates. It is possible to apply our constructions
on a circuit C over a field F containing randomness gates as follows.

Construction 3.2 (Removing randomness gates). Let C be a randomized circuit, construct the ε-secure
implementation Ĉ of C as follows.

1. First, replace every randomness gate gi in C with an input gate g′i and obtain the circuit C ′. Let

Ĉ ′ be an ε-secure implementation of C ′.

2. Construct the circuit Ĉ obtained from Ĉ ′ by replacing every g′i created in the previous step with a
randomness gate.

The following lemma immediately follows from the fact that any additive attack on Ĉ is equivalent
to an additive attack on the inputs and outputs of C as well as on the randomness gates of C. Notice
that any additive attack on the randomness gates of C does not effect the distribution of the obtained
randomness.

Lemma 3.2. For any randomized circuit C, the circuit Ĉ constructed in Construction 3.2 is an ε-secure
implementation of C.

Remark 3.2. Our constructions for additive-attack correctness below also do not deal with circuits
containing randomness gates. However, it is possible to apply them on circuits that contain randomness
gates using an analog of Construction 3.2 and Lemma 3.2.

The security of guarantee of Theorem 1.1 directly relates to the size of the field F over which the
circuit is defined. It is possible to amplify the security of Theorem 1.1 by computing C over a suitable
extension field H of F. Since the adversary is allowed to attack the inputs of a secure implementation
of C, we cannot apply our constructions on C over H directly. Instead, we must modify C to a circuit
C ′ over H that checks that the inputs to C are indeed elements of F and then apply our constructions
on C ′. Formally, consider the following theorem.

Theorem 3.1 (Amplifying additive-attack security). For any circuit C : Fn → Fk and σ > 0 there
exists a randomized circuit Ĉ : Hn → Hk over some extension field H of F such that Ĉ is a O(2−σ)-secure
implementation of C.

Proof. Let H be an extension field of F such that |H| ≥ (|C| + n log |F|) · 2σ. Notice that for any
field element x ∈ H such that x 6= 0 it holds that x|F|−1 = 1 if and only if x ∈ F. Define a circuit

C ′(x) = C(x) +
(∑n

i=1 si ·B
(
x
|F|−1
i

))
· r over H where s1, · · · , sn are random field elements generated

using randomness gates inside C ′, r is a random vector over Hk generated using random gates inside
C ′ and B(x) = x(1 − x) is a polynomial that vanishes only on 0 and 1. Notice that if the input
does not belong to the field F then the output of C ′ is uniformly random and that C ′(x) = C(x) for
every input x ∈ Fn. In addition, by construction we have that |C ′| = O(|C| + n log |F|). Let Ĉ be an
O(|C ′|/|H|)-secure implementation of C ′. Notice that since |H| ≥ (|C|+ n log |F|) · 2σ it holds that Ĉ is
an O(2−σ)-secure implementation of C as well.

3.2 Protecting low-degree circuits over large finite fields

In this section we construct ε-secure implementations for low-degree arithmetic circuits over large finite
fields. The main idea behind the construction is as follows. We would like to ensure that any additive
attack on the circuit will have one of two consequences: it will either cause the circuit to output a
random output for all inputs, or it will be equivalent to a set of wire corruptions on the inputs and the

15

outputs of the circuit. To do so, we will encode the values in the circuit and compute over encoded
values. The special property of the encoding is that every additive attack on the encoded values will
cause the encoding to become invalid. We first present a simpler construction whose security holds
when the wire values satisfy some local randomness property (Section 3.2.1). Later, we show how to
eliminate this assumption by applying a general transformation to the circuit (Section 3.2.2). Finally,
we combine the two together into a secure construction for low-degree circuits and arbitrary inputs
(Section 3.2.3). We begin by presenting the security notion for specific input distributions.

Definition 3.1 (Additive-attack security with respect to a distribution). Let F be a finite field, C :
Fn → Fk an arithmetic circuit, and I a distribution over Fn. We say that a circuit Ĉ : Fn → Fk is an
ε-secure implementation of C with respect to I if the following holds:

• Completeness. For all x ∈ Fn,
Ĉ(x) ≡ C(x).

• Additive-attack security with respect to I. For any additive attack A, there exists ain ∈ Fn and a
distribution Aout over Fk such that

SD
(
C̃(I), C(I + ain) +Aout

)
≤ ε

where C̃ ← A(Ĉ).

3.2.1 Additive-attack security for locally-random distributions

We now present a secure construction for constant degree circuits and specific input distributions. Sim-
ilarly to the approach of [BDOZ11, DPSZ12] for secure computation with preprocessing (and somewhat
similarly to the MAC-based quantum MPC protocol of [BCG+06]), our construction is based on a
simple homomorphic MAC. However, in contrast to [BDOZ11, DPSZ12], we do not rely on any prepro-
cessing phase to correctly produce MACed data, used to protect the circuit evaluation. Instead, our
construction remains secure even when the sub-circuits computing and verifying the MAC tags are also
subject to an additive attacks.

The main idea is to add for every wire in the circuit another wire carrying its MAC value. When
two wires enter a gate the two MAC values corresponding to them will enter a special circuit that
will produce the expected MAC value of the gate’s result. Afterwards, the result of the gate and the
corresponding MAC value are checked. The MAC used will have the property that if an input to a gate
is attacked then the MAC value produced separately for this gate will not verify with the gate’s result.
As soon as this situation is detected a special abort flag will become non-zero causing the entire circuit
to output a random value.

The construction will guarantee security as defined in Definition 3.1 with ε = O
(
d
|F|

)
, where d is

the degree of the circuit it is applied on, under two assumptions.

1. The inputs of each gate are sufficiently random. In Section 3.2.2 we present a transformation that
will randomize the inputs of each gate in the circuit.

2. The input to the circuit is taken from a specific input distribution. In Section 3.2.3 we present a
construction for arbitrary inputs.

Since the security of the construction depends on the degree of the circuit, the construction is only
useful for low-degree circuits. We start by defining what it means for inputs of each gate to be random
and not to depend on the input to the circuit. Formally,

16

Figure 1: MAC computation for multiplication gates (· denotes field multiplication).

Definition 3.2. Let F be a finite field, C : Fn → Fk a randomized arithmetic circuit, and I a distribution
over Fn. We say that C is locally ε-random with respect to I if for any (y, z) ∈ F2, and any pair of gates
(g1, g2) whose outputs are the inputs to the same gate in C, it holds that the probability over x← I and
the internal randomness of C that the outputs of (g1, g2) in C(x) are equal to (y, z) is at most ε.

We now describe a construction that takes as input an ε-random circuit with respect to some class of
input distributions and transforms it to a secure circuit with respect to the same class of distributions.
The idea is as follows. For gate gc with inputs ga and gb, the circuit will compute a MAC for gc in two
ways. The first way is by computing the gate’s result and obtaining the MAC directly from the result.
This MAC value is denoted in the construction below by f ′c. The second way is by homomorphically
combining the input MACs f ′a and f ′b into a MAC for gc. This MAC value is denoted below by g′c.
Finally, the circuit will verify that f ′c = g′c. The guarantee of the MAC is that every additive attack is
either harmless and will not affect the result, or it will be the case that f ′c 6= g′c with high probability.
In the latter case, a special wire inside the circuit will become non-zero and will cause the entire circuit
to output a random value. Intuitively, this guarantee is achieved by utilizing the fact that addition and
multiplication do not commute.

See Figure 3.2.1 for the MAC for multiplication gates. Formally, consider Construction 3.3 below.

Construction 3.3. Let C : Fn → Fk be a circuit. Let gi, 1 ≤ i ≤ |C|, denote the gates of C in some
topological order. Define a circuit Ĉ that on input x performs the following:

1. Compute z = C(x).
2. Generate a random field element v ∈ F.
3. For i = 1, . . . , deg(C) compute pi = vi using multiplication gates.
4. For any gate gi of degree di, compute the value f ′i = gi · pdi.
5. For each non-input gate gc, c = n+1, . . . , |C|, let ga and gb be its inputs and let da and db be their

degrees. Compute the value g′c as follows:

• If gc is a multiplication gate, let g′c = f ′a · f ′b.
• If gc is an addition gate: (1) if da > db let h′c = pda−db · f ′b and g′c = f ′a + h′c, (2) if da < db

let h′c = pdb−da · f ′a and g′c = h′c + f ′b, and (3) if da = db let g′c = f ′a + f ′b.

• Similarly, if gc is a subtraction gate: (1) if da > db let h′c = pda−db · f ′b and g′c = f ′a − h′c, (2)
if da < db let h′c = pdb−da · f ′a and g′c = h′c − f ′b, and (3) if da = db let g′c = f ′a − f ′b if da = db.

6. For any non-input gate gi, let fi = f ′i − g′i.
7. Let f =

∑
i firi where ri is a random field element.

8. Output z + fr′ where r′ is a random vector from Fk.

17

Theorem 3.2. Let C : Fn → Fk be a randomized arithmetic circuit of degree d which is locally ε-random
with respect to a distribution I. Then the circuit Ĉ obtained by applying Construction 3.3 to C is a(
|F|ε+ d+1

|F|

)
-secure implementation of C with respect to I.

Proof. The completeness property easily follows from the construction of Ĉ. To show the additive-
attack security property for specific distributions, consider any additive attack A and let C̃ ← A(Ĉ).

In the following we will discuss only the corrupted circuit C̃. Since all gates and values will be inside
C̃, for readability we will omit the tildes (e.g., g refers to g̃).

We shall assume without loss of generality that the inputs to the circuit are given on special wires
that are the inputs of input gates. Thus we redefine input gates as gates that have one input wire and
compute the identity function of their inputs. We allow these special input wires to be attacked as well.

By Lemma 2.1 we can assume without loss of generality that A only attacks the inputs of multi-
plication gates inside C̃. Hence we assume that for every gate gc it holds that the corresponding wires
(f ′c, fc), (g′c, fc) are not attacked since they enter addition and subtraction gates. Moreover, for an
addition or subtraction gate gc with inputs ga and gb of degrees da and db we assume that the wires
(ga, gc), (gb, gc) are not attacked, and also:

• The wires (f ′a, g
′
c) and (h′c, g

′
c) are not attacked for the case of da > db.

• The wires (f ′b, g
′
c) and (h′c, g

′
c) are not attacked for the case of da < db.

• The wires (f ′a, g
′
c) and (f ′b, g

′
c) are not attacked for the case of da = db.

For the case of an input gate gc we can assume that A does not attack the wire (gc, f
′
c) since this wire

attack is equivalent to attacking the input wire to gc and modifying the wire attack on all other wires
(except (gc, f

′
c)) by subtracting the wire attack on (gc, f

′
c) from it.

In the following we identify every value pi, fc, g
′
c, f
′
c (computed during the evaluation of Ĉ) with the

corresponding (single) gate which computes this value. Let gc be a gate inside C of degree dc with inputs
ga and gb of degrees da and db respectively. Notice that by the design of Ĉ the subcircuits computing
pda , pdb and pdc inside C̃ only have v is as input and only contain enough multiplication gates to compute
some polynomial in v of degree da, db and dc respectively even when subjected to additive attacks.

We define a gate gc of degree dc with inputs ga and gb of degrees da and db in C̃ to be problematic
if one of the following holds

• If g̃c is a multiplication gate:

Let p̃da(v), p̃db(v) and p̃dc(v) be the formal polynomials computed by the circuits computing
pda , pdb and pdc respectively. Then gc is problematic if at least on the following holds:

1. Aga,gc 6= 0 or Agb,gc 6= 0.

2. Af ′a,g′c 6= 0 or Af ′b,g′c 6= 0.

3. p̃dc(v) +Apdc ,f ′c 6= (p̃da(v) +Apda ,f ′a) · (p̃db(v) +Apdb ,f
′
b
).

4. Agc,f ′c 6= 0.

5. Afc,f 6= 0.

• If gc is an addition or subtraction gate:

Let p̃a(v), p̃b(v) and p̃c(v) be the formal polynomials computed by the circuits computing pda , pdb
and pdc respectively. Also, if da 6= db let p̃|da−db|(v) be the formal polynomial computed by the
circuit computing p|da−db|. Then gc is problematic if at least on the following holds:

1. da > db, and either (p̃|da−db|(v) +Ap|da−db|,h
′
c
) · (p̃db(v) +Apdb ,f

′
b
) 6= p̃dc(v) +Apdc ,f ′c or p̃da(v) +

Apda ,f ′a 6= p̃dc(v) +Apdc ,f ′c or Ag′b,h′c 6= 0.

18

2. da < db, and either (p̃|da−db|(v)+Ap|da−db|,h
′
c
) · (p̃da(v)+Apda ,f ′a) 6= p̃dc(v)+Apdc ,f ′c or p̃db(v)+

Apdb ,f
′
b
6= p̃dc(v) +Apdc ,f ′c or Ag′a,h′c 6= 0.

3. da = db, and either p̃da(v) +Apda ,f ′a 6= p̃dc(v) +Apdc ,f ′c or p̃db(v) +Apdb ,f
′
b
6= p̃dc(v) +Apdc ,f ′c .

4. Afc,f 6= 0.

5. Agc,f ′c 6= 0 for the case where gc is an addition gate or Agc,f ′c 6= 0 for the case where gc is a
subtraction gate.

We prove the following inner lemma.

Lemma 3.3. If C̃ does not contain any problematic gates then every gate originating from C is
computed correctly (i.e. for every multiplication, addition or subtraction gate gc with inputs ga and
gb it holds that gc = ga · gb, gc = ga + gb or gc = ga − gb if the gate is a multiplication, addition or
subtraction gate respectively). In addition, it holds that f ′c = gc · (pdc +Apdc ,f ′c) for every such gate gc,
and that f ′i = g′i and fc = 0 for non-input gates.

Proof. The proof is by induction on the circuit structure.

Basis. For the case of input gates the claim holds since by the assumption we have that for any
input gate gc it holds that Agc,f ′c = 0.

Induction step. Let gc be a non problematic gate of degree dc and let ga and gb be inputs to gc of
degrees da and db such that both ga and gb are not problematic. Thus we have that our claim holds
for ga and gb. We split the proof of the claim into three cases

• gc is a multiplication gate. The circuits computing gc actually compute the values

gc = (ga +Aga,gc)(gb +Agb,gc) = ga · gb.

The last transition holds from the fact that gc is not problematic. Next, the circuit computing
g′c actually computes

g′c = (f ′a +Af ′a,g′c)(f
′
b +Af ′b,g′c) = f ′a · f ′b = g′a · g′b = gagb(p̃da +Apda ,f ′a)(p̃db +Apdb ,f

′
b
)

= gagb(p̃dc +Apdc ,f ′c) = gc(p̃dc +Apdc ,f ′c) = f ′c.

The second and fifth transitions hold since gc is not problematic, and the third and forth transi-
tions follow from the induction hypothesis. Finally, the circuit computing fc actually computes

fc = gc(p̃dc +Apdc ,f ′c)− g
′
c = gc(p̃dc +Apdc ,f ′c)− gc(p̃dc +Apdc ,f ′c) = 0.

• gc is an addition gate, da > db. Since gc is not problematic we have that Agc,f ′c = 0 Thus, the
circuits computing gc actually compute the values

gc = ga +Aga,gc + gb +Agb,gc = ga + gb.

Next, the circuit computing g′c actually computes

g′c = g′a + h′c

= g′a + (p̃da−db +Apda−db ,h
′
c
) · (g′b +Ag′b,h′c)

= ga(p̃a +Apda ,f ′a) + (p̃da−db +Apda−db ,h
′
c
) · g′b

= ga(p̃a +Apda ,f ′a) + (p̃da−db +Apda−db ,h
′
c
) · gb · (pdb +Apdb ,f

′
b
)

= ga(p̃c +Apdc ,f ′c) + gb · (p̃c +Apdc ,f ′c)

= (ga + gb)(p̃c +Apdc ,f ′c)

= f ′c

19

Finally, the circuit computing fc actually computes

fc = gc · p̃dc − g′c = (ga + gb)p̃dc − (ga + gb)p̃dc = 0.

The first transition follow from the assumption that A does not attack both inputs to fc.

• The case where da ≤ db and the case where gc is a subtraction gadget are treated similarly and
the proof is omitted.

This concludes the proof of Lemma 3.3.

We split the remainder of the proof of Theorem 3.2 into two cases.

There are no problematic gates. We will now prove that if C̃ does not contain any problematic
gates then there exists ain ∈ Fn and a distribution Aout over Fk such that

SD
(
C̃(I), C

(
I + ain

)
+Aout

)
= 0.

Indeed, note that by the above claim and the fact that all the gadgets are not problematic it holds that
f =

∑
c(fc + Afc,f)rc = 0. In addition, notice that the claim above means that all the gates in the

circuit where computed correctly. Let ain be A restricted to the wires carrying x to the input gates of
Ĉ and let aout be A restricted to the output gates of Ĉ. Let Aout be the distribution over Fk defined
as follows: For all 1 ≤ t ≤ k if the wire carrying f into the circuit outputting zt + fr′t is attacked then
Aout
t = U1. Otherwise, Aout

t = aout
t . We have that

SD
(
C̃(I), C

(
I + ain

)
+Aout

)
≤ 0.

There are problematic gates. Recall that the gates are sorted in topological order. Let gc of degree

dc be the first problematic gate in C̃. Let ga and gb be the inputs to gc and let da and db be the degrees
of ga and gb respectively. We split the proof into three cases.

• Suppose the minimal problematic gate is a multiplication gate. Since gc is the minimal problematic
gate the MAC values of ga and gb are computed correctly. Thus, it holds that ga·(p̃da+Apda ,f ′a) = g′a
and that gb · (p̃db +Apdb ,f

′
b
) = g′b. Notice that A causes fc to compute the following expression

fc = ((ga +Aga,gc)(gb +Agb,gc) +Agc,f ′c)(p̃c +Apdc ,f ′c)−
(ga · (p̃da +Apda ,f ′a) +Ag′a,g′c)(gb · (p̃db +Apdb ,f

′
b
) +Ag′b,g′c) +Afc,f .

(1)

We view fc as a polynomial in ga, gb and v.

If (p̃da+Apda ,f ′a)·(p̃db+Apdb ,f
′
b
) 6= (p̃dc+Apdc ,f ′c) then the coefficient (p̃dc+Apdc ,f ′c)−(p̃da+Apda ,f ′a)·

(p̃db +Apdb ,f
′
b
) of the term ga ·gb inside fc is not always zero. Thus, by the Schwartz-Zippel lemma

we have that

SD(C̃(I), Uk) ≤ |F|ε+
d+ 1

|F|
.

Otherwise, it holds that (p̃da +Apda ,f ′a) · (p̃db +Apdb ,f
′
b
) = (p̃dc +Apdc ,f ′c) . Since gc is problematic,

it must be the case that one of the following Aga,gc , Agb,gc , Agc,f ′c , Ag′a,g′c , Ag′b,g′c , and Afc,f is not
zero. Rewriting Equation 1 above we obtain

fc = Aga,gcgb(p̃dc +Apdc ,f ′c) +Agb,gcga(p̃dc +Apdc ,f ′c) + (Aga,gcAgb,gc +Agc,f ′c)(p̃dc +Apdc ,f ′c) +

Ag′b,g′cga(p̃da +Apda ,f ′a) +Ag′a,g′cgb(p̃db +Apdb ,f
′
b
) +Ag′a,g′cAg′b,g′c +Afc,f . (2)

20

Notice that p̃dc + Apdc ,f ′c is a polynomial in v of degree dc at most. If Aga,gc 6= 0 the term
g̃b(p̃dc + Apdc ,f ′c) has a non zero coefficient Aga,gc . Thus, by the Schwartz-Zippel lemma we have
that

SD(C̃(I), Uk) ≤ |F|ε+
d+ 1

|F|
.

Similarly, using the terms Agb,gcga(p̃dc + Apdc ,f ′c), Agc,f ′c(p̃dc + Apdc ,f ′c), Ag′b,g′cga · (p̃da + Apda ,f ′a),
Ag′a,g′cgb · (p̃db + Apdb ,f

′
b
) and Afc,f it can be shown that if Agb,gc , Agc,f ′c , Ag′a,g′c , Ag′b,g′c and Afc,f

are not zero then by the Schwartz-Zippel lemma we have that

SD(C̃(I), Uk) ≤ |F|ε+
d+ 1

|F|
.

• Suppose the minimal problematic gate is an addition gate and that da > db (without loss of
generality). Since gc is the minimal problematic gate the MAC values of ga and gb are computed
correctly. Thus, it holds that ga · (p̃da + Apda ,f ′a) = g′a and that gb · (p̃db + Apdb ,f

′
b
) = g′b. Notice

that A causes fc to compute the following expression

fc = (ga + gb +Agc,f ′c)(p̃dc +Apdc ,f ′c)− (3)

ga · (p̃da +Apda ,f ′a)− (p̃|da−db|(v) +Ap|da−db|,h
′
c
) · (p̃db(v) +Apdb ,f

′
b
) · gb −

(p̃|da−db|(v) +Ap|da−db|,h
′
c
) ·Ag′b,h′c .

Again, we view fc as a polynomial in ga, gb and v. If p̃da(v) + Apda ,f ′a 6= p̃dc(v) + Apdc ,f ′c then
the coefficients of ga inside fc are not always zero. Similarly, if (p̃|da−db|(v) +Ap|da−db|,h

′
c
)(p̃db(v) +

Apdb ,f
′
b
) 6= p̃dc(v) +Apdc ,f ′c then the coefficients of gb are not always zero (again inside fc). In both

cases, by the Schwartz-Zippel lemma we have that

SD(C̃(I), Uk) ≤ |F|ε+
d+ 1

|F|
.

Otherwise, if Agc,f ′c 6= 0 then the non-zero polynomial p̃dc(v) +Apdc ,f ′c is multiplied by a non-zero
constant inside fc. Similarly, if Ag′b,h′c 6= 0 then the non-zero polynomial (p̃|da−db|(v) +Ap|da−db|,h

′
c
)

is multiplied by a non-zero constant inside fc In both cases, by the Schwartz-Zippel lemma we
have that

SD(C̃(I), Uk) ≤
d+ 1

|F|
.

Also notice that if Af,fc 6= 0 then again by the Schwartz-Zippel lemma we have that

SD(C̃(I), Uk) ≤
1

|F|
.

• The case where the minimal problematic gadget is a subtraction gadget is treated similarly and
the proof is omitted.

This concludes the proof of Theorem 3.2 above.

3.2.2 Obtaining locally-random circuits

In this section we present a general transformation mapping any arithmetic circuit C into a locally
random circuit C ′ whose output encodes the output of C. Similar transformations were previously used
for the purpose of protecting circuits against leakage [ISW03, IKO+11]. Here we show that a natural

21

generalization of a transformation from [IKO+11] to the arithmetic setting and show that it satisfies the
required local randomness property, namely that the pair of inputs to each gate in C ′ have almost full
entropy. Similarly to [IKO+11], each wire a inside C (including input and output wires) will be split
into two wires, one masked by r1 and the other masked by r2. Each gate c of C with inputs a, b will
be replaced by a gadget that maps (a+ r1, a+ r2, b+ r1, b+ r2) to (c+ r1, c+ r2). The gadget has the
property that the inputs of every internal gate are almost completely random (assuming that r1 and r2

are random). The two random field elements r1, r2 will be reused for the whole circuit.

Construction 3.4. The gadget add is the circuit that, on input (r1, r2, v1, v2, v3, v4) performs the fol-
lowing: (the circuit will be always used where v1 = a+ r1, v2 = a+ r2, v3 = b+ r1, v4 = b+ r2)

1. Compute v5 = v1 + v4 (note that v5 = a+ b+ r1 + r2).

2. Compute v6 = v5 − r2 (note that v6 = a+ b+ r1).

3. Compute v7 = v5 − r1 (note that v7 = a+ b+ r2).

4. Output (v6, v7).

Similarly, the gadget sub is the circuit that, on input (r1, r2, v1, v2, v3, v4) performs the following: (the
circuit will be always used where v1 = a+ r1, v2 = a+ r2, v3 = b+ r1, v4 = b+ r2)

1. Compute v5 = v1 − v4 (note that v5 = a− b+ r1 − r2).

2. Compute v6 = v5 + r2 (note that v6 = a− b+ r1).

3. Compute v7 = v5 + r2 (note that v7 = a− b+ r1 + r2).

4. Compute v8 = v7 − r1 (note that v7 = a− b+ r2).

5. Output (v6, v8).

The following obvious lemma show that the distribution of the inputs of every gate is indeed uniform.

Lemma 3.4. For any values a, b ∈ F, for any two wires (w1, w2) that are the inputs to the same gate
in the circuits add, sub defined in Construction 3.4 and for any x, y ∈ F we have that

Pr
r1,r2

[(w1, w2) = (x, y)] ≤ 1

|F|2
.

Similarly, we define the multiplication gadget mult as follows:

Construction 3.5. The gadget mult is the circuit that, on input (r1, r2, v1, v2, v3, v4) performs the
following: (the circuit will be always used where v1 = a+ r1, v2 = a+ r2, v3 = b+ r1, v4 = b+ r2):

1. Compute v5 = v1v4 (note that v5 = ab+ r1b+ r2a+ r1r2).

2. Compute v6 = v1r2 (note that v6 = ar2 + r1r2).

3. Compute v7 = v4r1 (note that v7 = br1 + r1r2).

4. Compute v8 = v5 + r2 (note that v8 = ab+ r1b+ r2a+ r1r2 + r2).

5. Compute v9 = v8 − v6 (note that v9 = ab+ r1b+ r2).

6. Compute v10 = v9 − v7 (note that v10 = ab+ r2 − r1r2).

7. Compute v11 = r1r2

22

8. Compute v12 = v10 + v11 (note that v12 = ab+ r2).

9. Similarly, compute v13 = ab+ r1

10. Output (v12, v13)

Lemma 3.5. For any values a, b ∈ F, for any two wires (w1, w2) that are the inputs to the same gate
in the circuit mult defined in Construction 3.5 above and for any x, y ∈ F we have that

Pr
r1,r2

[(w1, w2) = (x, y)] ≤ 2

|F|2
.

Using constructions 3.4 and 3.5 we can now randomize general circuits as follows. We start from a
circuit C that contains only addition, subtraction and multiplication gates. We replace all multiplication,
addition and subtraction gates with the gadgets from Constructions 3.5 and 3.4 respectively and obtain
C ′. Notice that both gadgets assume that their inputs are encoded is a specific way. That is, every
input wire x is split into two wires x+ r1 and x+ r2. We thus add additional gates to C ′ that generate
two new random values r1, r2 and encode every input xi of C to (xi + r1, xi + r2). We also require that
C ′ will output r1 and the first element of each wire pair. This will allow us to define a decoder circuit
Dec in order to decode the outputs. Formally, consider Construction 3.6 below.

Construction 3.6. Let C : Fn → Fk be a circuit. Consider the circuits (C ′,Dec) that are defined as
follows.

• The circuit C ′ is constructed as follows.

1. C ′ on input x generates random field elements r1, r2 ∈ F for every i computes x′i = (xi +
r1, xi + r2).

2. Every gate of C is replaced in C ′ by the corresponding gadget as described above.

3. Let y1, . . . , yk be the first elements from wire pairs corresponding to the output. C ′ will output
(r1, y1, . . . , yk).

• The circuit Dec on input (r1, y1, . . . , yk) outputs (y1 − r1, . . . , yk − r1).

We now claim that the circuits resulting from Construction 3.6 are an O
(

1
|F|2

)
-random implementa-

tion of C with respect to all input distributions in which every input element is (individually) uniform.
Formally,

Theorem 3.3. For any circuit C : Fn → Fk, the circuits (C ′,Dec) resulting from applying Construc-
tion 3.6 to C have the following properties:

• Completeness. For any x ∈ Fn it holds that C(x) = Dec(C ′(x)).

• Randomization. The circuit C ′ is a 2
|F|2 -random circuit with respect to every input distribution I

in which each entry Ij is distributed uniformly over F.

• Complexity. The size of C ′ is O(|C|).

Proof. The completeness and complexity properties easily follow from the construction. As for the
randomization property, we need the prove that the inputs of every gate inside C ′ are random. Indeed,
notice that every the inputs of every gate that is part of the gadgets add, sub and mult are 2

|F|2 -random.

Next, for every addition gate created during Step 1 of Construction 3.6, one of its inputs is a wire from
circuit’s input that looks uniform in I and the other is an output of a randomness gate.

23

3.2.3 Additive-attack security for arbitrary inputs

We now present our construction for additive-attack security of low-degree circuits for arbitrary inputs.
We use a simple randomized input encoding to ensure that the input distribution I satisfies the required
local randomness property.

Construction 3.7. Let C : Fn → Fk be a circuit. We define the circuit CAUG : Fn+1 → Fk that on
input x0, . . . , xn outputs C(x1 − x0, . . . , xn − x0).

We are now ready to present the main construction to secure low-degree circuits over arbitrary
inputs.

Construction 3.8. Let C : Fn → Fk be a circuit. We construct Ĉ from C via the following transfor-
mations.
• Construct CAUG from C using Construction 3.7 (to unmask the inputs of C).
• Construct (C ′,Dec) from CAUG using Construction 3.6 (to randomize all wires inside CAUG).
• Construct Ĉ ′ from C ′ using Construction 3.3 (to additively secure C ′).

Consider the circuit Ĉ that on input x preforms the following.
• Generate a random field element r ∈ F.
• Compute x′ = (r, x1 + r, . . . , xn + r).
• Compute y = Ĉ ′(x′).
• Output Dec(y).

We claim that Construction 3.8 above transforms any low-degree circuit C to an additively secure
circuit Ĉ.

Theorem 3.4. For any arithmetic circuit C of degree d the circuit Ĉ obtained by applying Construc-

tion 3.8 to C is an O
(
d
|F|

)
-secure implementation of C.

Proof. The completeness property easily follows from the construction of Ĉ. To show the additive-
attack security property, consider any additive attack A. Since the subcircuits computing x′ and Dec(y)
only contain addition and subtraction gates we can assume without loss of generality that A only attacks
the circuit ĈAUG inside Ĉ. For any x ∈ Fn define the distribution X = (r, x1 + r, . . . , xn + r) where r
is a random element from F. By Theorem 3.3 we have that for any x it holds that C ′ is a 2

|F2| -random

circuit with respect to the distribution X . Thus, by Theorem 3.2 we have that there exists a′ in ∈ Fn+1

and a distribution A′ out over Fk+1 such that for any x ∈ Fn

SD
(
C̃AUG(X), CAUG

(
X + a′ in

)
+A′ out

)
≤ O

(
d

|F|

)
where C̃AUG ← A(ĈAUG). Define the distribution Aout = Dec(A′ out). By claim 2.2 we have that

SD
(

Dec(C̃AUG(X)),Dec
(
CAUG

(
X + a′ in

))
+Aout

)
≤ O

(
d

|F|

)
.

In addition, define ain = (a′ in1 − a′ in0 , . . . , a′ inn − a′ in0). Thus we have that for all x ∈ Fn

SD
(
C̃(x), C

(
x + ain

)
+Aout

)
≤ O

(
d

|F|

)
.

24

3.2.4 A counterexample for small fields

Construction 3.8 above assumes the existence of a way to secure constant degree circuit with respect to
a specific class of input distributions. This goal is achieved by Construction 3.3 above. Unfortunately,
over the binary field, Construction 3.3 fails to achieve any meaningful security. The following is an attack
that will allow one to flip arbitrary wires that are the inputs to a multiplication gadget even when the
inputs of the multiplication gate corresponding to it are completely random. Let C be a ε-locally-random
circuit over the binary field with respect to some input distribution I. By construction 3.3 for every
multiplication gate gc inside C with inputs ga and gb we have that Ĉ adds another multiplication gate
g′c with inputs g′a and g′b. Notice that every multiplication gate in the circuit is verified by computing
fc = gc · pdc − g′c = gc · pdc − g′a · g′b where dc is the degree of gc. Theorem 3.2 proves that it is impossible
to modify ga and gb without fc becoming non-zero with high probability.

Unfortunately, this is true only for large fields. Consider an attack that adds the constant 1 to ga
and g′a. Notice that

fc = gc · pdc − (g′a + 1) · g′b = (ga + 1)gbv
dc − gavda · gbvdb + vdbgb = (ga + 1)gbv − v · ga · gb + vgb = 0

which passes the check of fc = 0. The main reason why this attack is successful its that over the binary
field it holds that vdc = vda = vdb = v for all da, db, dc ∈ N. This can also be seen in the diagram
presented in Figure 3.2.1 above. Notice that for the case of the binary field, multiplying ga and gb by
pda and pdb obtaining f ′a and f ′b respectively and then multiplying both f ′a and f ′b is always the same as
multiplying ga by gb and by pdc since it is the case that pdc = pda = pdb = v. Thus, we have managed

to modify the value of a wire inside Ĉ even when the inputs of each multiplication gate are completely
random.

3.3 Protecting arbitrary circuits over large finite fields

In Section 3.2 we presented a transformation that meets the goal of additive-attack security (see Defi-
nition 1.1) for low-degree circuits. However, the field size required for obtaining security grows linearly
with the degree of the circuit. Thus, in some cases, the field size must grow exponentially with the
circuit size. In this section, we would like to present a transformation where the field size can be much
smaller. We first present a construction using small tamper-proof components and later eliminate these
components.

3.3.1 A solution using tamper-proof components

As an intermediate step, we show a construction that assumes tamper-proof components (which will
be subsequently replaced by gadgets built of regular gates, see Section 3.3.2). Suppose we are given
tamper-proof components Gadd, Gsub and Gmul, that receive a pair of AMD-encoded inputs for a gate g,
decode the inputs, compute the output of g, and finally produce a fresh AMD encoding of this output.

Construction 3.9. Let (Enc,Dec) be a private (1, k, εAMD)-AMD code. Formally, we define the circuit
Gmul : Fk × Fk → Fk as follows. G on the inputs (x,y) performs the following:

1. Compute (b, x′)← Dec(x).

2. Compute (b′, y′)← Dec(y).

3. Compute f ← r1b+ r2b
′ where r1, r2 are random field elements.

4. Compute z ← x′ · y′.

5. Output (Enc(z), f).

25

Similarly, we define the circuits Gadd : Fk × Fk → Fk, Gsub : Fk × Fk → Fk the same way as Gmul

except that step 4 is replaced with z ← x′ + y′ and z ← x′ − y′ respectively.

Such components can be used in a straightforward way to obtain AMD circuits: first, replace every
addition, subtraction and multiplication gate in C with Gadd, Gsub and Gmul respectively. Next, append
to each output gate an AMD decoder circuit Dec to perform the output decoding. Finally, combine the
error flags of all the Dec circuits such that in case one of the decodings fails, the output of the entire
circuit will be random. Since Gadd, Gsub, Gmul verify their inputs and encode the outputs, the security
of the AMD code guarantees that any additive attack on the internal wires of C will be caught with
relatively high probability. Formally,

Construction 3.10. Let C : Fn → Fk be a circuit containing only addition and multiplication gates
and let (Enc,Dec) be the private (1, k, εAMD)-AMD code used in Construction 3.9. We build Ĉ : Fn → Fk
over the gate set G = {Gadd, Gsub, Gmul,Dec,Enc} in the following way:

• For every input gate gc of C, Ĉ will compute x′c ← Enc(xc) where xc is the input corresponding
to gc.

• Replace the gates of C in topological order. For each gate gc with inputs ga and gb, replace gc with
Gadd, Gsub and Gmul based on the gate type of gc. Let Gc be the resulting gate, connect the inputs
of Gc to the first outputs of Ga and Gb.

• For each output gate gc connect a circuit Dec to the first output of Gc.

• Let m be the number of gates from G used so far and let fi be the second output of the i-th gate
from G used so far. Generate r ∈ Fm uniformly at random and compute f ← rifi.

• Generate a vector r′ ∈ Fk uniformly at random.

• Let zi be the first output of the i-th Dec gate. Output (z1, · · · , zk) + fr′.

Theorem 3.5. For any circuit C : Fn → Fk the randomized circuit Ĉ : Fn → Fk constructed in
Construction 3.10 over the gate set G is an 1 − (1−εAMD)(|F|−1)

|F| -secure implementation of C. Moreover,

Ĉ = O(|C|).

Proof. The completeness and complexity properties easily follow from the construction of Ĉ. To
show the additive-attack security property, consider any additive attack A and let C̃ ← A(Ĉ). We split
the proof into two cases.

• A attacks one of the inputs of some gateG of typeGmul, Gadd, Gsub and Dec. LetGi be the maximal
attacked by A (in some topological ordering of the gates of Ĉ). By the additive robustness of
(Enc,Dec) we have that the second output fi of Gi is not zero with probability (1− εAMD). This

causes f to be non-zero with probability of (1−εAMD)(|F|−1)
|F| . Thus we have that for any x ∈ Fn it

holds that

SD
(
C̃(x), Uk

)
≤ 1− (1− εAMD)(|F| − 1)

|F|
.

• A does not attack any of the inputs of gates of type Gmul, Gadd, Gsub and Dec in Ĉ. Let ain be
A restricted to the wires carrying x to the Enc circuits. In addition, for any i let aouti ∈ F be A

restricted to the second output the gate Dec C̃ that is outputting the i-th output. Let Aout be
the distribution over Fk defined as follows: for all 1 ≤ i ≤ k if the wire carrying f into the circuit
outputting zi is attacked then Aout

i = U . Otherwise, Aout
i = aouti . Thus we have that for any

x ∈ Fn it holds that
SD

(
C̃(x), C

(
x + ain

)
+Aout

)
= 0.

26

Corollary 3.1. There exists a finite gate set G such that for any arithmetic circuit C over some
finite field F, there exists an arithmetic circuit Ĉ of size O(|C|) over G such that Ĉ is an ε-secure

implementation of C, where ε = 1− (|F|−1)2

|F|2 .

Proof. We use the Construction 3.10 and a private (1, k, 1
|F|)-AMD code from Corollary 2.1.

3.3.2 Additive-attack security for arbitrary circuits

The tamper-proof components of the previous construction can be eliminated in a natural way by
first implementing each component using a (constant-size) arithmetic circuit and then applying the
construction for low-degree circuits to protect this circuit against additive attacks. Security is implied
by the following composition theorem.

Construction 3.11. Let F be a field, C : Fn → Fk be an arithmetic circuit, C ′ : Fn → Fk be circuit
over some gate set G containing m gates G1, . . . , Gm from G such that C ′ is an ε-secure implementation
of C. In addition, for all 1 ≤ i ≤ m let Ĝi be an εi-secure implementation of Gi. Consider the circuit
Ĉ : Fn → Fk over the gate set {+,−,×} where the gate Gi is replaced with Ĝi for every i.

Theorem 3.6. For any circuit C : Fn → Fk the circuit Ĉ : Fn → Fk constructed in Construction 3.11
is an (ε+

∑m
i=1 εi)-secure implementation of C.

Proof. The completeness property easily follows from the construction of Ĉ. To show the additive-
attack security property, consider any additive attack A. Let C̃ ← A(C), and let Ai be A restricted to
Ĝi. By the security property of Ĝi it holds that there exist ain

Ĝi
and a distribution Aout

Ĝi
such that for

all x it holds that
SD

(
G̃i(x), Gi(x + ain

Ĝi
) +Aout

Ĝi

)
≤ εi,

where G̃i ← Ai(Ĝi). Using Claim 2.1 we have that all the ain
Ĝi

’s and Aout
Ĝi

’s induce an additive attack

A′ on C ′ such that for all x ∈ Fn

SD(C̃(x), C̃ ′(x)) ≤
m∑
i=1

εi

where C̃ ′ ← A′(C ′).
By the ε-security of C ′ there exist ain ∈ Fn and a distribution Aout over Fk such that for all x ∈ Fn

SD(C̃ ′(x), C(x + ain) +Aout) ≤ ε

where C̃ ′ ← A′(C ′). Thus, using Claim 2.2 we have that

SD(C̃(x), C(x + ain) +Aout) ≤ ε+

m∑
i=1

εi.

Theorem 3.7 below states that any circuit C can be compiled into a circuit Ĉ that is secure against
additive attacks. Moreover, the size of Ĉ is O(|C|).

Theorem 3.7. For any field F and an arithmetic circuit C : Fn → Fk there exists a circuit Ĉ : Fn → Fk
of size O(|Ĉ|) such that Ĉ-is an ε-secure implementation of C where ε = O (|C|/|F|).

27

Proof. Instantiate Construction 3.11 with the transformations from Corollary 3.1 and Construc-
tion 3.8.

We now state the following theorem about security against additive attack with a tamper-proof
encoder and decoder.

Theorem 3.8. Let n, k be positive integers and F be a finite field. Then, there exist a randomized input
encoder circuit Enc : Fn → Fn′ of size O(n) and an output decoder circuit Dec : Fk′ → F × Fk of size
O(k) such that the following holds. For any arithmetic circuit C : Fn → Fk there exists a randomized
circuit Ĉ : Fn′ → Fk′ of size O(|C|), such that for any additive attack A it holds that

• Perfect completeness. For any input x ∈ Fn, we have that

Pr[Dec(Ĉ(Enc(x))) = (0, C(x))] = 1.

• Additive-attack correctness. For any input x ∈ Fn, we have that

Pr
[
C̃ ← A(C) : Dec(C̃(Enc(x))) /∈ ERR ∪ {(0, C(x))}

]
= O(|C|/|F|).

Proof. Assume without loss of generality that n = k and let (Enc,Dec) be an (n, n′, |C|/|F|)-AMD
code. Define the circuit C ′ : Fn′ → Fn′ that on input x ∈ Fn performs the following:

1. Compute (b,x′)← Dec(x).

2. Compute z← C(x′).

3. Output Enc(z) + br where r ∈ Fn′ is a random vector.

The circuit Ĉ is obtained by taking an O(|C|/|F|) secure implementation of C ′.

4 AMD circuits over small finite fields

4.1 Correctness with constant error probability without a decoder

The construction of Section 3.3 is secure only for large finite fields, as discussed in Section 3.2.4. Here,
we present a construction that has achieves the weaker notion of additive-attack correctness with a
decoder (see Definition 1.2), with constant error probability that does not depend on the underlying
field size. In Section 4.2.1 we will show how to amplify its correctness.

We sometimes would like to consider a notion of additive-attack correctness that is stronger than
additive-attack correctness with a decoder as defined in Definition 1.2, yet weaker than full additive-
attack security as defined in Definition 1.1. In this intermediate notion, Ĉ should detect, with high
probability, any additive attack made on it that does not correspond to an additive attack on the inputs
and outputs of C. When such an attack is detected, we require that Ĉ will set a special error flag to be
non-zero. Formally,

Definition 4.1 (Additive-attack correctness without decoder). Let F be a finite field and let f : Fn →
Fk. We say that a randomized circuit Ĉ : Fn → Fk+1 is an ε-correct implementation of f without a
decoder if the following holds:

• Perfect completeness. For all x ∈ Fn, it holds that

Pr[Ĉ(x) = (0, f(x))] = 1

where the probability is taken over the randomness of Ĉ.

28

• Additive-attack correctness. For any additive attack A, there exists ain ∈ Fn and aout ∈ Fk such
that for all x ∈ Fn it holds that

Pr

[
C̃ ← A(Ĉ) : C̃(x) /∈ ERR ∪ {(0, f(x + ain) + aout)}

]
≤ ε.

where the probability is taken over the randomness of Ĉ. We say that Ĉ is an ε-correct imple-
mentation of a (deterministic or randomized) circuit C without a decoder if Ĉ is an ε-correct
implementation of the function f computed by C without a decoder.

4.1.1 Additively correct scalar-by-vector multiplier

In this section we consider the task of multiplying a vector v ∈ Fn for some positive integer n and a
finite field F by a field element c ∈ F. That is, for every positive integer n we would like to design
n-scalar-by-vector multiplier circuit Cn that gets as input a vector v ∈ Fn and a scalar x ∈ F and
outputs z = vx. In this section we present an 1

|F| -correct implementation of Cn without a decoder for
any positive integer n.

Notice that for the case where n = 1 this task can be easily achieved using a single multiplication
gate. This does not holds for larger values of n. For example, for n = 2 we have that z1 = v1x and
z2 = v2x. However, consider the attack where z̃1 = (x+ a)v1 and z̃2 = xv2 for some a 6= 0. Since each
coordinate of v got multiplied by a different value this attack does not correspond to any attack on the
inputs and outputs of the circuit. We thus show the following construction of a correct implementation
of Cn without a decoder for any positive integer n. The main idea of the construction is similar to the
randomized algorithm of Freivalds [Fre77] for matrix multiplication verification.

Construction 4.1. Let F be a finite field and let n be positive integer. Consider the circuit Ĉ defined
as follows: On input (v, x), where v ∈ Fn, v = (v1, · · · , vn), and x ∈ F, the circuit Ĉ does the following:

1. Generate a vector r ∈ Fm uniformly at random.

2. For all 1 ≤ i ≤ n, compute zi = x · vi and define z = z1, · · · , zn.

3. Compute q = r · z.

4. Compute y = r · v.

5. Compute q′ = x · y.

6. Compute f = q − q′.

7. Output (f, z).

Lemma 4.1. The circuit Ĉ constructed in Construction 4.2 is an ε-correct implementation of an n-
scalar-by-vector multiplier without a decoder for ε = 1

|F| .

Proof. The completeness property easily follows from the construction of Ĉ. To show the additive-
attack correctness property, consider any additive attack A on Ĉ. Let x ∈ F and v ∈ Fn. By the
definition of Ĉ it holds that the subcircuits computing q′ and the coordinates z1, . . . , zn of z in steps 2
and 5 can be expressed in the following equations:

zi = x · vi,

q′ = x ·

(
n∑
i=1

ri · vi

)
.

29

By Lemma 2.1 we can assume without loss of generality that A only attacks the inputs of multiplication
and output gates inside C̃. That is, A causes the subcircuits computing z1, . . . , zn and q′ inside C̃ to
compute the following

zi = (x+Ax,zi)(vi +Avi,zi) = xvi + xAvi,zi +Ax,zivi +Ax,ziAvi,zi .

q′ = (x+Ax,q′) ·

(
Ay,q′ +

n∑
i=1

(ri +Ari,y) · (vi +Avi,y)

)

= (x+Ax,q′) ·

(
n∑
i=1

(rivi + riAvi,y +Ari,yvi +Ari,yAvi,y)

)
+Ay,q′(x+Ax,q′)

=
n∑
i=1

ri(xvi +Ax,q′vi + xAvi,y +Ax,q′Avi,y)

+ (x+Ax,q′) ·
n∑
i=1

(Ari,yvi +Ari,yAvi,y) +Ay,q′(x+Ax,q′).

Let a be A restricted to output of the gate computing f . By the definition of C̃ it holds that

Pr

[
C̃ ← A(Ĉ) : C̃(v, x) /∈ ERR

]
≤ Pr

r
[f − a = 0] .

We split the proof of the theorem into two cases:

• There exists i such that

xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q −Ax,q′vi − xAvi,y −Ax,q′Avi,y 6= 0.

Recall that Ar,q ∈ Fm and Az,q ∈ Fn are the restriction of A to the wires carrying r to q and z to
q respectively. Notice that A causes the subcircuit computing f to compute the following:

f = q − q′

= (r + Ar,q)(z + Az,q)− q′

=
n∑
i=1

(ri +Ari,q)(zi +Azi,q)− q′

=

n∑
i=1

(ri +Ari,q)(xvi + xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q)

−
n∑
i=1

ri(xvi +Ax,q′vi + xAvi,y +Ax,q′Avi,y)

−(x+Ax,q′) ·
n∑
i=1

(Ari,yvi +Ari,yAvi,y) +Ay,q′(x+Ax,q′)

=
n∑
i=1

ri(xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q −Ax,q′vi − xAvi,y −Ax,q′Avi,y)

+

n∑
i=1

Ari,q(xvi + xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q)

−(x+Ax,q′) ·
n∑
i=1

(Ari,yvi +Ari,yAvi,y) +Ay,q′(x+Ax,q′)

30

Fix a selection for all the coordinates of r but the ith coordinate. By assumption it holds that

xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q −Ax,q′vi − xAvi,y −Ax,q′Avi,y 6= 0.

Thus, f is of the form f = c1ri + c2 where c1, c2 ∈ F and c1 6= 0. Thus we have that

Pr

[
C̃ ← A(Ĉ) : C̃(v, x) /∈ ERR

]
≤ Pr

r
[f − a = 0] ≤ Pr

ri
[c1ri + c2 − a = 0] ≤ 1

|F|
.

• Otherwise, for all i it holds that

xAvi,zi +Ax,zivi +Ax,ziAvi,zi +Azi,q −Ax,q′vi − xAvi,y −Ax,q′Avi,y = 0.

Then, for all i it holds that

zi = xvi + xAvi,zi +Ax,zivi +Ax,ziAvi,zi

= xvi +Ax,q′vi + xAvi,y +Ax,q′Avi,y −Azi,q
= (x+Ax,q′)(vi +Avi,y)−Azi,q.

Let ain ∈ Fn be a vector such that aini = Avi,y and let az be A restricted to the wires carrying z
to the output. Define the vector aout ∈ Fn be a vector such that aout

i = azi +Azi,q. We have that

Pr

[
C̃ ← A(Ĉ) : C̃(v, x) /∈ ERR ∪ {(0, (v + ain)(x+Ax,q′) + aout)}

]
= 0.

4.1.2 Additively correct matrix-by-vector multiplier

Let F be a finite field and n,m be positive integers. An (m × n)-multiplier over F is a circuit Cm×n
that gets as input a vector w ∈ Fn and a matrix M ∈ Fm×n. The circuit then outputs z = Mw. In
this section we present a (1−ε

|F| + ε)-correct implementation of Cm×n without a decoder as defined in
Definition 4.1 above using an ε-correct vector-by-scalar multiplier. By combining this construction with
Construction 4.1 we will obtain a (2|F|−1

|F|2)-correct implementation of Cm×n
Notice that in the case where m = 1 the circuit C1×n computes the inner product of w and M

over F. Since in this case the circuit C1×1 has multiplicative depth 1 and no internal fan-out, the
naive implementation of Ĉ (coordinate-wise multiplication followed by summing up the result) has the
desired additive-attack correctness property. This does not hold for larger values of m.8 We thus show
the following construction of a correct implementation of Cm×n without a decoder for any n,m ∈ N.

Construction 4.2 (Matrix multiplier). Let F be a finite field and let n,m be positive integers. In
addition, let C ′ be an ε′-correct implementation of an m-scalar-by-vector without a decoder. Consider
the circuit Ĉ defined as follows. On input (M,w), where w ∈ Fn and (M1, . . . ,Mn) are the columns of
an m× n matrix M over F, the circuit Ĉ does the following:

1. For every 1 ≤ i ≤ n compute (fi,y
i) = C ′(Mi, wi).

9

8For example, for m = 2 we have that z1 = M1w and z2 = M2w where M1 and M2 are the rows of the matrix M .
However, consider the attack where z̃1 = M1w and z̃2 = M2(w + a) for some a 6= 0. Since each row of the matrix got
multiplied by a different value this attack does not correspond to any attack on the inputs and outputs of C2×n.

9We observe that for the construction to hold it enough to run all the different copies of C′ with the same randomness.

31

2. For every 1 ≤ j ≤ m compute zj =
∑m

i=1 y
i
j

3. For every 1 ≤ i ≤ m compute f =
∑m

i=1 rifi where ri ∈ F is a random field element.

4. Define z = z1, · · · , zm.

5. Output (f, z).

Lemma 4.2. The circuit Ĉ constructed in Construction 4.2 is an ε-correct implementation of an (n,m)-

multiplier without a decoder for ε = 1− (1−ε′)(|F|−1)
|F| = 1−ε′

|F| + ε′.

Proof. The completeness property easily follows from the construction of Ĉ. As for the additive-
attack correctness property, since C ′ is a correct implementation of an n-scalar-by-vector multiplier we
have that for all i any attack on C ′i is equivalent to an attack on the inputs and outputs of C ′i or will

cause fi to become non-zero with probability at least 1− ε′. Let A be an attack on Ĉ.
If there exists i such that fi is non-zero with probability of at least 1− ε′ we have that f is non-zero

with probability of at least (1−ε′)(|F|−1)
|F| and the theorem follows.

Otherwise, we have that for any i the attack on C ′i is equivalent to an attack on the inputs and

outputs of C ′i. By the design of Ĉ we have that for all i the attack on the inputs of C ′i is equivalent

to an attack on the inputs of Ĉ. Similarly, since the circuits computing z only contain addition gates,
by Lemma 2.1 we have that for all i the attack on the outputs of C ′i is equivalent to an attack on the

outputs of Ĉ.

Remark 4.1. Construction 4.2 above uses n + m random field elements in order to correctly imple-
ment an (m× n)-multiplier. A more efficient (but harder to analyze) construction can be obtained by
combining Constructions 4.1 and 4.2 above. That it, in order to multiply an m × n matrix M by a
vector x ∈ Fn one can compute z = Mx; q = (rTM)x; f = rT z− q and output (f, z + fr′) where r and
r′ are generated uniformly from Fn and Fm respectively.

4.1.3 Additively correct circuits with quadratic overhead

In this section we construct an |F|−Ω(1)-correct implementation with quadratic overhead for arbitrary
circuits containing only bilinear gates over any field F. The construction will rely on a simplified version
of the Hadamard PCP of [ALM+92]. In the standard PCP setting the prover provides a proof string
to a verifier. The verifier, in turn, verifies that the provided proof string has some desired additive
properties. It is assumed that the prover can be dishonest and that the verifier is always honest.

We prove that when we limit the adversary to additive attacks, we in fact can allow attacks on the
verifier as well as on the prover without losing soundness. Thus, we obtain a way of verifying that the
computation of the circuit was done correctly.

We will use special gates called bilinear gates. Each such gate gets as input an unbounded number
of wires from the left and from the right and has one output wire. For a bilinear gate v denote by left(v)
and right(v) the numbers of the left and right input wires respectively of v. The output wire wv of v is

defined as wv =
(∑

i∈left(v)wi

)(∑
j∈right(v)wj

)
. In the sequel we will assume that C only has gates of

the form wv =
(∑

i∈left(v)wi

)(∑
j∈right(v)wj

)
for some gate v. We can make this assumption without

loss of generality since by setting |left(v)| = 2, |right(v)| = 1 and yj = 1 where j ∈ right(v) we obtain
an addition gate and by setting |left(v)| = |right(v)| = 1 we obtain a multiplication gate. Thus, every
arithmetic circuit can be implemented using such bilinear gates (see Remark 3.1 regarding the support
of constant gates).

Before presenting construction, we notice that for degree 2 circuits that does not have any fanout,
we can assume without loss of generality that only the inputs and outputs of C are attacked since the

32

attack on the internal wires of C can be pulled “upstream” through the addition gates until the inputs
of C. Formally,

Lemma 4.3. Let C(x) be a randomized arithmetic circuit of degree 2 that does not have any internal
fanout and one gates. In addition, let A be an additive attack. We claim that there exists an additive
attack A′ that only attacks the inputs and outputs of C such that for all x it holds that

C̃(x) ≡ C̃ ′(x)

where C̃ ← A(C) and C̃ ′ ← A′(C).

We now present our construction for additively secure circuits with quadratic overhead.

Construction 4.3. Let C : Fn → Fk be a circuit containing t bilinear gates, C3×t be an ε′-correct
implementation of a (3× t)-multiplier and C2×t2 be an ε′-correct implementation of a (2× t2)-multiplier.

Consider the circuit Ĉ : Fn → Fk+1 defined as follows on input x:

1. Compute the circuit C on input x and obtain an output z together with a vector w ∈ Ft representing
the intermediate values of all the gate outputs during the computation of C on the input x. We
require that the last k entries of w will contain the outputs of the gates connected to the outputs
of C.

2. Compute the vector w′ ∈ Ft×t as follows: for any 1 ≤ i, j ≤ t set w′i,j = wi · wj.

3. Generate two random vectors r, s from Ft.

4. Compute the vector q ∈ Ft×t as follows: for any 1 ≤ i, j ≤ t set qi,j = ri · sj.

5. Generate a random vector p ∈ Ft.

6. Let u ∈ Fk be the last k entries of p. That is, for all 1 ≤ i ≤ k we define ui = pt−1+i.

7. For any 1 ≤ j, j′ ≤ t define the set Ij,j′ = {i : j ∈ left(i) and j′ ∈ right(i)}.

8. Generate the vector q′ ∈ Ft×t as follows: for all 1 ≤ j, j′ ≤ t set q′j,j =
∑

i∈Ij,j′
pi.

9. Compute (f1, (v
rw, vsw, vpw))← C3×t(M,w) where M is a matrix whose rows are r, s,p.

10. Compute (f2, (v
qw′ , vq

′w′))← C2×t2(M ′,w′) where M ′ is a matrix whose rows are q,q′.

11. Generate r1, r2, r3, r4 ∈ F uniformly at random.

12. Compute f = r1(vrw · vsw − vqw′) + r2(vpw − vq′w′ − zTu) + r3f1 + r4f2.

13. Output (f, z).

Theorem 4.1. For any circuit C, the circuit Ĉ as obtained via Construction 4.3 with respect to C

above is a 1 − (1−ε′)2(|F|−1)3

|F|3 -correct implementation of C without a decoder. Moreover, when using

Construction 4.2 to construct C3×t and C2×t2 we obtain that |Ĉ| = O(|C|2).

Proof. The completeness and complexity properties easily follow from the construction of Ĉ. To show
the additive-attack correctness property, consider any additive attack A on Ĉ. Let ax be A restricted
to the wires carrying the input x inside the vector w in C. In addition, let aout be A restricted to the
output wires of C.

33

We start by claiming that by the design of Ĉ we can assume without loss of generality that A
does not attack the entire sub-circuit inside Ĉ whose inputs are vrw, vsw, vqw

′
, vpw, vq

′w′ , z,u, f1, f2,
r1, r2, r3, r4 and whose output is f in Step 12. Indeed, first notice that by Lemma 4.3 we can assume
that only the inputs to this circuit are attacked. Next, observe that any attacks on the output of the
randomness gates r1, r2, r3 and r4 does not change their output distribution. Finally, any attacks on
the other input wires (vrw, vsw, vqw

′
, vpw, vq

′w′ , z,u) could be considered as part of AC3×t and AC2×t2 .
Notice that by the additive-attack correctness of C3×t and C2×t2 we obtain that there exist attacks

on the inputs of the multipliers aw,ar,as,ap ∈ Ft, aw′ ,aq,aq′ ∈ Ft×t and attacks on the output of the
multipliers brw, bsw, bpw, bqw

′
, bq

′w′ ∈ F such that the following holds. For any w, r, s,p ∈ Ft it holds
that

Pr
[
C̃3×t ← AC3×t(C3×t) : C̃3×t(r, s,p,w) ∈ I3×t

]
≥ 1− ε′ (4)

where AC3×t is A restricted to C3×t (including the input and output wires), I3×t = ERR ∪ {(0, 〈w +
aw, r+ar〉+brw, 〈w+aw, s+as〉+bsw, 〈w+aw,p+ap〉+bpw)} and the probability is over the internal
randomness of C̃3×t.

Similarly, for any w′,q,q′ ∈ Ft×t it holds that

Pr
[
C̃2×t2 ← AC2×t2 (C2×t2) : C̃2×t2(q,q′,w′) ∈ I2×t2

]
≥ 1− ε′ (5)

where AC2×t2 is A restricted to C2×t2 (including the input and output wires), I2×t2 = ERR ∪ {(0, 〈w′ +
aw′ ,q + aq〉+ bqw

′
, 〈w′+ aw′ ,q′+ aq′〉+ bq

′w′)} and the probability is over the internal randomness of
C̃2×t2 .

Observe that the randomness used in Equations 4 and 5 is independent. Thus, combining Equations 4
and 5 we obtain that for any w, r, s,p ∈ Ft and for any w′,q,q′ ∈ Ft×t it holds that

Pr

[
C̃3×t ← AC3×t(C3×t)

C̃2×t2 ← AC2×t2 (C2×t2)
: C̃3×t(r, s,p,w) ∈ I3×t ∧ C̃2×t2(q,q′,w′) ∈ I2×t2

]
≥ (1− ε′)2. (6)

where the probability is over the internal randomness of C̃3×t, C̃2×t2 and as defined above,

• AC3×t is A restricted to C3×t and AC2×t2 is A restricted to C2×t2 ,

• I3×t = ERR ∪ {(0, 〈w + aw, r + ar〉+ brw, 〈w + aw, s + as〉+ bsw, 〈w + aw,p + ap〉+ bpw)},

• I2×t2 = ERR ∪ {(0, 〈w′ + aw′ ,q + aq〉+ bqw
′
, 〈w′ + aw′ ,q′ + aq′〉+ bq

′w′)}.

In order to prove the theorem we will show that for any x ∈ Fn, whenever A did not raise the error flag,
it is equivalent to an ideal attack (that only depends on A) on the inputs and outputs of Ĉ. Moreover,
we will show that this ideal attack consists simply of the inevitable attack (on the inputs and outputs of
C) plus the entries of aw corresponding to the inputs of C. Formally, we will show that for all x ∈ Fn
it holds that

Pr

[
C̃ ← A(Ĉ) : C̃(x) ∈ ERR ∪ {(0, C(x + ain) + aout)}

]
≥ (1− ε′)2(|F| − 1)3

|F|3

where ain = ax + aw,inp and aw,inp ∈ Fn is vector of entries in aw corresponding to the input wires of C.
In the sequel we will treat w′,aw′ ∈ Ft2 both as vectors from Ft2 and as a t× t matrix over F. Thus,

we denote the (i− 1)t+ jth coordinate of w′ and aw′ as aw
′

i,j and w′i,j .
Let x ∈ Fn. Recall that w ∈ Ft is a vector representing the intermediate values of all the gates

outputs during the commutation of C on input x. In addition, recall that in the uncorrupted case
w′ = w ×w. Notice that both w and w′ are completely determined by x and A. We split the proof
into two cases based on w + aw and w′ + aw′ .

34

1. It holds that
w′ + aw′ 6= (w + aw) · (w + aw)T .

This means that the computation of w′ was corrupted, and we will show that this corruption will
be flagged by the consistency checks of r, s,q (assuming C3×t and C2×t2 where not themselves
corrupted; otherwise, flags will be raised by C3×t and C2×t2).

Since w′ + aw′ 6= (w + aw) · (w + aw)T this means that there exist 1 ≤ i′, j′ ≤ t such that

w′i′,j′ + aw
′

i′,j′ 6= (wi′ + awi′) · (wj′ + awj′).

Notice that A causes the subcircuit computing q to actually compute the following:

qi,j = (ri +Ari,qi,j) · (sj +Asj ,qi,j).

From Equation 6 above it holds that

Pr

(f1 6= 0 ∨ f2 6= 0) ∨

 vrw = 〈w + aw, r + ar〉+ brw∧
vsw = 〈w + aw, s + as〉+ bsw∧
vqw

′
= 〈w′ + aw′ ,q + aq〉+ bqw

′

 ≥ (1− ε′)2. (7)

In the sequel we will prove that the check vrw · vsw − vqw′ in step 12 that is suppose to verify
that w′ + aw′ = (w + aw) · (w + aw)T will fail with a constant probability causing f to become
random. We start by proving that the probability over the selection of r, s that (〈w + aw, r + ar〉+
brw) · (〈w + aw, s + as〉+ bsw) = (〈w′ + aw′ ,q + aq〉+ bqw

′
) is bounded by a universal constant.

Indeed, this probability is bounded by the probability (over the selection of r, s) that the following
equation holds:(

brw +

t∑
i=1

(wi + awi) · (ri + ari)

)
·

(
bsw +

t∑
j=1

(wj + awj) · (sj + asj)

)
(8)

= bqw
′
+

t2∑
i=1

(
w′i + aw

′
i

)
·
(
qi + aqi

)
.

Equation 8 can be rewritten as∑
(i,j)6=(i′,j′)

(
(wi + awi) · (ri + ari)

)
·
(

(wj + awj) · (sj + asj)
)

+

bsw
∑

i∈[t]\{i′}

(
(wi + awi) · (ri + ari)

)
+ brw

∑
j∈[t]\{j′}

(
(wj + awj) · (sj + asj)

)
+

−
∑

(i,j)6=(i′,j′)

(
w′i,j + aw

′
i,j

)
·
(
qi,j + aqi,j

)
− bqw′ =

−(wi′ + awi′) · (ri′ + ari′) · (wj′ + awj′) · (sj′ + asj′) +

−(wi′ + awi′) · (ri′ + ari′) · bsw +
−(wj′ + awj′) · (sj′ + asj′) · brw +(
w′i′,j′ + aw

′
i′,j′

)
·
(
qi′,j′ + aqi′,j′

)
.

(9)

We will show that for any selection of values to all the coordinates of r, s but ri′ and sj′ there
exists a selection of ri′ and sj′ such that Equation 9 does not hold. Indeed, fix some values to
all the coordinates of r, s but ri′ and sj′ . Notice that the left hand side of Equation 9 does not
depend on the values of ri′ and sj′ . Denote by c the value of the left hand side of Equation 9.
Thus, Equation 9 can be rewritten as

−
(
wi′ + awi′

)
·
(
wj′ + awj′

)
·
(
ri′ · sj′ + ri′ · asj′ + ari′ · sj′ + ari′ · asj′

)
+(

w′i′,j′ + aw
′

i′,j′

)
·
(

(ri +Ari,qi,j) · (sj +Asj ,qi,j) + aqi′,j′
)

+

−(wi′ + awi′) · (ri′ + ari′) · bsw − (wj′ + awj′) · (sj′ + asj′) · brs = c.

(10)

35

By assumption, we have that w′i′,j′ + aw
′

i′,j′ − (wi′ + awi′) · (wj′ + awj′) 6= 0. Thus, Equation 10 has
the form

c1ri′sj′ + c2ri′ + c3sj′ + c4 = 0 (11)

where c1, c2, c3, c4 ∈ F and c1 6= 0. Thus the probability that Equation 11 above holds is 1
|F|+

|F|−1
|F|2 .

Therefore, we have proved that

Pr
r,s

[(
〈w + aw, r + ar〉+ brw

)
·
(
〈w + aw, s + as〉+ bsw

)
6= 〈w′ + aw′ ,q + aq〉+ bqw

′
]

is at least (|F|−1)2

|F|2 . Combining this with Equation 7 above we obtain that

Pr
[
(f1 6= 0 ∨ f2 6= 0) ∨

(
vrw · vsw 6= vqw

′
)]

(12)

≥ Pr


(
〈w + aw, r + ar〉+ brw

)
·(

〈w + aw, s + as〉+ bsw
)

6=
〈w′ + aw′ ,q + aq〉+ bqw

′

∣∣∣∣∣∣∣∣
f1 6= 0 ∨ f2 6= 0∨ vrw = 〈w + aw, r + ar〉+ brw∧

vsw = 〈w + aw, s + as〉+ bsw∧
vqw

′
= 〈w′ + aw′ ,q + aq〉+ bqw

′




· Pr


f1 6= 0 ∨ f2 6= 0∨ vrw = 〈w + aw, r + ar〉+ brw∧

vsw = 〈w + aw, s + as〉+ bsw∧
vqw

′
= 〈w′ + aw′ ,q + aq〉+ bqw

′




≥ (1− ε′)2 · (|F| − 1)2

|F|2

where the probability is over r, s and the internal randomness of C3×t and C2×t2 .

Recall that we assumed without loss of generality that A does not attack the entire sub-circuit
inside Ĉ whose inputs are vrw, vsw, vqw

′
, vpw, vq

′w′ , z,u, f1, f2, r1, r2, r3, r4 and whose output is f
in Step 12. Let Af,output be A restricted on the wire carrying f to the output gate. We have that

Pr
[
C̃ ← A(Ĉ) :C̃(x) ∈ ERR

]
= Pr

[
C̃ ← A(Ĉ) : f +Af,output 6= 0

]
≥ Pr

r1,r2,r3,r4

C̃ ← A(Ĉ) :
r1(vrw · vsw − vqw′)+

r2(vpw − vq′w′ − zTu) + r3f1 + r4f2 +Af,output
6= 0


≥ |F| − 1

|F|
· Pr

[
f1 6= 0 ∨ f2 6= 0 ∨ vrw · vsw − vqw′ 6= 0

]
≥ (1− ε′)2 · (|F| − 1)3

|F|3
.

where the last transition follows from Equation 12. Hence the additive-attack correctness require-
ment of Definition 4.1 are fulfilled in this case.

2. In this case we have that
w′ + aw′ = (w + aw) · (w + aw)T .

That is, for any 1 ≤ i, j ≤ t it holds that w′i,j + aw
′

i,j = (wi + awi) · (wj + awj). Notice that A causes
the subcircuit computing q′ to actually compute the following:

q′j,j′ =
∑
i∈Ij,j′

pi +Api,q′j,j′ .

36

From Equation 6 above it holds that

Pr

[
(f1 = 0 ∨ f2 = 0) ∨

(
vpw = 〈w + aw,p + ap〉+ bpw ∧
vq
′w′ = 〈w′ + aw′ ,q′ + aq′〉+ b′q

′w′

)]
≥ (1− ε′)2. (13)

In the sequel we will show that the check vpw − vq′w′ − zTu in step 12 designed to check that
the circuit C computed its gates correctly will fail with constant probability causing f to become
random. We start by proving that the probability over the selection of p ∈ Ft that 〈w + aw,p +
ap〉 + bpw − 〈w′ + aw′ ,q′ + aq′〉 − bq′w′ = zTu is bounded by a universal constant. Indeed, this
probability is bounded by the probability (over the selection of p ∈ Ft) that the following equation
holds:

bpw +
t∑
i=1

(wi + awi) · (pi + api)− bq′w′ −
t2∑
j=1

(
w′j + aw

′
j

)
·
(
q′j + aq

′

j

)
= zTu. (14)

We split the proof into three subcases again based on w + aw.

(a) There exists a gate inside C that is not computed correctly. That is, there exists a gate i′

inside C whose inputs are the outputs of gate j′ and j′′ such that

wi′ + awi′ 6=

 ∑
j′∈left(i′)

wj′ + awj′

 ·
 ∑
j′′∈right(i′)

wj′′ + awj′′

 .

Equation 14 can be rewritten as

(wi′ + awi′) · (pi′ + api′)−
∑

j′∈left(i′)
j′′∈right(i′)

(
w′j′,j′′ + aw

′
j′,j′′

)
·
(
q′j′,j′′ + aq

′

j′,j′′

)
=

bq
′w′ −

(∑
i 6=i′(wi + awi) · (pi + api)

)
+

 ∑
i/∈left(i′)
j /∈right(i′)

(
w′i,j + a′w

′

i,j

)
·
(
q′i,j + aq

′

i,j

) +

zTu− bpw.
(15)

We will show that for any selection of values to all p1, . . . , pt but pi′ there exists a selection
of pi′ such that Equation 15 does not hold. Indeed, fix some values to all p1, . . . , pt but pi′ .
Notice that the right hand side of Equation 15 does not depend on the value of pi′ . Denote
by c the value of the right hand side of Equation 15. By assumption, it holds that∑

j′∈left(i′)
j′′∈right(i′)

w′j′,j′′ + aw
′

j′,j′′ =
∑

j′∈left(i′)
j′′∈right(i′)

(wj′ + awj′) · (wj′′ + awj′′)

6= wi′ + awi′ . (16)

Thus, Equation 15 can be rewritten as(
wi′ + awi′

)
·
(
pi′ + api′

)
−

∑
j′∈left(i′)
j′′∈right(i′)

(
w′j′,j′′ + aw

′
j′,j′′

)
·
(
pi′ + d

)
= c

(17)

where d = Api′ ,q′j′,j′′ +
∑

i∈Ij,j′\{i′}
pi +Api,q′j,j′ + aq

′

j′,j′′ .

Notice that Equation 17 above has the form

c1pi′ + c2 = 0 (18)

37

where c1, c2 ∈ F and c1 6= 0. Thus the probability that Equation 18 above holds is 1/|F|.
Therefore, we have proved that

Pr
p

[
bpw + 〈w + aw,p + ap〉 − bq′w′ − 〈w′ + aw′ ,q′ + aq′〉 6= zTu

]
≥ |F| − 1

|F|
.

Combining with Equation 13 above we obtain that Combining this with Equation 7 above
we obtain that

Pr
[
(f1 6= 0 ∨ f2 6= 0) ∨

(
vpw − vq′w′ 6= zTu

)]
(19)

≥ Pr


bpw + 〈w + aw,p + ap〉−
bq
′w′ − 〈w′ + aw′ ,q′ + aq′〉

6=
zTu

∣∣∣∣∣∣∣∣
f1 6= 0 ∨ f2 6= 0∨(

vpw = 〈w + aw,p + ap〉+ bpw∧
vq
′w′ = 〈w′ + aw′ ,q′ + aq′〉+ b′q

′w′

) 
· Pr

 f1 6= 0 ∨ f2 6= 0∨(
vpw = 〈w + aw,p + ap〉+ bpw∧

vq
′w′ = 〈w′ + aw′ ,q′ + aq′〉+ b′q

′w′

) 
≥ (1− ε′)2 · (|F| − 1)

|F|
where the probability is over p and the internal randomness of C3×t and C2×t2 .

Recall that we assumed without loss of generality that A does not attack the entire sub-circuit
inside Ĉ whose inputs are vrw, vsw, vqw

′
, vpw, vq

′w′ , z,u, f1, f2, r1, r2, r3, r4 and whose output
is f in Step 12. Let Af,output be A restricted on the wire carrying f to the output gate. We
have that

Pr
[
C̃ ←A(Ĉ) : C̃(x) ∈ ERR

]
= Pr

[
C̃ ← A(Ĉ) : f +Af,output 6= 0

]
≥ Pr

r1,r2,r3,r4

C̃ ← A(Ĉ) :
r1(vrw · vsw − vqw′)+

r2(vpw − vq′w′ − zTu) + r3f1 + r4f2 +Af,output
6= 0


≥ |F| − 1

|F|
· Pr

[
f1 6= 0 ∨ f2 6= 0 ∨ vpw − vq′w′ − zTu 6= 0

]
≥ (1− ε′)2 · (|F| − 1)2

|F|2

where the last transition follows from Equation 19. Hence the additive-attack correctness
requirement of Definition 4.1 are fulfilled in this case.

(b) All the gates inside C are computed correctly and there exists an output wire that was
corrupted. That is, for any wire i′ inside C that is the output of a gate whose inputs are
wires j′ and j′′ it holds that

(wi′ + awi′) =
∑

j′∈left(i′)
j′′∈right(i′)

(wj′ + awj′) · (wj′′ + awj′′)

and there exists an output k′ of C such that zk′ 6= wt−1+k′ + awt−1+k′ . Notice that since k′

is an output of C, it holds that the values
∑t2

j=1

(
w′j + aw

′
j

)
·
(
q′j + aq

′

j

)
in Equation 14 do

not depend on pt−1+k′ . Thus, Equation 14 can be rewritten as

(wt−1+k′ + awt−1+k′) ·
(
pt−1+k′ + apt−1+k′

)
− ut−1+k′ · zt−1+k′ =

−bpw −
(∑

i 6=t−1+k′(wi + awi) · (pi + api)
)

+
(∑

i 6=k′ uizi

)
bq
′w′ +

(∑t2

j=1

(
w′j + awj

)
·
(
q′j + aq

′

j

)) (20)

38

Notice that the right hand side of Equation 20 does not depend on the value of pt−1+k′ and
that by assumption it holds that zk′ 6= wt−1+k′ + awt−1+k′ . Thus Equation 20 has the form

c1pt−1+k′ + c2 = 0 (21)

where c1, c2 ∈ F and c1 6= 0. Therefore, we have proved that

Pr
p

[
bpw + 〈w + aw,p + ap〉 − bq′w′ − 〈w′ + aw′ ,q′ + aq′〉 6= zTu

]
≥ |F| − 1

|F|
.

Combining with Equation 13 above we obtain that

Pr
[
(f1 6= 0 ∨ f2 6= 0) ∨

(
vpw − vq′w′ 6= zTu

)]
(22)

≥ Pr


bpw + 〈w + aw,p + ap〉−
bq
′w′ − 〈w′ + aw′ ,q′ + aq′〉

6=
zTu

∣∣∣∣∣∣∣∣
f1 6= 0 ∨ f2 6= 0∨(

vpw = 〈w + aw,p + ap〉+ bpw∧
vq
′w′ = 〈w′ + aw′ ,q′ + aq′〉+ b′q

′w′

) 
· Pr

 f1 6= 0 ∨ f2 6= 0∨(
vpw = 〈w + aw,p + ap〉+ bpw∧

vq
′w′ = 〈w′ + aw′ ,q′ + aq′〉+ b′q

′w′

) 
≥ (1− ε′)2 · (|F| − 1)

|F|

where the probability is over p and the internal randomness of C3×t and C2×t2 .

Recall that we assumed without loss of generality that A does not attack the entire sub-circuit
inside Ĉ whose inputs are vrw, vsw, vqw

′
, vpw, vq

′w′ , z,u, f1, f2, r1, r2, r3, r4 and whose output
is f in Step 12. Let Af,output be A restricted on the wire carrying f to the output gate. We
have that

Pr
[
C̃ ←A(Ĉ) : C̃(x) ∈ ERR

]
= Pr

[
C̃ ← A(Ĉ) : f +Af,output 6= 0

]
≥ Pr

r1,r2,r3,r4

C̃ ← A(Ĉ) :
r1(vrw · vsw − vqw′)+

r2(vpw − vq′w′ − zTu) + r3f1 + r4f2 +Af,output
6= 0


≥ |F| − 1

|F|
· Pr

[
f1 6= 0 ∨ f2 6= 0 ∨ vpw − vq′w′ − zTu 6= 0

]
≥ (1− ε′)2 · (|F| − 1)2

|F|2

where the last transition follows from Equation 22. Hence the additive-attack correctness
requirement of Definition 4.1 are fulfilled in this case.

(c) The circuit C was computed correctly. That is, for any wire i′ inside C that is the output of
a gate whose inputs are wires j′ and j′′ it holds that

(wi′ + awi′) =
∑

j′∈left(i′)
j′′∈right(i′)

(wj′ + awj′) · (wj′′ + awj′′)

and for any output wire k′ it holds that zk′ = wt−1+k′ + awt−1+k′ . Then we have obtained
that the vector w + aw is a valid vector of the intermediate values of the computation of
the circuit C on input x. Recall that ain = ax + aw,inp where ax is A restricted to the wires

39

carrying the input x inside the vector w in C and aw,inp ∈ Fn is a vector of entries in aw

corresponding to the input wires of C. In addition, recall that aout is the restriction of A
on the output wires of C. Thus, we have obtained that z = C(x + ain) + aout. Recall that
ERR = {(z′, z′′) : z′ ∈ F \ {0}, z′′ ∈ Fk}. Thus,

Pr
[
C̃ ← A(Ĉ) : C̃(x) ∈ ERR ∪ {(0, C(x + ain) + aout)}

]
= 1.

Hence the additive-attack correctness requirement of Definition 4.1 are fulfilled in this case.

4.2 Improving efficiency and correctness using a decoder

In this section we achieve one of the goals outlined in Section 1.2.1. That is, we present a transformation
that will have all the properties outlined in Definition 1.2. Notice that the results of this section are
not comparable with the results presented in Section 4.1 above for several reasons. First, the soundness
guarantee of the results presented in Section 4.1 relies on the size of the underlying field over which the
circuits are constructed. While the construction in Section 4.1 does have some soundness over small
fields, we do not have a way to amplify this soundness (without increasing the field size). The second
issue is related to the overhead of the main construction presented in Section 4.1.3 which is quadratic
in the size of the circuit.

We achieve these goals in a model where one is allowed a decoder that cannot be tampered with
in order to verify the results of the tampered circuit; this is captured by the notion of additive-attack
correctness with decoder (Definition 1.2). In Section 4.2.1 we present a method for amplification of
any correct construction without increasing the size of the underlying field. Then, in Section 4.2.2, we
present a construction with linear overhead that achieves additive-attack correctness with decoder.

4.2.1 Correctness amplification using hashing

In Construction 4.3 we presented an |F|−Ω(1)-correct construction for arbitrary circuits. However, for
this construction to work one must require that the size of the underlying field F on which the circuit
computes will be relatively large. If we fix F to be the binary field for instance we obtain a circuit that
is correct with very small probability. In this section we achieve two different goals. First, we present
a construction that will amplify the probability that the circuit detects an attack on it. Second, we
would like that for any additive attack A, the input attack corresponding to it will not depend on the
way A attacks the outputs of Ĉ. Our construction will use replication in order to check that all of
the circuits computed correctly the same output. However, such an approach requires a tamper-proof
output decoder to verify consistency between all instances of the circuit. Formally, for any circuit C
and positive integer σ we would like to construct a 2−σ-strongly correct implementation with a decoder
of C as defined in Definition 4.2 below.

Definition 4.2. Let C : Fn → Fk be an arithmetic circuit. We say that a pair of circuits (Ĉ,D) are
an ε-strongly correct implementation of C with a decoder if the following holds:

• (Ĉ,D) are an ε-correct implementation of C.

• For any additive attack A, the vector ain ∈ Fn from the additive-attack correctness property of
(Ĉ,D) doesn’t depend on the values that A adds to the output wires of Ĉ.

Why naive amplification does not work. As usual, we would like to amplify the correctness of
an additively correct scheme using repetitions. That is, given an ε-additively correct circuit, we expect

40

that by running the construction σ times and accepting only if the outputs are consistent we will obtain
a construction with better soundness. Unfortunately, this is not true since the adversary is allowed to
attack each instance in the repetition differently. Such an attack strategy might lead to different ideal
attacks on the inputs of each instance. In this case, no amplification will be achieved.

As a counter example let F = {0, 1} be the binary field, n, σ be a positive integers such that |F|n > σ.
Consider the circuit C : Fn → F defined as follows:

C(x) =

{
0 if x = 0,

1 otherwise.

In addition, for any a ∈ Fn let C̃a : Fn → F be a randomized circuit defined as follows:

C̃a(x) =

{
(0, r) if x = a,

(0, 1) otherwise

where r is a random field element. We define the class C̃ to be the set of all circuits C̃a as defined above
for all possible a ∈ Fn. We note that for any C̃a ∈ C̃ it holds that for any x ∈ Fn

Pr
[
C̃a(x) /∈ {(0, C(x− a))} ∪ ERR

]
≤ 1

2
.

However, let {C̃a1 , . . . , C̃aσ} be a set of circuits such that for any i, j it holds that ai 6= aj . We claim
that for any a ∈ Fn there exists an x ∈ Fn such that

Pr
[(
∀i, j : C̃ai(x) = C̃aj (x)

)
∧ C̃a1(x) /∈ ERR ∪ {(0, C(x− a))}

]
≥ 1/2.

Indeed, let a ∈ Fn and let x = a notice that C(x− a) = C(0) = 0 and for all but at most one of Cai ’s
in the above it holds that Cai(x) = 1. Thus, we have that for x = a it holds that

Pr
[(
∀i, j : C̃ai(x) = C̃aj (x)

)
∧ C̃a1(x) /∈ ERR ∪ {(0, C(x− a))}

]
≥ 1/2.

Thus no amplification is achieved.

Correctness amplification using hashing. Intuitively, the problem presented in the previous section
originated from the fact that every instance of the repeated circuit could have worked on a different
input. In order to prevent this from happening we would like to make sure that all of the circuits
worked on the same input. One obvious way to achieve this to modify the circuit before the replication,
to include its inputs inside its outputs (in additional to its previous outputs) and then replicate the
modified circuit. Thus, if the inputs where to differ, the decoder would be able to pick it up. However,
this trivial solution has an unwanted property where the size of the decoder will be polynomial in the
input length of the original circuit. In order to construct a pair of circuits (Ĉ,D) that is a 2−σ-correct
implementation of a circuit C : Fn → Fk such that the size of D is poly(σ, k, log |F|, log n) we will use
almost universal hash functions. Our strategy will be as follows. We start from a circuit C and modify
it to a circuit C ′ that will also output a hash digest of its input instead of the input itself in addition
to the regular output of C. Next, we take an arbitrary ε-correct implementation Ĉ ′ of C and replicate
it O(σ) times. In this way we obtain a circuit that is exp(−σ)-correct implementation of C. Since the
size of the hash digest has length that is poly(σ, log |F|, log n) we obtain the desired properties. First,
we define what a almost universal has function family is. Formally,

Definition 4.3. Let F be a finite field. A family of functions H = {hn : Fn × Ft(n) → Fl(n)} is a
family of (n, t(n), l(n), ε(n))-almost-universal-hash-functions over F if for any n ∈ N, x,y ∈ Fn such
that x 6= y it holds that

Pr
r∈Ft(n)

[h(x, r) = h(y, r)] ≤ ε(n).

41

The following theorem states that there exist almost universal hash function families with short
enough output over any finite field F.

Theorem 4.2 (Cf. [WC79, CW79, WC81, NN93]). Let F be a finite field. There exists a (n,Θ(log n+σ),
2σ, 2−σ)-almost-universal-hash function family over F.

We are now ready to define the transformation that takes a circuit C into a circuit CHash such that
CHash outputs the same output as C and a hash digest of the input to C. In addition, since we would
like to prevent attacks on the outputs of C we would like CHash to encode its outputs with an additively
secure code.

Construction 4.4. Let F be a finite field, H = {hn}n∈N be a family of (n, t(n), l(n), ε(n))-almost-
universal-hash-functions over F and let and C : Fn → Fk be a circuit. In addition, let (Enc,Dec) be
a (k + l(n), q(n), εAMD)-AMD code. We define the circuit CHash : Fn × Ft(n) → Fq(n) with respect to
(C,H,Enc,Dec) as follows: CHash on the input (x, hk) outputs Enc(C(x)||hn(x, hk)).

We are now ready to define our main construction for correctness amplification.

Construction 4.5 (Correctness amplification for arbitrary circuits). Let F be a finite field, σ be a
positive integer, C : Fn → Fk be a circuit, H be a (n, t(n, σ), 2σ, 2−σ)-almost-universal-hash function
family were t(n, σ) ∈ Θ(log n + σ), (Enc,Dec) be a (k + l(n) + t(n, σ), q(n), εAMD)-AMD code and let
CHash be the circuit constructed in Construction 4.4 with respect to (C,H,Enc,Dec). In addition, let
ĈHash be an ε-correct implementation of CHash. Consider the circuits (Ĉ,D) that are defined as follows:

• Ĉ is composed of 2σ copies of ĈHash numbered from ĈHash,1 to ĈHash,2σ. Ĉ on input x samples a
vector r uniformly at random from Ft(n,σ) and outputs

(z1, . . . , z2σ)← (ĈHash,1(x, r), . . . , ĈHash,2σ(x, r)).

• D on input (z1, . . . , z2σ) preforms the following computations:

– For all 1 ≤ i ≤ 2σ compute (bi, z
′
i) ← Dec(zi). If there exists i such that bi 6= 0 then output

(1, 0k).

– If there exists a pair (i, j) such that z′i 6= z′j then output (1, 0k).

– Otherwise, output (0, z) were z is the first k field elements of z′1.

We now claim that Construction 4.5 indeed allows us to obtain for any circuit C and security
parameter σ a 2−σ-correct implementation of C with a decoder such that the size of the decoder is
polynomial in σ and the output size of C.

Theorem 4.3. For any circuit C : Fn → Fk the circuits (Ĉ,D) as obtained via Construction 4.5 above
with respect to C are an c−σ-strongly correct implementation of C with a decoder for some universal
c ∈ N. Moreover, |Ĉ| = poly(σ, |C|) and |D| = poly(σ, k, log n).

Proof. The completeness and complexity properties easily follow from the construction of Ĉ. To
show the additive-attack correctness property, consider any additive attack A on Ĉ and let A1, . . . , A2σ

be A restricted to ĈHash,1, . . . , ĈHash,2σ respectively. By the additive-attack correctness property of

ĈHash,1, . . . , ĈHash,2σ it holds that for any 1 ≤ i ≤ 2σ there exists ain
i ,a

out
i such that for any x ∈ Fn,

r ∈ Ft(n)

Pr
[
C̃Hash,i ← Ai(ĈHash,i) : C̃Hash,i(x, r) /∈ ERR ∪ {(0, C̃Hash,i((x, r) + ain

i) + aout
i)}

]
≤ ε.

We split the proof into three cases based on the A:

42

1. There exists a set U ⊆ {1, . . . , 2σ} such that |U | ≥ σ and for all i ∈ U it holds that aout
i 6= 0.

Then, by the definition of D and the additive robustness of (Enc,Dec) we have that for any x ∈ Fn

Pr
[
C̃ ← A(Ĉ) : D(C̃(x)) /∈ ERR

]
≤ (1− (1− ε)(1− εAMD))σ .

2. For any set U ⊆ {1, . . . , 2σ} such that |U | ≥ σ, and for any i ∈ U is holds that aout
i = 0. Let U

be such a set. We split the proof into two cases based on the number of distinct ain
i ’s such that

i ∈ U .

• There exists a such that |{i ∈ U : ain
i = a}| ≥ σ/2. Thus we obtain that for any x ∈ Fn it

holds that

Pr
[
C̃ ← A(Ĉ) : D(C̃(x)) /∈ ERR ∪ {(0, C(x + a))}

]
≤ εσ/2.

• For any a it holds that |{i ∈ U : ain
i = a}| < σ/2. In this case there exists two sets T, T ′ ⊆ U

such that |T |, |T ′| ≥ σ/4 and {ai : i ∈ T}∩ {ai : i ∈ T ′} = ∅. Next, by the definition of CHash

we have that for any x,ain
1 ,a

in
2 ∈ Fn such that ain

1 6= ain
2

Pr
r

[
CHash((x, r) + ain

1) 6= CHash((x, r) + ain
2)
]
≥ 1− 2−σ.

Next, for any x ∈ Fn it holds that

Pr

[
C̃ ← A(Ĉ)

(z1, . . . , z2σ)← C̃(x)
:

There exists i ∈ T, j ∈ T ′ such that
zi ∈ IDEALi and zj ∈ IDEALj

]
≥ (1− εσ/4)2

where IDEALi = ERR ∪ {(0, ĈHash,i((x, r) + ain
i))}.

Next, by the definition of D, as soon as there exists zi, zj such that zi 6= zj we have that D
outputs (1, 0k). Thus, we have that for any x ∈ Fn it holds that

Pr
[
C̃ ← A(Ĉ) : D(C̃(x)) ∈ ERR

]
≥

(
1− 2−σ

)
· Pr

[
C̃ ← A(Ĉ)

(z1, . . . , z2σ)← C̃(x)
:

There exists i ∈ T, j ∈ T ′ such that
zi ∈ IDEALi and zj ∈ IDEALj

]
≥

(
1− 2−σ

) (
1− εσ/4

)
where IDEALi = ERR ∪ {(0, ĈHash,i((x, r) + ain

i))}.

4.2.2 Additive-attack correctness with linear overhead

In Section 4.2.1 we presented an additively correct construction for arbitrary circuits with arbitrary
high correctness. However, this construction did not preserve the communication graph of the circuit
and produced a circuit with quadratic size of the original circuit. That is, we would like to obtain
a transformation that on input a circuit C : Fn → Fk constructs the circuits (Ĉ,D) such that two
components Gu and Gv in Ĉ corresponding to gates u and v in C are connected in Ĉ if and only if u
and v are connected in C. Intuitively the main idea is a follows. We will go over C from the input layer
to the output layer, in each layer we will run the transformation in Construction 4.5 on every gate and
obtain a additive-attack secure version of the gate together with a decoder. Next, we will consider the
decoders as part of the next layer and will run the transformation in Construction 4.5 on it. After going
through the circuit from the input layer to the output layer, the decoders for the output layer will be
part of the final decoder. Formally, we would like to obtain a transformation that has the properties
described in Definition 1.2. Consider Construction 4.6 below.

43

Construction 4.6. Let C : Fn → Fk be a circuit containing only bilinear gates let σ be a positive
integer. Consider the circuits (Ĉ,D) defined as follows

1. Set Ĉ to be a copy of C.

2. For any gate v with t left inputs and t′ right inputs define the circuit Fv that performs the following

(a) For any wire w ∈ left(v) if w is the output of some gate u then compute (bw, xw) ← Du(w)
where Du is obtained in step 3 below. Otherwise, if w is connected to the input set xw ← w.

(b) For any wire w ∈ right(v) if w is the output of some gate u then compute (bw, yw)← Du(w)
where Du is obtained in step 3 below. Otherwise, if w is connected to the input set yw ← w.

(c) Compute z ← (
∑

w xw) · (
∑

w yw)

(d) If there exists w such that bw 6= 0 output (1, 0). Otherwise, output (0, z).

3. Let (F̂v, Dv) be an 2−σ-strongly correct implementation of Fu with a decoder. Replace v with F̂v
in Ĉ and save Dv for later use in steps 2a and 2b above.

4. Let v1, . . . , vk be the gates inside C that are connected to the output such that vi is connected to
the ith output. The circuit D performs the following:

(a) For any 1 ≤ i ≤ k, D computes the output (bi, (b
′
i, zi)) of Dvi where the inputs of Dvi are

connected to the outputs of Fvi.

(b) If there exists i such that bi 6= 0 or b′i 6= 0 then output (1, 0k). Otherwise, output (0, z1 . . . zk).

Theorem 4.4. For any circuit C containing only bilinear gates and for any positive integer σ the size
of D as defined in Construction 4.6 above is poly(σ, k).

Proof. By the definition of correctness with a decoder, the size of Dvi is polynomial in the output
size of Fvi and σ. Notice that the output size of Fvi can be bounded by 2.

We now claim that Construction 4.6 indeed allows us to obtain for any circuit C and security
parameter σ a 2−σ-correct implementation Ĉ of C with a decoder such that the size of Ĉ is |C| ·poly(σ)
and the size of the decoder is polynomial in σ and the output size of C.

Theorem 4.5. For any field F, an arithmetic circuit C : Fn → Fk containing only bilinear gates and
a positive integer σ the circuits (Ĉ,D) as obtained via Construction 4.6 above are an 2−σ · |C|-correct
implementation of C where |Ĉ| = |C| · poly(σ) and |D| = poly(k, σ).

Proof. The completeness property easily follows from the definition of Ĉ. In addition, the complexity
property easily follows from Theorem 4.4. Let A be an additive attack and let x ∈ Fn. In addition,
for any gate v inside C let Av be A restricted to F̂v inside Ĉ. We look at a highest F̃v ← Av(F̂v) in
C̃ ← A(Ĉ) that is attacked. By the additive-attack security property of F̃v we obtain that there exists
ain
v such that for any x it holds that

Pr[Dv(F̃v(x)) /∈ ERR ∪ {(0, Fv(x + ain
v))}] ≤ 2−σ.

Since every F̂v is a strongly correct implementation of Fv we have that ain
v does not depend on Av

restricted to the output wires of F̂v. Thus, we can apply the above argument on all the F̃v’s inside C̃
treating each attack on the inputs of F̃v as an attack on the outputs of all the F̃u’s connected to F̃v
even in case of a fanout where multiple F̃v’s use the output of a single F̃u inside C̃. Thus, we have that
there exists ain ∈ Fn such that for all x ∈ Fn

Pr
[
D(C̃(x)) /∈ ERR ∪ {(0, C(x + ain))}

]
≤ |C| · 1

2σ
.

44

(a) Traditional methodology (b) Our methodology

Figure 2: A graphical comparison between two methodologies for designing MPC protocols that are
secure against active adversaries.

5 Secure MPC protocols from AMD circuits

In this section we construct multiparty computation protocols secure against active adversaries. Re-
visiting many protocols designed for MPC in the presence of a passive adversary, such as the GMW
protocol [GMW87], the BGW protocol [BGW88] and more recently the DN protocol [DN07], we notice
that when invoking these protocols in the presence of a active adversary, any deviation performed by
the adversary during the execution of the protocol in fact corresponds to an additive attack on the
underlying circuit. Thus, instead of designing an MPC protocol for computing an arithmetic circuit
C that directly handles the presence on an active adversary, we use a protocol that is secure in the
presence of passive adversaries but apply it to a modified circuit ĈAMD which, in addition to computing
the functionality computed by C, is also responsible for aborting the computation in case the adversary
deviates from the protocol in a way that changes the protocol’s outputs. The circuit ĈAMD will be an
additive-attack secure version of CAMD which is the same as C with the exception that it gets its inputs
and computes its outputs encoded in some AMD code. Figure 2 is a graphical representation of both
the traditional methodology and our methodology for designing MPC protocols that are secure against
active adversaries.

This section in organized as follows. Sections 5.1 and 5.2 contains (mostly standard) definitions of
secure multiparty computation and secret sharing schemes, respectively. In Section 5.3 we prove that
for n-party protocols that are secure in the case of an honest majority, it is enough to only consider
adversaries controlling exactly t parties, where n = 2t + 1 (i.e., adversaries that control a maximal
number of parties). In Section 5.4 we present the notions of linear-based protocols and weakly-private
protocols. Next, in Section 5.5 we prove that any deviations of an active adversary from a weakly-
private and linear-based protocol computing a circuit C in fact correspond to an additive attack on C.
Finally, in Section 5.6 we generically construct MPC protocols that are secure in the presence of active
adversaries from any linear-based and weakly-private protocol.

We then demonstrate our approach on many classical MPC protocols. In Section 5.7 we construct a
protocol for securely computing an arithmetic circuit C in the pretense of an honest majority that has a
communication complexity of O(|C|n2) field elements. We achieve this by proving that the semi-honest
BGW protocol [BGW88, AL11] is in fact linear-based and weakly-private and then by applying our
generic construction on it. Next, in Section 5.8, by proving that the semi-honest DN protocol [DN07] is
also weakly-private and linear-based, we obtain a protocol for securely computing an arithmetic circuit

45

|C| in the pretense of an honest majority that has a communication complexity of O(|C|n + n2) field
elements.

Next, tackling the task of MPC without an honest majority, in Section 5.9 we demonstrate our
methodology to an arithmetic version of the semi-honest GMW protocol [GMW87] and obtain a protocol
for secure computation in the presence of active adversaries, which does not require an honest majority,
in the OLE-hybrid model. Finally, in Section 5.10 we present a protocol for secure MPC without honest
majority in the preprocessing model. Since the inputs to the preprocessing phase do not depend on the
party’s inputs to the protocol, it can be modeled as an additional party called the dealer that sends,
to each party, the corresponding results of the preprocessing phase. Unlike many MPC protocols with
preprocessing that require the dealer to behave honestly, we achieve a stronger security notion where
either the dealer or any of the other parties may be corrupted (though not both).

5.1 Definitions

We start by defining a suitable notion of MPC. Our definitions are similar to [GIKR02] (for the protocol
and adversary) and [Gol04, AL11] (for the security notion), with the addition of explicit adversarial
inputs to the functionality. See [Can00, Gol04, AL11] for a more complete discussion. We also recall
definitions of the MPC hybrid model and of the MPC client-server model [CDI05, DI05, DI06].

In order to simplify the protocol description and analysis, we treat functionalities, protocols, and
adversaries as concrete finite objects and do not refer to infinite families of such objects. For this reason,
we do not impose any efficiency requirement on simulators and do not refer to auxiliary inputs (unlike
the standard definitions we cite). However, all of our protocols and simulators do in fact satisfy the
additional requirements made in standard definitions.

We consider a network of n parties denoted by P1, · · · , Pn. Each pair of parties is connected via a
private, authenticated point-to-point channel.

Functionality. A secure computation task is defined by an n-party functionality f : X1× · · · ×Xn →
Y1 × · · ·Yn, specifying the desired mapping from parties inputs to their final outputs where for all i it
holds that Xi and Yi are the input and output domains of the i-th party. Sometimes we will allow an
ideal-world adversary, called the simulator, to affect the functionality and change its internal logic. We
achieve this by adding additional inputs to the functionality representing the simulator’s attack on the
functionality. In this case we define the functionality in the following way f : X1 × · · · ×Xn ×Xatk →
Y1×· · ·Yn where as before for all i it holds that Xi and Yi are the input and output domains of the i-th
party and Xatk is the input domain of the simulator’s attack on f . If the simulator is not allowed to
attack the functionality we will omit these additional inputs from the description of the functionality.

In the sequel we focus on functionalities, with inputs and outputs that are vectors of field elements,
where only the first party gets an output. Formally, we consider functionalities of the form f : FI1 ×
· · · × FIn ×FIatk → FO1 where I1, · · · , In, Iatk, O1 are positive integers. This is without loss of generality
since any protocol π for securely computing single output functionalities can be used for computing
functionaries where more than one party gets an output. We now briefly describe this transformation,
see Chapter 7 in [Gol04] and Section 2.5.2 in [HL10] for more complete discussions. First, we transform
a functionality f to a functionality f ′ where P1 also gets the outputs of f for all the other parties but
in a MACed and encrypted form, where the keys to the encryption and the MAC of each output are
only known to the party that should get the output. Then, after invoking π in order to compute f ′,
P1 relays the corresponding outputs to all other parties that in turn decrypt and verify them. In case
at least one of the MACs does not verify, all the parties abort the computation. Since the keys to the
encryption and MAC are not known to P1, he is unable to corrupt or learn the outputs of the other
parties.

In the following we identify a circuit C : FI1 × · · · × FIm × FIAdv → FO1 with the functionality it
computes; the meaning will be clear from the context. An n-party circuit is a circuit computing an

46

n-party functionality.
We now define the notion of additively corruptible version of a circuit. Later, we will prove that any

protocol for computing a functionality f that meets a list of certain requirement is a secure protocol
for computing the additively corruptible version of f .

Definition 5.1 (Additively corruptible version of a circuit). Let C : FI1 × · · · × FIm → FO1 be an
n-party circuit containing w wires. We define the additively corruptible version of C to be the n-party
functionality f̃C : FI1 × · · · × FIm × Fw → FO1 that takes additional input from the adversary which
indicates an additive corruption for every wire of C. For all (x,A), f̃C(x,A) outputs the result of the
additively corrupted C as specified by the additive attack A (A is the simulator’s attack on C) when
invoked on the inputs x.

Protocol. An n-party protocol is a collection of n parties where each party Pi holds an input xi and
random input ri. The protocol proceeds in rounds where in each round i a protocol’s description contains
a description of n next message functions defined as follows. The next message function nextMSGji of

party Pi for the j-th round gets as input all the messages mj−1
i that Pi received until the j-round, its

input xi to π, and its randomness ri. Upon receiving its inputs, nextMSGji outputs Pi’s messages in the
j-th round. For every party Pi the nextMSGi function of the final round outputs Pi’s output in π.

The view of the i-th party Pi during an execution of a protocol π on inputs ~x, denoted by viewπ
i (~x), is

defined as (xi, ri,m1, · · · ,m`) where xi is Pi’s private input, ri is its internal randomness and m1, · · · ,m`

are the messages it received during the protocol’s execution. For every T = {i1, · · · , it}, we denote by
viewπ

T (~x) = (viewπ
i1(~x), · · · , viewπ

it(~x)).
In the sequel we focus on protocols where all the next message functions can be represented as

arithmetic circuits over some finite field F.

Adversary. We consider an adversary Adv, corrupting up to t parties for some t ∈ N. The adversary
is a randomized interactive algorithm. It chooses a set T of at most t parties and corrupts them. The
adversary then starts interacting with a protocol, where it takes control on over all parties in T . We will
consider two types of adversaries. An active one, in addition to seeing the inputs and all messages sent
to the parties it corrupted, is allowed to transmit any messages on behalf of these parties. A passive
one is not allowed to change the messages transmitted by the corrupted parties; however, it still sees
the inputs and all incoming messages transmitted to the corrupted parties. We assume by default that
the adversary has a rushing capability: at any round it can first wait to hear all messages sent by the
uncorrupted parties to parties in T and use these to determine its own messages. Finally, upon the
protocol’s termination, Adv outputs some function of its entire view.

Security. Informally, a protocol computing f is said to be t-secure if whatever an active adversary
can “achieve” by corrupting at most t parties during the protocol execution, it could also achieve (by
corrupting the same set of parties) in the ideal world in which f is evaluated using a trusted party. To
formalize this definition, we need to define the concepts “achieve” and “ideal world”. The ideal world
process for evaluating the function f is a protocol involving all n parties and an additional, incorruptible,
trusted party. The protocol is as follows. First, each party Pi and the adversary send their input xi
to the trusted party. Second, the trusted party computes f , and sends each party its corresponding
output. Notice that when an adversary corrupts a party in the ideal process, it can pick the inputs sent
by it to the trusted party.

For an adversary Adv we capture the notation of “achieves” in the real world by the random variable
Realπ,Adv,T (~x) consisting of the view of the adversary Adv controlling the corrupted parties in T and the
outputs of the honest parties, following a real execution of π where for every i ∈ {1, · · · , n}, party Pi has
input xi. Similarly, for an ideal world adversary Sim (the simulator) we capture the notion of “achieves”
by the random variable Idealf,Sim,T (~x) containing the outputs of the ideal adversary Sim and the honest
parties after an ideal execution with the trusted party computing f where Sim has control over the

47

adversary’s input of f . We are now ready to define what it means for a protocol to securely compute
a functionality f in the presence of an adversary Adv. Intuitively, we would like it to be the case that
anything achieved by an adversary Adv in the real world could be also achieved by the simulator in the
ideal world. Formally,

Definition 5.2. Let f : X1 × · · · × Xn × Xatk → Y1 × · · ·Yn be a functionality and let π be an n-
party protocol. We say that π (t, ε)-securely computes f if for every probabilistic adversary Adv in the
real world controlling a set of parties T ⊆ {P1, · · · , Pn} such that |T | ≤ t, there exists a probabilistic
simulator Sim in the ideal world such that for every input ~x ∈ X1 × · · · ×Xn it holds that

SD
(
Idealf,Sim,T (~x),Realπ,Adv,T (~x)

)
≤ ε.

If the protocol has the above property only for passive adversaries and simulators that do not deviate
from the protocol we say that the protocol (t, ε)-privately computes f . In addition, for the case where
ε = 0 we say that the protocol t-securely (resp. t-privately) computes f .

Next, we define a relaxed notion of securely computing a functionality with abort. We will consider
the weaker variant of security with abort (sometimes referred to as security with “selective abort”)
which does not require honest parties to simultaneously abort. This is captured by allowing the ideal
world adversary to individually decide, after learning its own outputs, whether each honest party Pi
receives its correct output from the functionality or a special “abort” message which Pi outputs. In
the stronger notion of unanimous abort, the ideal world adversary needs to decide whether all honest
parties receive their correct output or all of them abort.

The advantage of using the weaker variant is that it supports feasibility results which only use secure
point-to-point channels and no additional setup. On the other hand, given a broadcast channel, any
protocol Π realizing f with selective abort can be easily converted into one realizing f with “unanimous
abort” by having each honest party broadcast a complaint message if Π leads it to abort. Such a
complaint message makes all honest parties abort.

Security-with-abort. Let f : X1 × · · · × Xn × Xatk → Y1 × · · ·Yn be a functionality. Consider a
modified ideal world, called ideal world with abort, where the trusted party, after computing f , first
sends the adversary its outputs and then the adversary decides, for each Pi, whether Pi should output
its correct output yi or a special abort symbol ⊥. Let Sim be an ideal world with abort adversary. We
denote the output of Sim and the honest parties after an ideal world execution with abort where the
trusted party computes f on input ~x by Idealabortf,Sim,T (~x).

We now define what it means for a protocol π to be secure with abort.

Definition 5.3. Let f be a functionality, if a protocol π has all the properties of Definition 5.2 where
Idealf,Sim,T (~x) is replaced with Idealabortf,Sim,T (~x). In this case we say that π (t, ε)-computes f with abort.

The hybrid model. Following [Can00] we proceed by defining the (simplified) hybrid model for
evaluating an n-party functionality f with the assistance of a trusted party evaluating an n-party
functionality g. We will also define secure protocols in this model. The hybrid model with ideal access
to g, denoted by g-hybrid model, is obtained as follows. We start from the real world process defined
previously. We augment this process with an incorruptible trusted party for evaluating g. The trusted
party is invoked at special rounds as determined by the protocol. The computation at each special
round mimics the ideal process. That is, all parties send their inputs for g to the trusted party. As
in the ideal process, an active adversary decides on the input values that the corrupted parties send
to the trusted party. Since passive adversaries are not allowed to deviate from the protocol, in the
case of passive adversaries, even corrupted parties send the trusted party their inputs according to the
protocol. Next, the trusted party computes g using the inputs it was given. Finally, the trusted party
send each party the corresponding output of g. For the case that g is a randomized-functionally, the

48

trusted party uses fresh randomness for each computation of g. Similarly to the standard model, for an
adversary Adv we capture the notation of the “achieves” in the g-hybrid model by the random variable
Realgπ,Adv,T (~x) consisting of the view of the adversary Adv controlling the corrupted parties in T and
the outputs of the honest parties, following a real execution of π in the g-hybrid model where for every
i ∈ {1, · · · , n}, party Pi has an input xi.

The following composition theorem is an extension of [Can00] to statically secure protocols.

Theorem 5.1. Let t, n be positive integers such that t < n and let f, g be n-party functionalities. Let
π be an n-party protocol that (t, ε)-securely computes f with abort in the g-hybrid model where no more
than one ideal evaluation call is made at each round and at most ` invocations of g are performed in
total. In addition, let ρ be n-party protocols such that ρ (t, ε′)-securely computes g with abort. Consider
the protocol πρ (in the plain model) obtained by replacing each ideal call to g by the protocol ρ. Then it
holds that the protocol πρ (t, ε+ `ε′)-securely computes f with abort in the plain model.

The client-server model. We now describe a refinement of the standard MPC model called the
client-server model (see [CDI05, DI05, DI06] for a detailed discussions). In the client-server model, each
party can have one of two different roles: clients that hold inputs and get outputs, and servers who
may be involved in the computation but hold no inputs and get no outputs. In the following, we denote
by m the number of clients and by n the number of servers (rather than the total number of parties).
If a protocol π is secure against any active adversary controlling at most s servers and at most t clients
we say that π is (s, t, ε)-secure. Similarly, if π is private against any passive adversary controlling at
most s servers and at most t clients we say that π is (s, t, ε)-private. In case the adversary is allowed to
control an arbitrary number of clients, we will omit t from the notation.

Finally, notice that every protocol in the client-server model can be stated as a protocol in the
standard MPC model by asking every party to play a single server and a single client. Below, the
term m-client circuit relates to a circuit computing a functionality that gets its inputs form m different
clients.

Notation. We now proceed to introduce some notation that we will be used throughout this section.
Let π be a protocol computing some functionality f and let Adv be an adversary controlling a set of
clients C and a set of servers S. For a sets of parties T, T ′ (consisting of both clients and servers) we

denote by M̃π,i,Adv
T,T ′ the random variables corresponding to messages sent from T to T ′ during the i-th

round in a real execution of the protocol in the presence of Adv. Denote by M̃π,Adv
T,T ′ all the messages

sent from T to T ′ during a real execution of π in the presence of Adv. Also, denote by Mπ,honest
T,T ′ all the

messages sent from T to T ′ during an honest execution of π.
In addition, denote by V π,Adv

T the view of the parties in T during a real execution of the protocol

in the presence of Adv, and denote by Oπ,AdvT the outputs of the parties in T after a real execution of

π in the presence of Adv. By definition, it holds that Realπ,Adv,S∪C(~x) ≡ (V π,Adv
S∪C , Oπ,AdvC). Let Uπ,AdvS∪C

be the truncated view of the clients and servers in S ∪ C during a real execution of π in the presence of
Adv excluding the last communication round. Let Lπ,AdvS,C be the messages sent to the clients in C during

the last communication round during a real execution of π in the presence of Adv. Thus we have that
V π,Adv
S∪C ≡ (Uπ,AdvS∪C , Lπ,AdvS,C).

Let Sim be an ideal world adversary corrupting a set of servers S and a set of clients C. Analogously
to the above, denote by V ′π,SimS∪C the view simulated by Sim and denote by O′π,SimC the outputs of the

clients in C during an ideal execution of the protocol. By definition it holds that Idealf,Sim,S∪C(~x) ≡
(V ′π,SimS∪C , O′π,SimC). Let U ′π,SimS∪C be the truncated view simulated by Sim of the clients and servers in S ∪C
excluding the last communication round and let L′π,SimS,C be the simulated messages by Sim to the clients

in C during the last communication round. Thus we have that V ′π,SimS∪C ≡ (U ′π,SimS∪C , L′π,SimS,C).

49

In the squeal we will sometimes omit the Sim, Adv and π superscripts when the meaning is clear
from the context.

Remark 5.1. In the following, we do not aim at optimizing the round complexity of our constructions.
It can be easily verified that all of our protocols below can be implemented so that their round complexity
is linear in the circuit depth.

5.2 Secret sharing schemes and randomness extraction

Secret sharing scheme. A t-out-of-n secret sharing scheme takes as input a secret s from some input
domain and outputs n shares, with the property that it is possible to efficiently reconstruct s from every
subset of t+1 shares, but every subset of at most t shares reveals nothing about the secret s. The value
t is called the threshold of the scheme.

A secret sharing scheme consists of two algorithms: the first algorithm, called the sharing algorithm,
takes as input the secret s and the parameters t and n, and outputs n shares. The second algorithm,
called the recovery algorithm takes as input t + 1 shares and outputs a value s. It is required that
the reconstruction of shares generated from a value s produces the same value s. Formally, consider
Definition 5.4 below.

Definition 5.4. A pair of algorithms (share, recover) where share is randomized and recover is deter-
ministic are said to be a secret sharing scheme if the following conditions hold for every n, t ∈ N.

• Reconstruction. For any set T ⊆ {1, · · · , n} such that |T | > t and for any x ∈ F it holds that

Pr[recover(shareT (x, n, t), T) = x] = 1

where shareT is the restriction of the outputs of share to the elements in T .

• Privacy. For any set T ⊆ {1, · · · , n} such that |T | ≤ t and for any x, y ∈ F it holds that

shareT (x, n, t) ≡ shareT (y, n, t)

where shareT is the restriction of the outputs of share to the elements in T .

In addition, we say that (share, recover) is a linear secret sharing scheme if both share and recover
compute their outputs using some fixed linear combination of their inputs and randomness.

Also, we say that (share, recover) is a redundant secret sharing scheme if for every pair of integers
n, t, for every set T such that |T | > t and for every input x it holds that for every ~v ← share(x, n, t) the
elements in ~vT uniquely determine all the elements in ~v.

Finally, we say that (share, recover) is a dense secret sharing scheme if for every pair of integers n, t,
a vector ~v ∈ Ft+1 and for any set T such that |T | = t+ 1 there exists x ∈ F and suitable randomness of
share such that shareT (x, n, t) outputs ~v.

The following corollary immediately follows from the privacy property of any secret sharing scheme.

Corollary 5.1. Let (share, recover) be a secret sharing scheme and let n, t ∈ N. Then, for any set
of parties T such that |T | ≤ t and for any vector ~vT ∈ Ft such that ~vT ← shareT (x, n, t) for some
x ∈ F and randomness for share it holds that for any y ∈ F there exists a vector ~vT ∈ Fn−t such that
y ← recover((~vT , ~vT), T ∪ T).

Shamir’s secret-sharing scheme. Informally, Shamir’s secret-sharing scheme works as follows
(see [Sha79] and Section 3 in [AL11] for details). Let n, t be positive integers such that t < n, F
be a finite field such that |F| > n and let s ∈ F. The sharing algorithm generates a polynomial q

50

of degree at most t in F[x], such the free coefficient is set to be the secret s. The shares are defined
to be q(αi) for every i ∈ {1, · · · , n} where α1, · · · , αn are any distinct non-zero elements of F. The
reconstruction algorithm of the scheme is based on the fact that any t + 1 points define exactly one
polynomial of degree t. Thus, using Lagrange interpolation, it is possible to efficiently reconstruct the
polynomial q(x) given any subset of t + 1 points as computed by the sharing algorithm. Then, given
q(x) is it possible to compute s = q(0). We begin with the following definition of Lagrange interpolation
points and coefficients.

Definition 5.5 (Lagrange coefficients). Let F be a finite field n, t positive integers such that n = 2t+ 1,
S ⊆ {1, · · · , n} be a set of integers such that |S| = t + 1 and let (α1 · · · , αn) be distinct non-zero field
elements. We say that a vector (∆S

1 , · · · ,∆S
t+1) consists of the Lagrange coefficients corresponding to

(α1 · · · , αn) and S if for every degree t polynomial q it holds that∑
i∈S

∆S
i q(αi) = q(0).

Similarly, we say that a vector (∆1, · · · ,∆n) consists of the degree 2t Lagrange coefficients corresponding
to (α1 · · · , αn) if for every degree 2t polynomial q it holds that

∑n
i=1 ∆iq(αi) = q(0).

We now present the notion of Shamir secret sharing scheme (see [Sha79] and Section 3 in [AL11] for
details). Formally, consider Construction 5.1 below.

Construction 5.1 (Shamir secret sharing). Let n be a positive integer and let F be a finite field such
that |F| > n. In addition, let α1, · · · , αn be any distinct non zero elements of F. Consider the algorithms
share and recover defined below.

• The algorithm share on inputs s, t, (α1, · · · , αn) where α1, · · · , αn ∈ F and t < n performs the
following:

– Generate q1, · · · , qt uniformly at random from F.

– Define q(x) = s+ q1x+ · · ·+ qtx
t.

– Output (q(α1), · · · , q(αn)) where q(αi) is the share of the ith party.

• The recovery algorithm recover gets as input a set S of t + 1 points of the form (αi, βi). Then it
reconstructs the unique polynomial q(x) of degree t such that for all 1 ≤ i ≤ t + 1 it holds that
q(αi) = βi. Finally recover outputs q(0).

Randomness extraction. We define the notation of a super invertible matrix that will be useful
later for the propose of randomness extraction.

Definition 5.6. Let F be a finite field, r > c be positive integers and let M ∈ Fr×c. We say that M is
super invertible if for all R ⊆ {1, · · · , r} such that |R| = c it holds that MR is invertible.

We now define the notation of R-random distributions.

Definition 5.7 (R-random distributions). Let r be a positive integers. For any R ⊆ {1, · · · , r} consider
the distribution XR of all vectors (x1, · · · , xr) over Fr that is defied as follows. For all i ∈ R it holds that
xi is selected uniformly at random from F and for all i′ ∈ {1, · · · , r}\R it holds that xi′ is generated with
an arbitrary distribution that is independent from {xi}i∈R. In this case we say that XR is R-random.

We now claim that any super invertible matrix can be used in order to extract randomness from the
distributions defined in Definition 5.7. Indeed, consider the following lemma.

51

Lemma 5.1. Let r > c be positive integers. We claim that for any super invertible matrix M ∈ Fr×c
and for any R-random distribution XR over Fr such that |R| ≥ c it holds that

MTXR ≡ Uc.

Proof. Let XR be an R-random distribution over Fr such that |R| ≥ c and let M ∈ Fr×c be a
super invertible matrix. In addition, let Y be XR restricted to the indices in R and let Y ′ be XR

restricted to the indices in {1, · · · , r} \ R. Notice that Y and Y ′ are independent. Since XR is an R-
random distribution, we have that Y ≡ Ur. Thus, since MR is invertible, we have that (MR)TY ≡ Uc.
Therefore, we obtain that,

MTXR ≡ (MR)TY + (M{1,··· ,r}\R)TY ′ ≡ Uc + (M{1,··· ,r}\R)TY ′ ≡ Uc.

5.3 From general adversaries to maximal adversaries

In this section we prove that any MPC protocol in the client-server model that is secure against an
adversary controlling exactly t servers is also secure against any adversary controlling at most t servers.
This claim will be useful for us in Section 5.5 where we prove that private MPC protocols for computing
a circuit C using n = 2t + 1 servers that have certain syntactical properties are secure protocols for
computing the additively corruptible version f̃C of C in the presence of an active adversary. Concretely,
in each round of some of the protocols discussed in Section 5.5, the messages sent by each server to the
other servers (including himself) are always Shamir sharings with threshold t of some value x. Thus,
in case the adversary controllers exactly t servers, in each round, the simulator always gets, from every
corrupted server, exactly t+ 1 shares from the adversary (one for each honest server) which will always
form a valid Shamir sharing of some value x′. Thus, the simulator can recover x′ and use it in order
to simulate the output of the honest clients. This is in contrast to an adversary controlling less the
t servers in which case the simulator gets at least t + 2 shares which might not form a valid shaming
sharing (see Section 5.5 for a more detailed discussion).

Notice that in general, this is not true for the plain model. Let n, t be positive integers such that
t < n and let fn,t(x) be the functionality which on input x, obtained from P1, computes an n-party
Shamir secret sharing of x with threshold t and outputs each party, Pi, its corresponding share. Consider
the protocol π for computing fn,t where P1 in addition to sharing x between all the parties using Shamir
secret sharing with threshold t also sends x itself to all the parties. Notice that π is a secure protocol
for computing fn,t(x) against any adversary controlling exactly t + 1 parties. This is because any
information obtained by the adversary during a real execution of π, can be simulated in the ideal world
by recovering the t+ 1 shares provided to the simulator by the trusted party. However, π is not secure
against an adversary controlling t or less parties. This is since in the real world all the parties learn
x which is not simulatable in the ideal world from t (or less) shares provided to the simulator by the
trusted party.

We now claim that in the client server model, every protocol that is secure against any adversary
controlling exactly t servers is also secure against any adversary controlling at most t servers.

Lemma 5.2. Let Π be a protocol computing an m-client circuit C using n = 2t + 1 servers. Then, if
Π is secure against any adversary controlling exactly t servers then Π is secure against any adversary
controlling at most t servers.

Proof. Let Π be a protocol computing an m-client circuit C using n = 2t+1 servers. Let {C1, · · · , Cm}
be the set of clients and let {S1, · · · , Sn} be the set of servers. In addition let Adv be an adversary

52

controlling a set C of clients and a set S of servers such that |S| < t. Finally, fix S∗ to be some set of
servers such that |S∗ ∪ S| = t.

Consider the adversary Adv∗ controlling the clients in C and the servers in S∗∪S that initializes the
servers in S∗ as specified by Π and behaves as follows.

1. Adv∗ simulates the honest behavior of the servers in S∗. In particular, when the servers in S∗
want to send a message m to the servers or clients in S ∪ C, Adv∗ sends m internally to Adv.

2. Adv∗ simulates Adv on the servers and clients in S ∪ C. In particular, when Adv wants to send a
message m to the servers in S∗, Adv∗ sends m internally to S∗.

Notice that Adv∗ controls exactly t servers therefore Π is secure against Adv∗. Let Sim∗ be a simulator
as guaranteed by the security of Π against Adv∗.

Let vS∪S∗∪C be a view of the parties in S ∪ S∗ ∪ C and let fixView(vS∪S∗∪C ,S∗,mS∗,S∪C) be a function
that removes from vS∪S∗∪C the incoming messages to the servers in S∗ and adds to vS∪S∗∪C the messages
mS∗,S∪C sent by the servers in S∗ to the clients and servers in S∪C. We use Sim∗ and fixView to construct
a simulator Sim for Adv that, on inputs xC for the clients in C, performs the following.

1. Invoke Sim∗ on the inputs xC and obtain a view v′∗ for Adv∗. In addition, Sim calls the trusted
party computing C whenever Sim∗ calls the trusted party.

2. Invoke Adv∗ on the view v′∗ and obtain the messages m′S∗,S∪C sent by the servers in S∗ to the
clients and servers in S ∪ C. Note that m′S∗,S∪C are well defined since Adv∗ is deterministic given
the internal randomness in v′∗.

3. Remove from v′∗ the incoming messages to the servers in S∗ as well the randomness used by the
servers in S∗. In addition, add m′S∗,S∪C to v′∗. That is, compute v′S∪C ← fixView(v′∗,S∗,m′S∗,S∪C).

4. Output v′S∪C .

We now claim that Sim correctly simulates the view of Adv. Formally we claim that for any ~x it holds
that

Ideal
f̃C ,Sim,S∪C

(~x) ≡ RealΠ,Adv,S∪C(~x).

Notice that by the security properties of Sim∗ we have that for any ~x it holds that

Ideal
f̃C ,Sim∗,S∪S′∪C

(~x) ≡ RealΠ,Adv∗,S∪S′∪C(~x). (23)

We begin by claiming that for any input ~x it holds that V ′SimS∪C ≡ V Adv
S∪C .

Indeed, assume Adv is deterministic and let ~x be an input to C. Notice that by Equation 23 it holds
that V Adv∗

S∪S∗∪C ≡ V ′Sim
∗

S∪S∗∪C . Denote by M ′Sim
∗

S∗,S∪C the messages obtained in Step 2 of Sim when invoked on
inputs xC for the clients in C. Finally, let Adv∗S∪C(vS∪S∗∪C) be the function computing the messages
sent to the servers and clients in S ∪ C during Step 1 inside Adv∗ given its view vS∪S∗∪C . Notice that
since Adv∗ is completely deterministic given its view vS∪S∗∪C it holds that,

M̃Adv∗
S∗,S∪C ≡ Adv∗S∪C(V

Adv∗
S∪S∗∪C) and M ′Sim

∗
S∗,S∪C ≡ Adv∗S∪C(V

′Sim∗
S∪S∗∪C).

Thus, since V Adv∗
S∪S∗∪C ≡ V ′ Sim

∗
S∪S∗∪C it holds that (V ′ Sim

∗
S∪S∗∪C ,M

′Sim∗
S∗,S∪C) ≡ (V Adv∗

S∪S∗∪C , M̃
Adv∗
S∗,S∪C). Finally, notice

that in a real execution of Π in the presence of Adv, it holds that V Adv
S∪C ≡ fixView(V Adv∗

S∪S∗∪C ,S∗, M̃Adv∗
S∗,S∪C).

Similarly, by construction, V ′SimS∪C ≡ fixView(V ′Sim
∗

S∪S∗∪C ,S∗,M ′ Sim
∗

S∗,S∪C).
Thus we have that,

V ′SimS∪C ≡ fixView(V ′Sim
∗

S∪S∗∪C ,S∗,M ′ Sim
∗

S∗,S∪C)

≡ fixView(V Adv∗
S∪S∗∪C ,S∗, M̃Adv∗

S∗,S∪C)

≡ V Adv
S∪C .

53

We now set out to prove that (V ′SimS∪C , O
′Sim
C) ≡ (V Adv

S∪C , O
Adv
C). Denote by ΠC(xC ,mC) the outputs of

the clients in C during a real execution of Π given their inputs xC and the messages they received mC .
By definition of ΠC(xC ,mC) we have that,

(V Adv
S∪C , O

Adv
C) ≡ (V Adv

S∪C ,ΠC(xC , M̃
Adv
C)).

Notice that by construction of Adv∗, it holds that the messages sent by Adv∗ and Adv to the honest
clients and servers are the same. Thus using the definition of fixView we have that,

(V Adv
S∪C ,ΠC(xC , M̃

Adv
C)) ≡ (fixView(V Adv∗

S∪S∗∪C ,S∗, M̃Adv∗
S∗,S∪C),ΠC(xC , M̃

Adv∗

C)).

Using the definition of OAdv∗

C and the security properties of Sim∗ we have that,

(fixView(V Adv∗
S∪S∗∪C ,S∗, M̃Adv∗

S∗,S∪C),ΠC(xC , M̃
Adv∗

C)) ≡ (fixView(V Adv∗
S∪S∗∪C ,S∗, M̃Adv∗

S∗,S∪C), O
Adv∗

C)

≡ (fixView(V ′Sim
∗

S∪S∗∪C ,S∗,M ′ Sim
∗

S∗,S∪C), O
′Sim∗
C)

Next, notice that Sim and Sim∗ make the same calls to the trusted party. Thus using the definition of
fixView we have that,

(fixView(V ′Sim
∗

S∪S∗∪C ,S∗,M ′ Sim
∗

S∗,S∪C), O
′Sim∗
C) ≡ (V ′ SimS∪C , O

′ Sim
C).

Thus we have obtained, (V Adv
S∪C , O

Adv
C) ≡ (V ′ SimS∪C , O

′ Sim
C) meaning that Π is a secure protocol for computing

C in the precise of Adv.

5.4 Linear-based protocols

In this section we describe a set of properties we will require from an MPC protocol Π computing a
circuit C. Later, we will prove that if Π meets these properties, then Π is a secure protocol for computing
the additively corruptible version f̃C of C as defined in Definition 5.1. We begin by defining the notion
of linear protocol below.

Definition 5.8 (Linear protocol). An n-party protocol Π is said to be linear protocol, over some finite
field F if Π has the following properties

1. Inputs. The input of every party Pi is a vector of field elements from F. Moreover, Pi’s inputs
can be divided into two distinct types, the main inputs and auxiliary inputs.

2. Messages. Recall that each message in Π is a vector of field elements. We require that every
message ~m of Π, sent by some party Pi, belongs to one of the following categories:

(a) ~m is some fixed arbitrary function of Pi’s main inputs (and is independent of its auxiliary
inputs).

(b) every entry mj of ~m is generated as some fixed linear combination of Pi’s auxiliary inputs
and elements of previous messages received by Pi.

3. Output. The output of every party Pi is a linear function of its incoming messages.

Notice that for any linear protocol Π, input x and for any set of parties T , it is possible to compute
the outputs of the parties in T given the messages minp,T of type 2a in Definition 5.8 sent by the parties
in T to themselves, the auxiliary input ~y as well as the incoming mT ,T messages of type 2b sent by the

parties in T to the parties in T . We thus define the notion of output function of T in π to be as follows.

54

Definition 5.9 (Output function of a linear protocol). Let π be a linear protocol for computing a
functionality f and let T be a set of parties. Let ~x be a main input to π, let ~y be an auxiliary input
to π and let minp,T be the messages of type 2a in Definition 5.8 sent by the parties in T to themselves
during an honest execution of π on (~x, ~y). In addition, let mT ,T be the messages of type 2b sent by the

parties in T to the parties in T during an honest execution of π. We say that a function outputT is the
output function of T in π if for any main input ~x and auxiliary input ~y it holds that

outputT (minp,T , ~y,mT ,T) = fT (~x, ~y)

where fT is the restriction of f to the outputs of the parties in T .

The following immediate claim states that the output function of a linear protocol is a linear function.

Claim 5.1. Let π be a linear protocol and let T be a set of parties. In addition let outputT be the output
function of T in π. Then for any m1, y,m2,m

′
1, y
′,m3 it holds that

outputT,π(m1 +m′1, y + y′,m2 +m′2) = outputT,π(m1, y,m2) + outputT,π(m′1, y
′,m′2).

Next, we define the notion of linear-based protocols which use linear protocols as internal compo-
nents. Notice that, linear-based protocols in fact capture the typical structure of many common MPC
protocols such as the BGW protocol [BGW88, AL11] and the DN protocol [DN07]. Later we will claim
that any protocol π for computing an m-client circuit C using n = 2t + 1 servers that is linear-based
and weakly-private against active adversaries controlling at most t servers is a t-secure protocol for
computing the additively corruptible version f̃C of C as defined in Definition 5.1. In particular, this
observation will hold for the BGW and DN protocols.

We proceed by defining the notion of linear-based protocols below.

Definition 5.10 (Linear-based protocols). Let SS = (share, recover) be a redundant dense linear secret
sharing scheme. An n-server m-client protocol Π for computing a single-output m-client circuit C :
FI1 × · · · × FIm → FO1 where n = 2t + 1 is said to be linear-based with respect to SS if Π has the
following structure:

1. Setup phase. During this phase all servers (and not the clients) participate in some linear
protocol πsetup that gets no auxiliary inputs. At the end of this phase every server Si holds a vector
~hci for every multiplication gate gc of C.

2. Randomness generation phase. During this phase all servers (and not the clients) participate
in some linear protocol πrand that gets no auxiliary inputs. At the end of this phase every server
Si holds a share gji for every randomness gate gj in C.

3. Input sharing phase. Π evaluates every input gate gi belonging to client Cj of C as follows.
Cj shares its input x for gi using SS and then sends each server its corresponding share.

4. Circuit evaluation phase. Π computes C in stages. During the i-th stage in an honest execu-
tion, the i-th gate, gi, inside C is evaluated (in some topological order) and at the end of the stage
the servers hold a sharing of the output of gi with a distribution induced by share. The evaluation
of each gate is done as follows:

(a) For any addition gate gc in C with inputs ga and gb, Π evaluates gc by having each server Si
sum its shares corresponding to the outputs of ga and gb. Similarly, for a subtraction gate, Si
subtracts the shares corresponding to the outputs of ga and gb. There is no communication
during these stages.

55

(b) For any multiplication gate gc in C with inputs ga and gb, Π evaluates gc using some n-party
linear protocol πmult such that the main inputs of the i-th server Si to πmult are its shares gai
and gbi corresponding to the outputs of ga and gb. The auxiliary input of Si to πmult is ~hci
which is the results of the setup phase associated with gc.

5. Output recovery phase. The output recovery phase of Π is done as follows: for each output
gate of C, the first t+ 1 servers send their corresponding shares to C1 which in turn recovers each
output of C using recover.

We now proceed to define the notion of weakly-private protocols. At high level, the notion of weak
privacy is defined just like regular privacy in the sense that the view of any adversary can be simulated.
However, the notion of weakly-private is weaker than regular privacy in the sense that it does not require
the simulator to simulate the adversary’s view during the last communication round of the protocol.
We refer to the adversary’s view excluding the last communication round as its truncated view.

Definition 5.11 (Weak privacy). Let π be an m-client protocol for computing a functionality f where
only the first client gets an output and let Adv be an adversary controlling a set of clients C. Denote
by viewπ,trunc

Adv (~x) the view of Adv excluding the last communication round during a real execution of π
on inputs ~x. We say that π is weakly-private against Adv if there exists a simulator Sim such that for
every input ~x it holds that

viewπ,trunc
Adv (~x) ≡ Sim(~xC).

Notice that Sim does not have oracle access to a trusted party.

The following theorem states that any protocol π for computing a circuit C that is linear-based with
respect to some redundant and dense linear secret sharing scheme and that is weakly-private against
active adversaries is a secure protocol for computing the additively corruptible version of C.

Theorem 5.2. Let Π be a protocol computing a (possibly randomized) m-client circuit C : FI1 × · · · ×
FIm → FO1 using n = 2t+1 servers that is linear-based with respect to some redundant and dense linear
secret sharing scheme and is weakly-private against active adversaries controlling at most t servers and
an arbitrary number of clients. Then, Π is a t-secure protocol for computing f̃C .

We prove Theorem 5.2 in two stages. First, using the results from Section 5.3, its enough to only
consider adversaries that control exactly t servers and an arbitrary number of clients. Second, in
Section 5.5 we prove that Π securely computes f̃C in the presence of any active adversary controlling
exactly t servers and an arbitrary number of clients.

5.5 Security of linear-based protocols

In this section we prove that any protocol Π for computing an m-client circuit C using n = 2t+1 servers
that is linear-based and weakly-private against active adversaries controlling exactly t servers and an
arbitrary number of clients is a secure protocol for computing the additively corruptible version f̃C of
C against active adversaries controlling exactly t servers.

Combining the results of this section with Lemma 5.2 we obtain that any protocol for computing
an m-client circuit C using n = 2t + 1 servers that is linear-based and weakly-private against active
adversaries controlling at most t servers and an arbitrary number of clients is a t-secure protocol for
computing the additively corruptible version f̃C of C.

In order to prove that Π is a secure protocol from computing f̃C against adversaries controlling
exactly t servers we need to describe a simulator Sim for any such Adv. Recall that Sim must simulate
the view of Adv together with the output of the honest parties. Notice that by the weak-privacy
requirement it is possible to simulate the truncated view (the view excluding the last communication

56

round) of any active adversary controlling t servers. Simulating the output of the honest clients and the
view of Adv during the last communication round is more challenging in the case of active adversaries.

In order to achieve this, Sim will use Adv in order to determine an appropriate additive attack
on C. Recall that an additive assigns an element of F to each internal wire of C as well as to each
of C’s outputs. For an internal wire (a, b) in C, Aa,b denotes the restriction of A to the wire (a, b).
Similarly Aout denotes the restriction of A to the output wires of C. Using A, and using the output of
the trusted party, the simulator will simulate the view of the adversary during the last communication
round together with the output of the honest clients.

Notice that during the input sharing phase, the simulator has the messages that the adversary
actually sent to the honest servers. In addition, since the simulator has the input of the corrupted
clients, the simulator can compute by itself the messages that the adversary should have sent if it where
behaving honestly. Next, as the simulation progress, for each multiplication gate, the simulator obtains
the messages corresponding to the gate’s output from the corrupted servers. In addition, the simulator
will always will try to compute the so called “honest messages” that the adversary should have sent
(based on it internal state), if it where to start behaving honestly at the current round. Finally, since
Π evaluates multiplication gates using a linear protocol, the difference between the actual messages
and the honest messages is used to determine the corresponding additive attack on the output of the
multiplication gate. We will show by induction that thus computed additive attack A indeed “explains”
all of the corruptions in the output of C1 in case its honest and view of Adv in final round in the case
where C1 is corrupted.

We now proceed to formally describe a simulator for Π in the malicious model.

Construction 5.2. Let Π be a linear-based protocol for computing a (possibly randomized) m-client
circuit C : FI1 × · · · × FIm → FO1 using n = 2t + 1 servers that is weakly-private against active
adversaries controlling at most t servers and linear-based with respect to some redundant and dense
linear secret sharing scheme SS. In addition, let Adv be an adversary controlling a set C of clients and
a set S of servers such that |S| = t. Define the simulator Sim that on inputs ~xC (of the corrupted clients
in C), initializes an additive attack A and performs the following.

1. Truncated view generation phase. Let Simtrunc−view be a simulator as guaranteed by the weak-
privacy property of Π. Invoke Simtrunc−view on the inputs xC and obtain a simulated truncated view
u′S∪C of the adversary.

2. Setup phase.10 Recall that by Definition 5.10 the protocol πsetup gets no auxiliary inputs. Let
outputS,πsetup be the output function of S in πsetup as defined in Definition 5.9. The simulation
proceeds as follows.

(a) Simulate the honest behavior of the servers in S given their truncated view u′S∪C and obtain

the messages m
′πsetup
S,S that should have been sent by the servers in S to the servers in S during

the execution of πsetup. In addition, for every server Si ∈ S for every multiplication gate gc

obtain the vector ~h′ci that is a part of the output of Si at the after an honest execution of
πsetup.

(b) Invoke Adv on the truncated view u′S∪C and obtain the messages m̃
′πsetup
S,S sent by the adversary

to the servers in S during the execution of πsetup.

(c) Compute γ
πsetup

S ← outputS,πsetup(0,⊥, m̃
′πsetup
S,S −m′πsetupS,S) where outputS,πsetup is the output func-

tion of πsetup.

10For the case where Π does not have a setup phase, the results obtained from simulating this phase (namely γ
πsetup

S and

~h′S) should be considered as the empty vectors.

57

3. Randomness generation phase. Recall that by Definition 5.10 the protocol πrand gets no aux-
iliary inputs. Let outputS,πrand be the output function of S in πrand as defined in Definition 5.9.
The simulation proceeds as follows.

(a) Simulate the honest behavior of the servers in S given their truncated view u′S∪C and obtain
the messages m′πrandS,S that should have been sent by the servers in S to the servers in S during

the execution of πrand. In addition, for every server Si ∈ S for every randomness gate gj

obtain the share g′ji that is part of the output of Si at the after an honest execution of πrand.

(b) Invoke Adv on the truncated view u′S∪C and obtain the messages m̃′πrandS,S sent by the adversary

to the servers in S during the execution of πrand.

(c) Compute γπrandS ← outputS,πrand(0,⊥, m̃
′πrand
S,S −m

′πrand
S,S).

(d) For every randomness gate gc, let γcS ∈ Ft+1 be the restriction of γπrandS to the values corre-
sponding to gc. The simulation proceeds as follows.

i. The simulator now determines entries of the additive attack A on the circuit C. Notice
that γcS is a vector of t+ 1 shares of SS and thus, since SS is dense, this forms a valid
sharing of some value.
Compute αc ← recover(γcS ,S) and every gate gd connected to gc set Ac,d ← αc. Finally,
since SS is redundant, the simulator is able to compute the shares (γci)Si∈S for the servers
in S that are compatible with γcS .

ii. Next, the simulator proceeds to compute the shares (g′ci)Si∈S . For every Si ∈ S compute
g′ci ← g′ci + γci and saves it for later use.

4. Input sharing phase.

(a) For each input gate gc that is part of the inputs of some honest client Ci:

i. For every corrupted server Sk retrieve from u′S∪C the value g′ck representing Sk’s share of
Ci’th input for gc and send it to Adv.

ii. For any gate gd connected to the output of gc set Ac,d ← 0.

(b) For each input gate gc belonging to the corrupted client Ci ∈ C, the simulator performs the
following:

i. For each honest server Sk ∈ S, receive a message g̃′ck from Adv corresponding to Sk’th
share of Adv’s input for gc.

ii. Notice that since |S| = t + 1 and since SS is a dense scheme, the messages obtained
in Step 4(b)i above always form a secret sharing of some value x̃c. That is x̃c ←
recover

(
(g̃′ck)Sk∈S ,S

)
. For every gate gd connected to the output of gc the simulator

sets Ac,d ← x̃c − xc where xc is the input of Ci to gc.

iii. Next, for each corrupted server Sk, using the redundancy property of SS, the simulator
computes the shares g′ck that is consistent with the shares obtained in Step 4(b)i above
and stores it for later use.

5. Circuit evaluation phase. For each gate gc of C with inputs ga and gb, proceed as follows:

Handling addition and subtraction gates. In this case no communication takes place. For
each corrupted server Si compute g′ci ← g′ai +g′bi in the case of addition gates and g′ci ← g′ai −g′bi in
the case of subtraction gates. Also, for every gate gd connected to the output of gc, set Ac,d ← 0.

Handling multiplication gates. If gc is a multiplication gate, recall that Π evaluates gc using
some linear protocol πmult. Let m′cS,S be the set of messages sent by the servers in S to the servers

58

in S that are retrieved from the truncated view u′S∪C during the execution of πmult. Also, since
Adv is deterministic given v′S∪C, it is the case that u′S∪C contains also the randomness r′cS of the
servers in S used in πmult. In addition, let outputS,πmult

be the output function of S in πmult as
defined in Definition 5.9. The simulation proceeds as follows.

(a) Obtain from Adv the messages m̃′cS,S sent by the adversary to the servers in S during the

execution of πmult.

(b) Let ~h′cS be the outputs of πsetup corresponding to gc that where computed in Step 2a. Simulate

the honest behavior of the servers in S on main inputs ((g′ai , g
′b
i))Si∈S , auxiliary inputs ~h′cS ,

randomness r′cS and incoming messages m′cS,S and obtain the messages m′cS,S that should have

been sent by the servers in S to the servers in S during the execution of πmult. In addition,
for every server Si ∈ S obtain the share g′ci that is the output of Si at the after executing
πmult.

(c) Compute δcS ← outputS,πmult
(0, γcS , m̃

′c
S,S −m

′c
S,S) where γcS are the part of γS corresponding to

the gate gc (since gc is a multiplication gate, by the construction of Π such γcS exists).

(d) The simulator now determines further entries of the additive attack A on the circuit C.
Notice that δcS is a vector of t + 1 shares of SS and thus, since SS is dense, this forms a
valid sharing of some value.

Compute αc ← recover(δcS ,S) and every gate gd connected to gc set Ac,d ← αc. Finally, since
SS is redundant, the simulator is able to compute the shares (δci)Si∈S for the servers in S
that are compatible with δcS .

(e) Next, the simulator proceeds to compute the shares (g′ci)Si∈S . For every Si ∈ S compute
g′ci ← g′ci + δci and saves it for later use.

6. Output recovery phase. At the end of the of the circuit evaluation phase, for each output gate
gz each corrupted server Si holds a share g̃zi of the supposed output. Recall that only C1 is learn
the output. Thus, there are two cases to consider based on whether C1 is corrupted or not:

• C1 is corrupted. In this case only the adversary learns the output. The simulation proceeds
as follows:

(a) The simulator sets to 0 all the coordinates of A that were not previously set.

(b) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the aforementioned wire corruptions A. The trusted party responds to
the simulator with the outputs y for C1.

(c) For each output gate gz of C that is connected to an output of some gate gi the simulator
chooses shares of yz that are compatible with (gij)Sj∈S , adds them to u′S∪C and sends them
to Adv (notice that according to Corollary 5.1 this could always be done).

(d) The simulator outputs u′S∪C.

• C1 is honest. Denote by St+1 = {S1, · · · , St+1} ∩ S. The simulation proceeds as follows:

(a) For each output gate gz of C as above and for each corrupted server Sj ∈ St+1 obtain
the shares g̃zj that Sj sends to C1.

(b) For each output gate gz of C, the simulator sets (Aout)i ←
∑

Sj∈St+1
aj(g̃

z
j − g′

z
j) where

the constants (aj)Sj∈St+1 are used in recover to recover the values from shares held by the
servers in {S1, · · · , St+1}.

(c) The simulator sets to 0 all the coordinates of A that were not previously set and invokes
the trusted party computing f̃C with the inputs of the corrupted parties and with the wire
corruptions A computed so far.

59

(d) The simulator outputs u′S∪C.

The following Lemma claims that for any adversary Adv and for any input ~x, the simulator Sim
constructed in Construction 5.2 correctly simulates the truncated view of Adv together with the output
of the honest parties during a real execution of Π on inputs x in the presence of Adv.

Lemma 5.3. Let Π be a protocol for computing an m-client circuit C : FI1 × · · · × FIm → FO1 using
n = 2t+1 servers that is linear-based with respect to some redundant dense linear secret sharing scheme
SS and weakly-private against active adversaries controlling at most t servers. Then, for any adversary
Adv in the real world controlling a set of clients C and a set S of servers such that |S| = t it holds that
for any ~x

Ideal
f̃C ,Sim,S∪C

(~x) ≡ RealΠ,Adv,S∪C(~x)

where SimAdv is the simulator constructed in Construction 5.3.

Proof. Assume without loss of generality that Adv is deterministic and fix an input ~x for all the
clients. Notice that Sim invokes Simtrunc−view in order to generate U ′C∪S . By Definition 5.11 we have that
Simtrunc−view correctly simulates the truncated view of Adv. Thus, Sim correctly simulates the truncated
view of Adv and therefore we have that UC∪S ≡ U ′C∪S .

It remains to prove that Sim correctly simulates the remaining rounds. For any truncated view
u from the support of UC∪S denote by (LuS,C , O

u
C) the random variables (LS,C , OC) conditioned on

UC∪S = u during a real execution of the protocol. Similarly, denote by (L′uS,C , O
′u
C) the random variables

(L′S,C , O
′
C) conditioned on U ′C∪S = u during an ideal execution of the protocol. Since RealΠ,Adv,S∪C(~x) =

(UC∪S , LS,C , OC) and Ideal
f̃C ,Sim,S∪C

(~x) = (U ′C∪S , L
′
S,C , O

′
C) it is therefore sufficient to prove that for any

truncated view u it holds that (LuS,C , O
u
C) ≡ (L′uS,C , O

′u
C).

We now proceed to analyze the setup phase of Π. For any truncated view u from the support of
UC∪S let HS,u be the random variables corresponding to the outputs of the servers in S after an honest

execution of πsetup conditioned on UC∪S = u. Similarly let H̃S,u the random variables corresponding to

the outputs of the servers in C after a real execution of πsetup conditioned on UC∪S = u.
Finally, since Adv is deterministic, any truncated view u uniquely determines the values the vector

γ
πsetup

S,u as computed in Step 2c of Sim.

We now claim that even an active adversary, cannot effect the execution of the preprocessing phase
of a linear protocol beside forcing all the honest servers to add some (adversarially controlled) offset to
their outputs.

Claim 5.2. For any truncated view u in the support of UC∪S , it holds that H̃S,u ≡ HS,u + γ
πsetup

S,u .

Proof. Fix a truncated view u from the support of UC∪S . Notice that the truncated view u

uniquely determines the messages m
πsetup,honest

S,S sent from the servers in S to the servers in S during an

honest execution of πsetup. In addition, since Adv is deterministic, the truncated view u also uniquely
determines the messages m̃

πsetup

S,S sent by the adversary to the servers in S during a real execution of

πsetup, the messages m
′πsetup
S,S sent to Sim in Step 2a during an ideal execution of the πsetup and the

messages m̃
′πsetup
S,S sent to Sim in Step 2b during an ideal execution of the πsetup. By construction we

have that m
′πsetup
S,S = m

πsetup,honest

S,S and that m̃
′πsetup
S,S = m̃

πsetup

S,S .

Recall that πsetup is a linear protocol and let M
πsetup

inp,S,u be the random variables corresponding to

the input dependent messages sent by the servers in S to themselves during a real execution of πsetup.

60

In addition, let be the random variables M
πsetup

inp,S conditioned on UC∪S = u. Since πsetup is a linear

protocol for any m1,m
′
1,m2,m

′
2 it holds that

outputS,πsetup(m1 +m′1,⊥,m2 +m′2) = outputS,πsetup(m1,⊥,m2) + outputS,πsetup(m
′
1,⊥,m′2).

Thus we have that,

H̃S,u = outputS,πsetup

(
M

πsetup

inp,S,u,⊥, m̃
πsetup

S,S

)
= outputS,πsetup

(
M

πsetup

inp,S,u,⊥,m
πsetup,honest

S,S + m̃
πsetup

S,S −m
πsetup,honest

S,S

)
= outputS,πsetup

(
M

πsetup

inp,S,u,⊥,m
πsetup,honest

S,S

)
+ outputS,πsetup

(
0,⊥, m̃πsetup

S,S −m
πsetup,honest

S,S

)
.

By construction of πsetup we have that outputS,πsetup(M
πsetup

inp,S,u,⊥,m
πsetup,honest

S,S) ≡ HS,u and by construc-

tion of γ
πsetup

S,u it holds that

γ
πsetup

S,u = outputS,πsetup(0,⊥, m̃
′πsetup
S,S −m′πsetupS,S) = outputS,πsetup(0,⊥, m̃

πsetup

S,S −m
πsetup,honest

S,S).

Thus we have that,

outputS,πsetup

(
M

πsetup

inp,S,u,⊥,m
πsetup,honest

S,S

)
+ outputS,πsetup

(
0,⊥, m̃πsetup

S,S −m
πsetup,honest

S,S

)
≡ HS,u + γ

πsetup

S,u .

We now proceed to analyze the randomness generation phase of Π. For any truncated view u in the
support of UC∪S denote by Ỹ rand

S,u the shares held by the honest servers corresponding to the output of

πrand during a real execution of πrand conditioned on UC∪S = u. Similarly, denote by Y rand
S,u the shares

held by the honest servers corresponding to the output of πrand during an honest execution of πrand
conditioned on U ′C∪S = u. Finally, since Adv is deterministic, any truncated view u uniquely determines
the values a vector γπrandS,u as computed in Step 3c of Sim.

The proof of the following claim is similar to the proof of Claim 5.2 and is omitted.

Claim 5.3. For any truncated view u in the support of UC∪S , it holds that Ỹ rand
S,u ≡ Y

rand
S,u + γπrandS,u .

We now proceed to analyze the input sharing and circuit evaluation phases of Π.
Let g1, · · · , g|C| be a topological ordering of the gates of C starting from the input gates and ending

with the output gates. For any truncated view u in the support of UC∪S and for any gate gc ∈ C with
input wires that are the outputs of gates ga, gb we denote by Ỹ c

S,u the shares held by the honest servers

corresponding to the output of gc during a real execution of the protocol conditioned on UC∪S = u.
In addition, for any 1 ≤ c ≤ |C|, and for any truncated view u in the support of U ′C∪S denote by

Zcu the random variable corresponding to the value of the output wire of gc during an ideal execution
of the protocol (as computed by f̃C) conditioned on U ′C∪S = u. Also, for any truncated view u in the
support of U ′C∪S denote by Au the vector A ∈ Fw computed by the simulator conditioned on U ′C∪S = u.
Notice that Au is completely determined by the the truncated view u and the deterministic adversary
Adv. By construction, for a gate ga and for any pair of non-output gates gb, gb

′
connected to the output

of ga it holds that Aua,b = Aua,b′ . Thus, we denote by Aau the value Aa,b for every gate gb connected to
the output of ga.

61

Moreover, for any truncated view u in the support of U ′C∪S and for any gate gc denote by ycS,u the
variables (g′ck)Sk∈S generated in Steps 3(d)ii, 4(a)i, 4(b)iii, 5e and during the processing of addition and
subtraction gates of the simulator. Intuitively, these variables represent shares of the output of gc that
the adversary should have if it where to start behaving honestly during the evaluation of the output of
gc. Notice that these shares are completely determined by u and the deterministic adversary Adv.

Finally, denote by recoverT

(
si1 , · · · , si|T |

)
the result of recovering the value from the shares (si1 , · · · , siT)

held by the parties in T if si1 , · · · , siT are a valid sharing and ⊥ otherwise.

The following claim states that the shares (Ỹ 1
S,u, · · · , Ỹ

c
S,u) held by the honest servers after a real

execution of the protocol in the presence of Adv correspond to the values (Z1
u+A1

u, · · · , Z
|C|
u +A

|C|
u) of the

internal wires inside C̃ when attacked by the additive attack A. Moreover, the shares
(
y1
S,u, · · · , y

|C|
S,u

)
as computed by the simulator are consistent with the shares held by the honest servers.

Claim 5.4. For any truncated view u in the support of UC∪S , it holds that(
Z1
u +A1

u, · · · , Z |C|u +A|C|u

)
≡
(

recoverS1,··· ,Sn((Ỹ 1
S,u, y

1
S,u)), · · · , recoverS1,··· ,Sn((Ỹ

|C|
S,u , y

|C|
S,u))

)
.

Proof. Fix a truncated view u from the support of UC∪S we now proceed to analyze the input
sharing and circuit evaluation phases of Sim conditioned on UC∪S = u.

The proof is by induction on the structure of C starting from the input gated and proceeding to
the output gates.

Basis. If gc is an input gate belongs to a honest client then the claim is immediate since Ac = 0.
Similarly, if gc is an input gate belonging to a corrupted client C, let xc be the input of C to gc by
construction of Ac we have that

recoverS1,··· ,Sn((Ỹ c
S,u, y

c
S,u)) ≡ xc +Acu = Zcu +Acu.

Induction hypothesis. Assume that for any 1 ≤ c ≤ |C| it holds that(
Z1
u +A1

u, · · · , Zc−1
u +Ac−1

u

)
≡
(

recoverS1,··· ,Sn((Ỹ 1
S,u, y

1
S,u)), · · · , recoverS1,··· ,Sn((Ỹ c−1

S,u , y
c−1
S,u))

)
.

Induction step. Let gc be a gate inside C with inputs ga, gb such that c > a and c > b. Assume with-

out loss of generality that b > a and fix values
(
ỹ1
S,u, · · · , ỹ

b
S,u

)
from the support of

(
Ỹ 1
S,u, · · · , Ỹ

b
S,u

)
and values

(
z1
u, · · · , zbu

)
from the support of

(
Z1
u, · · · , Zbu

)
. We now claim that conditioned on the

above selection it holds that

Zcu +Acu ≡ recoverS1,··· ,Sn((Ỹ c
S,u, y

c
S,u)).

From the induction hypothesis we have that,

zau +Aau ≡ recoverS1,··· ,Sn((ỹaS,u, y
a
S,u)) and zbu +Abu ≡ recoverS1,··· ,Sn((ỹbS,u, y

b
S,u)).

Notice that the random variable Zcu conditioned on the above selection of
(
ỹ1
S,u, · · · , ỹ

b
S,u

)
and(

z1
u, · · · , zbu

)
is uniquely determined by the fixed zau + Aau and zbu + Abu. We split the proof into

three cases.

62

Handling addition and subtraction gates. If gc is an addition gate, notice that Acu = 0. Thus,
by the linearity of SS we have that

Zcu +Acu = Zcu

= zau +Aau + zbu +Abu

≡ recoverS1,··· ,Sn

(
(ỹaS,u, y

a
S,u)

)
+ recoverS1,··· ,Sn

(
(ỹbS,u, y

b
S,u)

)
= recoverS1,··· ,Sn

(
(ỹaS,u, y

a
S,u) + (ỹbS,u, y

b
S,u)

)
= recoverS1,··· ,Sn

(
(Ỹ c
S,u, y

c
S,u)

)
where the last transition follows from the Constructions of Π and Sim. The handling of subtraction
gates is similar and therefore is omitted.

Handling randomness gates. If gc is a randomness gate, by construction of Π we have that
recoverS(Y c

S,u) ≡ Zcu where Y c
S,u is the restriction of Y rand

S,u to the shares corresponding to gc. Let

γcS,u be the restriction of γπrandS,u to the entries corresponding to gc. By construction we have that

Acu = recoverS(γcS,u). Thus, using Claim 5.3 and the linearity of SS we have that

recoverS(Ỹ c
S,u) ≡ recoverS(Y c

S,u + γcS,u)

= recoverS(Y c
S,u) + recoverS(γcS,u)

≡ Zcu +Acu.

Denote by ycS,u = (gci)Si∈S the shares obtained during Step 3a of the simulator. Notice that these shares
are completely determined by the truncated view u and by Adv. Finally, notice that by construction
of πrand we have that

recoverS1,··· ,Sn

(
(Y c
S,u, y

c
S,u)

)
≡ Zcu.

Thus, by construction of ycS,u we have that

recoverS1,··· ,Sn

(
(Ỹ c
S,u, y

c
S,u)

)
≡ Zcu +Acu.

Handling multiplication gates. If gc is a multiplication gate, then notice that by the definition
of f̃C and by the induction hypothesis it holds that

Zcu = (zau +Aau)
(
zbu +Abu

)
≡

(
recoverS1,··· ,Sn((ỹaS,u, y

a
S,u))

)(
recoverS1,··· ,Sn((ỹbS,u, y

b
S,u))

)
.

Next, denote by M̃ ′cS,S the messages obtained by the simulator in Step 5a and denote by M̃ c
S,S the

messages obtained by the honest servers corresponding to the output of gc during a real execution of
the protocol. Since we have that U ′C∪S ≡ UC∪S it holds that (U ′C∪S , M̃

′c
S,S) ≡ (UC∪S , M̃

c
S,S).

Notice that the truncated view u and Adv completely determine both M̃ ′cS,S and M̃ c
S,S as well as

the messages m′cS,S obtained by the simulator in Step 5b. Thus, denote by m̃c
S,S the value of both

M̃ ′cS,S and M̃ c
S,S as determined by u.

For any set of parties T denote by inpMsgT,πmult
(xT) the nondeterministic functionality that com-

putes the values of the input-dependent messages that the parties in T send to all the parties given
their deterministic inputs xT and using fresh randomness. In addition, denote by H̃c

S,u and γcS,u the

restrictions of H̃S,u and γS,u respectively to the values corresponding to the gate gc.

63

By Claim 5.2 we have that H̃c
S,u − γcS,u ≡ Hc

S,u where Hc
S,u is HS,u restricted to the values

corresponding to the gate gc. Thus, by construction of Π, πmult and m′cS,S it holds that

recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, H̃c
S,u − γ

c
S,u,m

′c
S,S

))
(24)

≡ recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, Hc
S,u,m

′c
S,S

))
=
(

recoverS1,··· ,Sn((ỹaS,u, y
a
S,u))

)(
recoverS1,··· ,Sn((ỹbS,u, y

b
S,u))

)
≡ (zau +Aau)

(
zbu +Abu

)
= Zcu.

Second, notice that

recoverS(Ỹ c
S,u)

= recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, h̃cS,u, m̃

c
S,S

))
= recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, h̃cS,u − γ

c
S,u + γcS,u,m

′c
S,S + m̃c

S,S −m
′c
S,S

))
= recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, h̃cS,u − γ

c
S,u,m

′c
S,S

))
+ recoverS

(
outputS,πmult

(
0, γcS,u, m̃

c
S,S −m

′c
S,S

))
where the last transition follows the linearity of outputS,πmult

and SS. Next, notice that from Equa-
tion 24 and from the construction of A we have that,

recoverS

(
outputS,πmult

(
inpMsgS,πmult

(
ỹaS,u, ỹ

b
S,u

)
, h̃cS,u − γ

c
S,u,m

′c
S,S

))
+ recoverS

(
outputS,πmult

(
0, γcS,u, m̃

c
S,S −m

′c
S,S

))
≡ Zcu + recoverS

(
outputS,πmult

(
0, γcS,u, m̃

c
S,S −m

′c
S,S

))
= Zcu +Acu

Thus, we have proved that recoverS(Ỹ c
S,u) ≡ Zcu +Acu. Denote by ycS,u = (gci)Si∈S the shares obtained

during Step 5b of the simulator. Notice that these shares are completely determined by the truncated
view u and by Adv. In addition, let δc be the values computed in Steps 5c and 5d of the simulator.
Notice that these values are also completely determined by the truncated view u and by Adv. Finally,
let δcS and δcS be the restrictions of δc to the parties in S and S respectively. Notice that by construction
we have that recoverS1,··· ,Sn (δc) = Acu and thus by the linearity of SS it holds that

recoverS

(
Ỹ c
S,u − δ

c
S

)
≡ Zcu.

Next, notice that since recoverS1,··· ,Sn((ỹaS,u, y
a
S,u)) 6= ⊥ and since recoverS1,··· ,Sn((ỹbS,u, y

b
S,u)) 6= ⊥ by

the construction of ycS we have that

recoverS1,··· ,Sn

(
Ỹ c
S,u − δ

c
S , y

c
S,u

)
= recoverS

(
Ỹ c
S,u − δ

c
S

)
≡ Zcu.

64

Finally, since by construction we have that ycS,u + δcS = ycS,u by the linearity of SS we obtain

recoverS1,··· ,Sn

(
Ỹ c
S,u, y

c
S,u

)
= recoverS1,··· ,Sn

(
Ỹ c
S,u, y

c
S,u

)
− recoverS1,··· ,Sn (δc) + recoverS1,··· ,Sn (δc)

= recoverS1,··· ,Sn

(
Ỹ c
S,u − δ

c
S , y

c
S,u − δcS

)
+ recoverS1,··· ,Sn (δc)

= recoverS1,··· ,Sn

(
Ỹ c
S,u − δ

c
S , y

c
S,u

)
+ recoverS1,··· ,Sn (δc)

≡ Zcu +Acu.

Thus we have proved that recoverS1,··· ,Sn((Ỹ c
S,u, y

c
S,u)) = recoverS(Ỹ c

S,u) ≡ Zcu +Acu. Therefore, for any

1 ≤ c ≤ |C| it holds that(
Z1
u +A1

u, · · · , Zcu +Acu

)
≡
(

recoverS1,··· ,Sn((Ỹ 1
S,u, y

1
S,u)), · · · , recoverS1,··· ,Sn((Ỹ c

S,u, y
c
S,u))

)
and the claim follows.

We now return to the proof of Lemma 5.3. Claim 5.4 above states that the shares (Ỹ 1
S,u, · · · , Ỹ

c
S,u)

held by the honest servers after a real execution of the protocol in the presence of Adv correspond to the

values (Z1
u + A1

u, · · · , Z
|C|
u + A

|C|
u) of the internal wires inside C̃ when attacked by the additive attack

(A1
u, · · · , A

|C|
u). In particular, this is the case for the output gates of C. By construction of Π, the shares

of an output gate will be used by some of the honest clients during the output recovery phase of Π. It
therefore remains to prove that any active attack on the output recovery phase of Π can only result in
yet another additive attack on the outputs of C.

Denote H = {S1, · · · , St+1} ∩ S and S ′ = {S1, · · · , St+1} \ H. Next, for each gate gc connected
to an output gate gz, let (Ỹ c

H,u, y
c
S′,u) be the restriction of (Ỹ c

S,u, y
c
S,u) to the parties in H ∪ S ′. Let

gc1 , · · · , gck be the output gates of C such that gci is i-th output of C. We have two cases to consider.

1. C1 is corrupted. In this case only the adversary is to learn the output. Thus, we have that
C = ∅ and that OuC ≡ O

′u
C ≡ ⊥. It therefore sufficient to prove that LuS,C ≡ L

′u
S,C . In the real world

execution of the protocol, we have that LuS,C =
(
Ỹ c1
H,u, · · · , Ỹ

ck
H,u

)
. Notice that,(

recoverH∪S′((Ỹ
c1
H,u, y

c1
S′,u)), · · · ,recoverH∪S′((Ỹ

ck
H,u, y

ck
S′,u))

)
=
(

recoverS1,··· ,Sn((Ỹ c1
S,u, y

c1
S,u)), · · · , recoverS1,··· ,Sn((Ỹ ck

S,u, y
ck
S,u))

)
≡
(
Zc1u +Ac1u , · · · , Zcku +Acku

)
That is, for every output gate gc the distribution LuS,C consists of shares corresponding to the

parties in H of a value sampled from the distribution Zcu +Acu.

First, notice that
(
Zc1u + Ac1u , · · · , Zcku + Acku

)
is the output distribution of the trusted party for

this case. Second, notice that
(
Zc1u + Ac1u , · · · , Zcku + Acku

)
is exactly the distribution of values

that are shared by the simulator and the shares of which are are sent to the adversary (such
that the shares sent are compatible to the shares belonging to S that it already knows) and thus
LuS,C ≡ L

′u
S,C .

2. C1 is honest. In this case we have that LuS,C ≡ L′uS,C = ⊥ and thus V ′C∪S = (U ′C∪S ,⊥) ≡
(UC∪S ,⊥) = VC∪S . We now prove that (VC∪S , OC) ≡ (V ′C∪S , O

′
C

). Let OuC be the random variables

65

OC conditioned on UC∪S = u. Similarly, let O′uC be the random variables O′C conditioned on
UC∪S = u. Notice that only C1 is to obtain output, thus it remains to prove that OuC1

≡ O′uC1
.

Let
(
Ỹ c1
S′ , · · · , Ỹ

ck
S′
)

be the shares that the adversary sends to C1 during a real execution of the

protocol. Similarly, let
(
Ỹ ′ c1S′ , · · · , Ỹ

′ ck
S′
)

be the distribution of shares that the adversary sends

to the simulator during an ideal execution of the protocol. Notice that the values sent by the
adversary at this stage during the ideal and real executions of Π are completely determined by its
truncated view u. Thus, since UC∪S ≡ U ′C∪S it holds that(

UC∪S , Ỹ
c1
S′ , · · · , Ỹ

ck
S′
)
≡
(
U ′C∪S , Ỹ

′ c1
S′ , · · · , Ỹ

′ ck
S′
)
.

Thus, let
(
ỹ′c1S′,u, · · · , ỹ

′ck
S′,u

)
be the values of

(
Ỹ ′ c1S′,u, · · · , Ỹ

′ ck
S′,u

)
as determined by u. In a real

execution of the protocol we have that

OuC1
=
(

recoverH∪S′((Ỹ
c1
H,u, ỹ

′c1
S′,u)), · · · , recoverH∪S′((Ỹ

ck
H,u, ỹ

′ck
S′,u))

)
=
(

recoverH∪S′((Ỹ
c1
H,u, y

c1
S′,u + ỹ′c1S′,u − y

c1
S′,u)), · · · , recoverH∪S′((Ỹ

ck
H,u, y

ck
S′,u + ỹ′ckS′,u − y

ck
S′,u))

)
=
(

recoverH∪S′((Ỹ
c1
H,u, y

c1
S′,u)), · · · , recoverH∪S′((Ỹ

ck
H,u, y

ck
S′,u))

)
+
(

recoverH∪S′((0, ỹ
′c1
S′,u − y

c1
S′,u)), · · · , recoverH∪S′((0, ỹ

′ck
S′,u − y

ck
S′,u))

)
≡
(
Zc1u +Ac1u , · · · , Zcku +Acku

)
+
(

recoverH∪S′((0, ỹ
′c1
S′,u − y

c1
S′,u)), · · · , recoverH∪S′((0, ỹ

′ck
S′,u − y

ck
S′,u))

)
=
(
Zc1u +Ac1u + recoverH∪S′((0, ỹ

′c1
S′,u − y

c1
S′,u)), · · · , Zcku +Acku + recoverH∪S′((0, ỹ

′ck
S′,u − y

ck
S′,u))

)
Next, notice that

(
recoverH∪S′(0, ỹ

′c1
S′,u − y

c1
S′,u), · · · , recoverH∪S′(0, ỹ

′ck
S′,u − y

ck
S′,u)

)
is exactly the

restriction Aout of the additive attack A on the outputs of C. Thus we have that the output of
the trusted party, and the output of C1 in the ideal world is(
Zc1u +Ac1u + recoverH∪S′((0, ỹ

′c1
S′,u−y

c1
S′,u)), · · · , Zcku +Acku + recoverH∪S′((0, ỹ

′ck
S′,u−y

ck
S′,u))

)
≡ O′uC1

.

5.6 MPC using linear-based protocols

In this section, we show how to utilize the observation that any protocol Π for computing a circuit
C that is linear-based and weakly-private against active adversaries actually is a secure protocol for
computing the additively corruptible version f̃C of C for the purpose of computing C in the presence
of an active adversary.

First, we protect the inputs and outputs of C by transforming C into another circuit CAMD that
gets its inputs and computes its outputs encoded in some AMD code. Second, using the results of
Section 3.3 we obtain a secure version ĈAMD of CAMD. Third, we will invoke a linear-based and weakly-
private against active adversaries protocol Π for computing ĈAMD.

By the properties of Π we have that any deviation from the protocol made by an active adversary
corresponds to an additive attack on ĈAMD. In addition, by the security property of ĈAMD this additive
attack corresponds to an attack on the inputs and outputs of ĈAMD. Since the inputs and outputs of
ĈAMD are protected by some private AMD code, the honest parties will be able to catch these attacks

66

and abort the computation. See Figure 2(b) for a graphical representation of the constructions presented
in this section. We begin by defining the circuit CAMD.

Construction 5.3. Let C : F` × · · · × F` → F` be an m-client circuit. In addition, let (Enc,Dec) be an
(`, k, ε′)-AMD code. We define the randomized m-client circuit CAMD : Fk × · · · × Fk → F× Fk that on
inputs (x1, . . . , xm) performs the following:

1. For all 1 ≤ i ≤ m compute (bi, x
′
i)← Dec(xi).

2. Compute b←
∑m

i=1 ribi where ri is a random field element.

3. Output (b,Enc(C(x′1, · · · , x′m)) + br′) where r′ is generated uniformly at random from Fk.

We now proceed to describe a protocol for C in the f̃
ĈAMD-hybrid model where f̃

ĈAMD is the additively
corruptible version of C.

Construction 5.4. Let C : F`×· · ·×F` → F` be an m-client circuit and let (Enc,Dec) be an (`, k, εAMD)-
AMD code. In addition, let CAMD be the circuit constructed from C in Construction 5.3 using (Enc,Dec)
and let ĈAMD be an ε′-secure implementation of CAMD. Consider the protocol π in the f̃

ĈAMD-hybrid
model which on inputs (x1, . . . , xm) proceeds as follows:

1. Each client Ci locally computes x̂i ← Enc(xi).

2. Next, each client Ci sends its encoded inputs x̂i to the ideal functionality f̃
ĈAMD.

Upon obtaining an output (b, z) from the ideal functionality, C1 performs the following:

1. If b 6= 0 then C1 aborts.

2. C1 computes (b′, z′)← Dec(z). If b′ 6= 0 then C1 aborts.

3. Otherwise, C1 outputs z′.

Theorem 5.3. For any m-client circuit C : F` × · · · × F` → F` the protocol π as defined in Construc-
tion 5.4 ε-securely computes C with abort in the f̃

ĈAMD-hybrid model for ε = εAMD + ε′.

Proof. Let Adv be an adversary controlling a subset of clients C. Assume without loss of generality
that Adv is deterministic, we describe a simulator SimAMD for Adv. On inputs ~xC (of the corrupted
clients in C), SimAMD performs the following.

1. Invoke Adv on inputs ~xC and let ~x′C be the inputs sent by Adv to the f̃
ĈAMD oracle on behalf of the

corrupted clients. In addition, let A be the additive attack on ĈAMD that is also sent by Adv to
the f̃

ĈAMD oracle.

2. SimAMD computes a vector ain and a distribution Aout representing the additive attack on the
inputs and outputs of ĈAMD that is equivalent to A as defined in Definition 1.1. In addition,
SimAMD samples a vector aout from Aout.

We split the simulation into two cases.

• If C1 is not corrupted. We consider three sub-cases:

1. If it holds that ain
C 6= 0 or aout 6= 0 then SimAMD aborts. For this case the simulation is

complete.

2. If it holds that ain
C = aout = 0 then SimAMD computes for each Ci ∈ C the values (bi, x

′′
i) ←

Dec(x′i + ain
Ci

).

67

3. If there exists a client Ci ∈ C such that bi 6= 0 then SimAMD aborts. Otherwise, SimAMD

invokes the trusted party with the decoded inputs x′′C for the corrupted clients.

• If C1 is corrupted. In this case only the adversary gets outputs, thus SimAMD proceeds to set the
view of the adversary as follows.

– For each Ci ∈ C compute (bi, x
′′
i)← Dec(x′i + ain

Ci
).

– If ain
C 6= 0 or there exists Ci ∈ C such that bi 6= 0 then set the view of the adversary to be

(r′, r) + aout where r′ is a random non-zero field element and r is generated uniformly from
F`.

– If ain
C = 0 and for all Ci ∈ C it holds that bi = 0 invoke the trusted party with inputs x′′C for

the corrupted clients. Let z be the output of the trusted party, the view of the adversary is
set to be (0,Enc(z)) + aout.

We claim that for all ~x it holds that

SD

(
IdealabortC,SimAMD,C(~x),Real

f̃
ĈAMD

π,Adv,C(~x)

)
≤ εAMD + ε′.

Notice that all the client but C1 do not get any messages or outputs during π, thus, simulating the view
of all the corrupted client but C1 can be done easily buy just setting their view to be their corresponding
inputs. Fix an input ~x for π, notice that this fixes the view of all the corrupted clients but C1 (in case
it is corrupted).

We proceed to simulate the output of C1 in case it is honest or its view in case it is corrupted. Let A
be the adversary’s input to f̃

ĈAMD representing the additive attack on ĈAMD and let f̃ be the randomized

functionality obtained from f̃
ĈAMD by fixing the additive attack on ĈAMD to A. By the additive-attack

security property of ĈAMD we have that

SD
(
ĈAMD((~xC , ~x

′
C) + ain) +Aout, f̃(~x)

)
≤ ε′

where ~xC is the inputs of the honest clients and ~x′C are the inputs of the corrupted clients as provided
by the adversary. We split the proof into two cases.

• If C1 is not corrupted we have to simulate the outputs of C1. We have two cases to consider.

– If ain
C 6= 0 or decoding using Dec of ~x′C + ain

C fails (i.e. there exists Ci ∈ C such that (bi, yi)←
Dec(x′i+ain

i) and bi 6= 0). In this case either the adversary decided to attack the inputs of the

honest clients inside ĈAMD (which are sent encoded using Enc) or has provided with inputs
~x′C + ain

C for the corrupted parties that does not decode. In both cases, by the the additive
robustness of (Enc,Dec) we have that

SD
(
ĈAMD((~xC , ~x

′
C) + ain) +Aout, U∗ × U`

)
≤ εAMD

where U∗ is the uniform distribution of the non-zero elements of F. Finally, observe that
upon receiving output from such distribution C1 immediately aborts. Thus, we have obtained
the output of C1 is (εAMD + ε′)-close to abort which is exactly the simulated output of C1.

– If ain
C = 0 and decoding using Dec of ~x′C + ain

C succeeds (i.e. for all Ci ∈ C it holds that

(bi, yi)← Dec(x′i + ain
i) and bi = 0). In this case, let ~y be the decoding of (~xC , ~x

′
C) + ain.

Observe that by the additive robustness property of (Enc,Dec) and of ĈAMD we have that the
output of C1 in the real world is (εAMD + ε′)-close to the distribution Aout

C1
defined as follows:

Aout
C1

is the second output of Dec(ĈAMD(Enc(~y))) when Aout outputs 0 and Aout
C1

outputs an

abort symbol otherwise. Next, observe that second output of Dec(ĈAMD(Enc(~x))) is equal to
C(x). Finally, observe that Aout

C1
is exactly the distribution of the simulated output of C1.

68

• If C1 is corrupted we have to simulate its view since OC ≡ O′C ≡ ⊥. We have two cases to consider.

– If ain
C 6= 0 or decoding using Dec of ~x′C+ain

C fails (i.e. there exists Ci ∈ C for which it holds that

(bi, yi) ← Dec(x′i + ain
i) and bi 6= 0). In this case either the adversary decided to attack the

inputs of the honest clients inside ĈAMD (which are sent encoded using Enc) or has provided
with inputs ~x′C + ain

C for the corrupted parties that does not decode.

By construction we have that the view of the clients in C during a real execution of π is
VC = (xC , f̃(~x)). Using the additive-attack security property of ĈAMD we obtain

SD
(
VC , (xC , Ĉ

AMD((~xC , ~x
′
C) + ain) +Aout)

)
≤ ε′.

Using the additive robustness property of (Enc,Dec), we have that

SD
(
VC , (xC , U

∗ × Uk +Aout)
)
≤ εAMD + ε′.

Finally, notice that by construction it holds that (xC , U
∗ × Uk +Aout) = V ′C .

– If ain
C = 0 and decoding using Dec of ~x′C + ain

C succeeds (i.e. for all Ci ∈ C it holds that

(bi, yi)← Dec(x′i + ain
i) and bi = 0). In this case, let ~y be the decoding of (~xC , ~x

′
C) + ain.

By construction we have that VC ≡ (xC , f̃(~x)). Using the additive-attack security property of
ĈAMD we obtain

SD
(
VC , (xC , Ĉ

AMD((~xC , ~x
′
C) + ain) +Aout)

)
≤ ε′.

Observe that for this case it holds that ĈAMD((~xC , ~x
′
C)+ain) = (0,Enc(C(~y))). Thus, we have

that
SD
(
VC ,
(
xC , (0,Enc(C(~y)) +Aout)

))
≤ ε′.

Finally, notice that by construction it holds that (xC , (0,Enc(C(~y)) +Aout)) ≡ V ′C .

The following corollary states that any protocol π for privately computing a circuit C that is linear-
based and weakly-private against active adversaries can be transformed into a protocol π′ securely
computing C in the presence of active adversaries.

Corollary 5.2. Let n, t be positive integers such that n = 2t+ 1 and let π be a protocol for t-privately
computing a circuit C, using m clients and n servers, that is linear-based with respect to some dense
and redundant secret sharing scheme and is weakly-private against active adversaries controlling at
most t servers. Then there exists a protocol π′ using m clients and n servers that (t, O(|C|/|F|))-securely
computes C with abort. Moreover, the communication complexity of π′ is bigger than the communication
complexity π by a constant factor.

Proof. First observe that Construction 5.4 can be instantiated (using the AMD code from Theo-
rem 2.2, and the circuit transformation from Theorem 3.7) to produce an (m,O(|C|/|F|))-secure protocol
π′′ for computing C with abort in the f̃

ĈAMD-hybrid model.

Next, notice that by Theorem 5.2 we have that the protocol π when invoked on ĈAMD is a t-secure
for computing f̃

ĈAMD . Thus, obtain π′ by replacing the oracle call to f̃
ĈAMD of π′′ with the protocol π

for ĈAMD. Since |ĈAMD| = O(|C|), we have that the communication complexity of π′ is bigger than the
communication complexity of π by a constant factor.

69

5.7 The semi-honest BGW protocol

In this section we prove that the semi-honest BGW protocol [BGW88] for computing a circuit C, when
executed in the presence of an active adversary, actually computes the additively corruptible version
f
C̃

of C (as defined in Definition 5.1). Combining this observation with the results of Section 5.6, we
obtain a simple version of the feasibility result of [RB89]. We do this by proving that the semi-honest
BGW protocol meets of the requirements of Theorem 5.2.

We begin by describing the BGW semi-honest protocol (see [BGW88, AL11] for details) adapted to
the client-server model.

Construction 5.5 (The semi-honest BGW protocol ΠC
BGW). Let C : FI1 × · · · × FIm → FO1 be an

m-client circuit and let n = 2t + 1 be a positive integer. Denote the gates of C by g1, · · · , g|C| and
assume that these gates are sorted by topological order. In addition, let (share, recover) be the Shamir
secret sharing scheme from Construction 5.1. Define the following protocol ΠC

BGW for C using m clients
C1, · · · , Cm and n servers S1, · · · , Sn as follows.

1. Randomness generation phase. For each randomness gate gc the protocol proceeds as follows:

(a) Every server Si generates a random value rc,i and computes (mc,i
1 , · · · ,m

c,i
n)← share(rc,i, t, n).

(b) Every server Si sends to every server Sk (including himself) the message mc,i
k .

(c) Every server Si upon receiving the messages (mc,1
i , · · · ,mc,n

i) computes gci ←
∑n

k=1m
c,k
i .

2. Input sharing phase. For each input gate gc belonging to a client Ci, the client Ci computes
(gc1, · · · , gcn) ← share(xc, t, n) where xc is the input value for the c-th input gate and for all 1 ≤
k ≤ n sends gck to Sk.

3. Circuit evaluation phase. For each gate gc, c = 1, · · · , |C|, if gc is a gate with inputs ga and
gb perform the following:

(a) If gc is an addition gate, each server Si computes a share of the output locally as gci ← gai +gbi .
Similarly, if gc is a subtraction gate, each server Si locally computes gci ← gai − gbi .

(b) If gc is a multiplication gate, then each server Si performs the following on its shares gai and
gbi :

i. Compute ci ← gai · gbi .
ii. Compute (c′i,1, · · · , c′i,n)← share(ci, t, n).

iii. Send to every server Sk (including Si) the message mi,k ← c′i,k.

iv. Let (m1,i, · · · ,mn,i) be the messages received from all the servers by the server Si. Si
computes gci ←

∑n
k=1 ∆kmk,i where ∆1, · · · ,∆n are the degree 2t Lagrange interpolation

coefficients as defined in Definition 5.5.

4. Output recovery phase. At the end of the computation, for each output gate z each server Si
holds a share gzi of the z-th output of C(~x). Servers S1, · · · , St+1 send their shares (gz1 , · · · , gzt+1)
to client C1, who then recovers the value of gz by computing gz ← recover{S1,··· ,St+1}(g

z
1 , · · · , gzt+1).

The works of [BGW88, AL11] analyzed the semi-honest BGW protocol in the plain model. We now
state their result adapted to the client-server model.

Theorem 5.4 ([BGW88, AL11]). For any m-client circuit C : FI1 × · · · × FIm× → FO1, the protocol
ΠC

BGW for computing C using m = 2t+ 1 servers is private against any passive adversary controlling at
most t servers.

70

In the following, unless stated otherwise, the term “BGW protocol” will always refer to the protocol
in Construction 5.5.

Lemma 5.4 claims that the semi-honest BGW protocol ΠC
BGW is linear-based and weakly-private.

Lemma 5.4 (The semi-honest BGW protocol in the malicious model). Let C : FI1 × · · · × FIm → FO1

be an m-client circuit and let n, t be positive integers such that n = 2t+1. The protocol ΠC
BGW defined in

Construction 5.5 is linear-based with respect to Shamir secret sharing scheme and weakly-private against
active adversaries controlling at most t-servers.

Proof. We begin by claiming that ΠC
BGW is linear-based with respect to Shamir secret sharing

scheme. First, notice that Shamir secret sharing scheme is a redundant dense linear secret sharing
scheme. Second, notice that ΠC

BGW can be viewed as a linear-based protocol with an empty setup phase
and where the πmult protocol does not get any auxiliary inputs. Thus Requirement 1 of Definition 5.10
holds vacuously. Finally notice that, Requirements 2, 3, 4a, 4b and 5 of Definition 5.10 can be easily
verified from the construction of ΠC

BGW.
We now claim that ΠC

BGW is weakly-private against active adversaries controlling at most t-servers
and an arbitrary number of clients. Indeed, let Adv be an adversary controlling a set of clients C and a set
of servers S such that |S| ≤ t. Notice that the view of the adversary excluding the last communication
round during a real execution of the protocol on some input ~x consists of the deterministic inputs xC
of the clients in C, the randomness inputs of the clients in C and servers in S as well as the messages
obtained by Adv in Steps 1, 2 and 3(b)iii of Construction 5.5.

Notice that in both types of messages, the messages sent by each server or client to all the servers
are always a sharing of some value. Next, since |S| ≤ t, by the privacy property of Shamir secret sharing
with privacy threshold t, the distribution of messages received by the adversary from every honest client
or server during every such round of communication does not depend on the value the honest client or
server shared. Thus, these messages can be simulated by just sharing some value (say 0) using Shamir
secret sharing with privacy threshold t and sending the adversary the resulting shares corresponding to
the servers in S.

Next, combining the result that the semi-honest BGW protocol ΠC
BGW is linear-based and weakly-

private (Lemma 5.4) with the result that any linear-based and weakly-private protocol for privately
computing a circuit C is a secure protocol for computing the additively corruptible version f̃C (Theo-
rem 5.2), we get the following corollary

Corollary 5.3 (The BGW protocol in the malicious model). Let n, t be positive integers such that
n = 2t + 1 and let C : FI1 × · · · × FIm → FO1 be an m-client circuit. The protocol ΠC

BGW defined in

Construction 5.5 using m clients and n servers is a t-secure protocol for computing f̃C as defined in
Definition 5.1.

The following corollary states the result of applying our methodology to the semi-honest BGW
protocol from Construction 5.5.

Corollary 5.4. Let n, t be positive integers such that n = 2t+ 1, let F be a finite field such that |F| > n
and let C : FI1×· · ·×FIm → FO1 be an m-client circuit. Then there exists an m-client, n-server protocol
π that (t, ε)-securely computes C with abort for ε = O(|C|/|F|) where the communication complexity of
π is O(n2|C|) field elements.

Proof. From Lemma 5.4 it holds that ΠC
BGW meets all the requirements of Corollary 5.2. Thus, π

can be obtained by instantiating Corollary 5.2 with ΠC
BGW.

Corollary 5.4 above only guarantees the existence of a protocol π for (t, ε)-securely computing a
circuit C with abort where ε = O(|C|/|F|). Moreover, it requires C to only provide outputs for the first

71

client C1. Corollary 5.5 below tackles both of these issues. Intuitively, this can be done as follows. First,
similarly to the transformation presented in Theorem 3.1, we amplify the security of π by computing C
over a suitable extension field. Next, in order to support the case where not only the first client receives
output, we use the generic reduction discussed in Section 5.1.

Corollary 5.5. Let n, t, σ be positive integers such that n = 2t + 1, let F be a finite field and let
C : FI1 ×· · ·×FIm → FO1 ×· · ·×FOm be an m-client circuit such that |C| ≥ ` log |F| where ` =

∑m
i=1 Ii.

Then, there exists an m-client, n-server protocol π that (t, O(2−σ · |C|))-securely computes C with abort
where the communication complexity of π is O

(
n2 · σ · |C|

)
field elements.

Proof. We prove the special case where only C1 gets an output from π, that is the circuit C is of
the form C : FI1 × · · · × FIm → FO1 . The proof for the general case can be reduced to this special case
using the transformation described in Section 5.1.

Let H be an extension field of F such that |H| ≥ 2σ and |H| > n. Let B(x) = x(1 − x) be the
polynomial that vanishes only on 0 and 1, notice that for any x ∈ H it holds that B

(
x|F|−1

)
= 0 if and

only if x ∈ F.

Define a circuit C ′(~x) = (0, C(~x)) +
(∑n

i=1 si ·B
(
x
|F|−1
i

))
· ~r over H where s1, · · · , sn are random

field elements generated using randomness gates inside C ′ and ~r is a random vector over HO1+1 generated
using random gates inside C ′. Notice that for every ~x ∈ F` it holds that C ′(~x) = (0, C(~x)) and that the
output of C ′ is uniformly random for the case where ~x /∈ F`. In addition, by construction we have that
|C ′| = O(|C|+ ` log |F|).

Notice that |H| > n a and that |C| > ` log |F|. Thus, by Corollary 5.4 we have that there exists an m-
client, n-server protocol π′ that (t, O(|C ′|/|H|))-securely computes C ′ with abort where communication
complexity of π′ is O(n2|C ′|) field elements over H. The required protocol π is obtained by modifying
π′ and asking the first client, C1, to abort if the first field element in the output of C ′ is non-zero.
Otherwise, C1 outputs all but the first field element in the output of C ′.

We claim that π is (t, O(2−σ · |C|))-securely computes C with abort where the communication com-
plexity of π is O

(
n2 · σ · |C|

)
field elements over F. Indeed, notice that |C ′| = O(|C| + ` log |F|),

|C| > ` log |F| and that |H| ≥ 2σ. Thus, π indeed (t, O(2−σ · |C ′|))-securely computes C with abort.
Next, notice that since |C ′| = O(|C|), the communication complexity of π is bigger than the communi-
cation complexity of π′ by a constant factor. Thus, by our choice of H we have that the communication
complexity of π is O

(
n2 · σ · |C|

)
field elements over F.

5.8 The semi-honest Damg̊ard-Nielsen protocol

In this section we prove that a simplified version of the semi-honest DN protocol [DN07] for computing
a circuit C, when executed in the presence of an active adversary, actually computes the additively
corruptible version f

C̃
of C (as defined in Definition 5.1). Combining this observation with the results

of Section 5.6, we obtain an MPC protocol for evaluating a circuit C in the presence of an honest
majority that is secure against active adversaries and has a communication complexity of O(n|C|+n2)
field elements. This asymptotically matches the communication complexity of the best known passive-
secure MPC protocol of [DN07]. This gives a simpler alternative to the recent protocol of [BFO12] and
improves its complexity by eliminating a quadratic overhead for each layer of the circuit, as well as a
large polynomial additive factor.

We do this by proving that the simplified version of the semi-honest DN protocol meets of the
requirements of Theorem 5.2. We start by presenting a protocol that allows n parties to obtain sharings
of degree 2t and t of ` random field elements with communication complexity of O(n`+n2) field elements
(see Section 3.1 in [DN07]). Later, this protocol will be used to reduce the communication complexity
of the protocol used to evaluate an entire circuit.

72

Construction 5.6 (Cf. Section 3.1 in [DN07]). Let M ∈ F(t+1)×n be a super invertible matrix and
let (share, recover) be the Shamir secret sharing scheme from Construction 5.1. Consider the following
n-party protocol double-random where on input ` each party Pi performs the following steps d `

t+1e times:

1. Generate a uniformly random value si ∈ F.

2. Compute (si1, · · · , sin)← share(si, t, n).

3. Compute (s′i1 , · · · , s′in)← share(si, 2t, n).

4. Send each party Pj the shares (sij , s
′i
j).

5. Upon receiving from all the parties the shares (s1
i , · · · , sni) and (s′1i , · · · , s′ni) the party Pi performs

the following:

(a) Compute (r1
i , · · · , r

t+1
i)←M(s1

i , · · · , sni).

(b) Compute (R1
i , · · · , R

t+1
i)←M(s′1i , · · · , s′ni).

6. The output of the i-th party Pi is (r1
i , · · · , r

t+1
i) and (R1

i , · · · , R
t+1
i).

We define the n-party protocol random(`) to be the same as double-random(`) except that Steps 3
and 5b are not executed.

We now proceed to describe a simplified version of the semi-honest DN protocol adapted to the
client-server model.

Construction 5.7 (The semi-honest DN protocol ΠC
DN). Let C : FI1 × · · · ×FIm → FO1 be an m-client

circuit and let n be a positive integer. Denote the gates of C by g1, · · · , g|C| and assume that these gates
are sorted by topological order. In addition, let (share, recover) be the Shamir secret sharing scheme from
Construction 5.1. Define the following protocol ΠC

DN for C using m clients C1, · · · , Cm and n servers
S1, · · · , Sn as follows.

1. Setup phase. At this phase the servers would like to compute the randomness needed for eval-
uation of multiplication gates during the protocol. Let ` be the number of multiplication gates
inside C. All the servers invoke the double-random(`) protocol. At the end of this phase, for every
multiplication gate gc every server Si holds two shares rci and Rci .

2. Randomness generation phase. At this phase the servers would like to compute the shares
corresponding to the outputs of the randomness gates inside C. Let `′ be the number of randomness
gates inside C. All the servers invoke the random(`′) protocol. At the end of this phase, for every
randomness gate gc every server Si holds a share gci corresponding to the output of gc.

3. Input sharing phase. For each input gate gc belonging to a client Ci, the client Ci computes
(gc1, · · · , gcn) ← share(xc, t, n) where xc is the input value for the c-th input gate and for all 1 ≤
k ≤ n sends gck to Sk.

4. Circuit evaluation phase. For each gate gc, c = 1, · · · , |C|, if gc is a gate with inputs ga and
gb perform the following:

(a) If gc is an addition gate, each server Si computes a share of the output locally as gci ← gai +gbi .
Similarly, if gc is a subtraction gate, each server Si locally computes gci ← gai − gbi .

(b) If gc is a multiplication gate, then each server Si performs the following on its shares gai and
gbi :

i. Compute ci ← gai · gbi +Rci and send ci to S1.

73

ii. S1 upon receiving the shares (c1, · · · , cn) from all the servers computes D ←
recover{S1,··· ,Sn} (c1, · · · , cn) and sends D to all the servers.

iii. Each server Si upon receiving a value D from S1 computes gci ← D − rci .

5. Output recovery phase. At the end of the computation, for each output gate gc of C each server
Si holds a share gci of the c-th output of C(~x). Servers S1, · · · , St+1 send their shares (gc1, · · · , gct+1)
to client C1, who then recovers the value of gc by computing gc ← recover{S1,··· ,St+1}(g

c
1, · · · , gct+1).

The work of [DN07] analyzed the semi-honest DN protocol in the plain model. We now state their
result adapted to the client-server model.

Theorem 5.5 ([DN07] Sections 3.2, 3.3 and 3.4). For any m-client circuit C : FI1×· · ·×FIm× → FO1,
the protocol ΠC

DN for computing C using n = 2t + 1 servers is private against any passive adversary
controlling at most t servers. Moreover, the communication complexity of ΠC

DN is O(m|C| + m2) field
elements where |C| is the number of gates in C.

In the following, unless stated otherwise, the term “DN protocol” will always refer to the client
server model defined in Construction 5.7.11

Lemma 5.5 claims that the semi-honest DN protocol ΠC
DN is linear-based and weakly-private.

Lemma 5.5 (The semi-honest DN protocol in the malicious model). Let C : FI1×· · ·×FIm → FO1 be an
m-client circuit and let n = 2t+1 be a positive integer. The protocol ΠC

DN defined in Construction 5.7 is
linear-based with respect to Shamir secret sharing scheme and weakly-private against active adversaries
controlling at most t-servers.

Proof. We begin by claiming that ΠC
DN is linear-based with respect to Shamir secret sharing scheme.

First, notice that Shamir secret sharing scheme is a redundant dense linear secret sharing scheme.
Second, notice that, Requirements 1, 2, 3, 4a, 4b and 5 of Definition 5.10 can be easily verified from the
construction of ΠC

DN.
We now claim that ΠC

DN is weakly-private against active adversaries controlling at most t-servers and
an arbitrary number of clients. Indeed, let Adv be an adversary controlling a set of clients C and a set
of servers S such that |S| ≤ t. Notice that the view of the adversary excluding the last communication
round during a real execution of the protocol on some input ~x consists of the input xC of the clients in
C as well as the messages obtained by Adv in Steps 1, 2, 3, 4(b)ii of Construction 5.7 for the case where
S1 is corrupted and in Steps 1, 2, 3, 4(b)iii of Construction 5.7 for the case where S1 is honest.

The messages obtained in Steps 1, 2 and 3 of Construction 5.7 are always a Shamir sharing with
privacy threshold t or 2t of some value. Next, since |S| ≤ t, by the privacy property of Shamir secret
sharing with privacy threshold t or 2t, the distribution of messages received by the adversary from every
honest client or server during every such round of communication does not depend on the value the
honest client or server shared. Thus, these messages can be simulated by just sharing some value (say
0) using Shamir secret sharing with privacy threshold t or 2t as needed and sending the adversary the
resulting shares corresponding to the servers in S.

We now show that the messages obtained by Adv in Step 4(b)ii for the case S1 is corrupted can also
be simulated. Indeed, notice that even in the presence of an active adversary, the protocol double-random
used in Construction 5.7 still produces, as part of its outputs for the honest servers, ` random Shamir
sharings (Ri1, · · · , Rin) with privacy threshold 2t of random field elements r1, · · · , r` where every honest
server holds a single share. Moreover, for every i the distributions of both ri and (Ri1, · · · , Rin) are
independent from all other rj ’s and (Rj1, · · · , R

j
n) and are also independent from all other messages

obtained by the adversary during double-random. Thus, the messages obtained by S1 in Step 4(b)ii

11 Our results also hold in the presence of passive adversaries; thus (to the best of the authors’ knowledge) this is the
first published complete proof of the semi-honest results of [DN07].

74

of Construction 5.7 are random Shamir sharings with privacy threshold 2t of random field elements.
Thus, for the case where S1 is corrupted, the messages obtained by the adversary in Step 4(b)ii of
Construction 5.7 can be easily simulated by generating a random field element r and sending its sharing
using Shamir secret sharing with privacy threshold 2t to the adversary.

Finally, we now show that the messages obtained by Adv in Step 4(b)iii for the case S1 is honest
can also be simulated. Indeed, notice that the value D computed in Step 4(b)ii of Construction 5.7 is
the recovery of the shares obtained by S1 Step 4(b)ii of Construction 5.7. These shares are constructed
in Step 4b by blinding the result of the local multiplication gai · gbi by a degree 2t Shamir sharing of a
random field element. Thus, distribution of D is identical to a uniform distribution over the field and
therefore can be simulated by generating a random field element and sending it to the adversary.

Next, combining the result that the semi-honest DN protocol ΠC
DN is linear-based and weakly-private

(Lemma 5.5) with the result that any linear-based and weakly-private protocol for privately computing
a circuit C is a secure protocol for computing the additively corruptible version f̃C (Theorem 5.2), we
get the following corollary

Corollary 5.6 (The DN protocol in the malicious model). Let n, t be positive integers such that n = 2t+
1 and let C : FI1×· · ·×FIm → FO1 be an m-client circuit. The protocol ΠC

DN defined in Construction 5.7

using m clients and n servers is a t-secure protocol for computing f̃C as defined in Definition 5.1.

The following corollary states the result of applying the our methodology to the semi-honest DN
protocol from Construction 5.7. We obtain a protocol π for securely computing a circuit C in the pres-
ence of an active adversary for the case of an honest majority. Moreover, π has the same communication
complexity as the semi-honest DN protocol of O(n|C| + n2) field elements where n is the number of
servers participating in the protocol.

Corollary 5.7. Let n, t be positive integers such that n = 2t+ 1, let F be a finite field such that |F| > n
and let C : FI1×· · ·×FIm → FO1 be an m-client circuit. Then there exists an m-client, n-server protocol
π that (t, ε)-securely computes C with abort for ε = O(|C|/|F|) where the communication complexity of
π is O(n|C|+ n2) field elements.

Proof. From Lemma 5.5 it holds that ΠC
DN meets all the requirements of Corollary 5.2. Thus, π can

be obtained by instantiating Corollary 5.2 with ΠC
DN.

Using the transformations in the proof of Corollary 5.5, Corollary 5.7 can be extended to multi-
output functionalities and have its security guarantee be independent of the size of F.

Corollary 5.8. Let n, t, σ be positive integers such that n = 2t + 1, let F be a finite field and let
C : FI1 ×· · ·×FIm → FO1 ×· · ·×FOm be an m-client circuit such that |C| ≥ ` log |F| where ` =

∑m
i=1 Ii.

Then there exists an m-client, n-server protocol that (t, O(2−σ · |C|))-securely computes C with abort
where the communication complexity of π is O

(
nσ|C|+ n2σ

)
5.9 The semi-honest GMW protocol

In this section we tackle the task of secure multiparty computation without honest majority. Since
this task is impossible to achieve in the plain model for arbitrary circuits, we are forced to use some
kind of hybrid model or have an honestly-executed input-independent preprocessing phase which is done
before the execution of the protocol. In this section we demonstrate our methodology to MPC protocols
using the former approach while in Section 5.10 we demonstrate the latter. Concretely, Goldriech et
al. [GMW87, Gol04] give a simple protocol for boolean circuits in the oblivious transfer (OT) hybrid
model. The protocol is secure against a passive adversary who may corrupt an arbitrary subset of the
parties. Here we apply a natural extension of this protocol to the arithmetic setting [IPS09], where the
OT oracle is replaced by oblivious linear function evaluation (OLE) [NP06].

75

The OLE functionality. The OLE functionality involves two parties called sender and receiver. The
sender’s input consists of a pair of coefficients a, b ∈ F representing a linear function f(x) = ax+ b over
the field F. The receiver’s input is a field element s ∈ F. In response, the functionality outputs f(s) to
the receiver and ⊥ to the sender.

Definition 5.12 (The OLE functionality). Let F be a finite field. We define the functionality fOLE that
on inputs (a, b) ∈ F2 from the sender and x ∈ F from the receiver outputs ⊥ to the sender and a · x+ b
to the receiver.

We now proceed to describe an arithmetic version of the GMW protocol in the OLE-hybrid model [GMW87,
IPS09].

Construction 5.8 (The arithmetic GMW protocol in the OLE-hybrid model). Let C : FI1×· · ·×FIn →
FO1 be an n-party circuit. Denote the gates of C by g1, · · · , g|C| and assume that these gates are sorted
by topological. Define the following protocol ΠC

GMW for C in the fOLE-hybrid model as follows.

1. Input sharing phase. For each input gate gc belonging to a party Pi, Pi generates n−1 random
values gc1, · · · , gcn−1 ∈ F, computes gcn ← xc−

∑n−1
t=1 g

c
t where xc is Pi’s input for gc and sends each

party Pk the share gck.

2. Randomness generation phase. For each random gate gc every party Pi generates a random
share gci ∈ F.

3. Circuit evaluation phase. For each gate gc, c = 1, · · · , |C|, if gc is a gate with inputs ga and
gb perform the following:

(a) If gc is an addition gate, each party Pi computes a share of the output locally as gci ← gai +gbi .
Similarly, if gc is a subtraction gate, each party Pi locally computes gci ← gai − gbi .

(b) If gc is a multiplication gate, then the protocol proceeds as follows.

i. Each ordered pair of parties Pi, Pj, such that i 6= j performs the following. First, Pi
generates a random value ri,j ∈ F and acting as a sender sends (gai , ri,j) to the OLE
oracle. Next, Pj acting as a receiver sends gbj to the OLE oracle. The OLE oracle

responds with si,j ← gai · gbj + ri,j to Pj.

ii. Each party Pi computes gci ← gai · gbi +
∑

k∈[n]\{i}
(sk,i − ri,k).

4. Output recovery phase. At the end of the computation, for each output gate z each party Pi
holds a share gzi of the z-th output of C(~x). Parties P2, · · · , Pn send their shares gz2 , · · · , gzn to P1,
who then recovers the value of gz by computing gz ←

∑n
i=1 g

z
i .

Theorem 5.6 ([GMW87, IPS09]). For any n-party circuit C : FI1 × · · · × FIn× → FO1, the protocol
ΠC

GMW defined in Construction 5.8 is private in the presence of any passive adversary.

We would like to show that when the semi-honest GMW protocol for a circuit C is executed in the
presence of an active adversary, it in fact computes the additively corruptible version f̃C of C as defined
in Definition 5.1. We start by claiming that ΠC

GMW is weakly-private against active adversaries.

Lemma 5.6. For any n-party circuit C, the protocol ΠC
GMW defined in Construction 5.8 is weakly-private

against any active adversary.

Proof. Let Adv be an active adversary controlling a set of parties T . If |T | = n then the lemma is
immediate, otherwise we have that |T | ≤ n − 1. Recall that weak privacy does not consider messages
of the last round. Thus, it suffices to show a simulator which generates the messages obtained by the

76

adversary from honest parties in Step 1 together with the messages obtained by the adversary from
the OLE oracle invocations of Step 3 in which an honest party acts as a sender and a corrupted party
as a receiver. It is easy to verify that on any input x, these messages are distributed uniformly and
independently over F.

We now show that the semi-honest GMW protocol for C securely computes the additively corruptible
version f̃C of C when executed in the malicious model.

Lemma 5.7 (The GMW protocol in the malicious model). Let C : FI1 ×· · ·×FIn → FO1 be an n-party
circuit. The protocol ΠC

GMW defined in Construction 5.8 is a secure protocol for computing f̃C as defined
in Definition 5.1 in the OLE-hybrid model.

In order to prove Theorem 5.7 above, for every adversary we need to present a simulator that
simulates the view of the corrupted parties together with the output of the honest parties given a trusted
party for computing f̃C . Before formally describing the full simulator for the general case, we describe
the main idea of the simulator for the two party case. Notice that by the weak-privacy requirement, it
is possible to simulate the view of any active adversary (excluding the last communication round).

Simulating the output of the honest parties and the view of Adv during the last communication
round is more challenging in the case of active adversaries. In order to achieve this, Sim will use Adv
in oder to determine an appropriate additive attack A on C. Using A, and using the output of the
trusted party, the simulator will simulate the view of the adversary during the last communication
round together with the output of the honest parties.

Notice that during the input sharing phase, the simulator has the shares that the adversary has
sent to the honest parties. In addition, since the simulator has the input of the corrupted parties, the
simulator can compute by itself a set of shares belonging to the corrupted parties that are consistent
with its inputs and the shares sent by the adversary to the honest parties. These shares are useful for
computing the adversary’s internal state during the circuit evaluation phase.

Next, as the simulation progress, for each multiplication gate gc with inputs ga and gb, each corrupted
party sends its shares corresponding to ga and gb to the OLE oracle (once acting as a sender and once
acting as a receiver).

In addition, the simulator will always will try to compute the so called “honest shares” that the
adversary should have sent (based on it internal state) to the OLE oracle, if it where to start behaving
honestly at the current round. Finally, notice that the difference between the actual shares and the
honest shares can be used to determine the corresponding additive attack on the inputs of the multi-
plication gate. Similarly to the analysis in Section 5.5, it is possible to show by induction that thus
computed additive attack indeed “explains” all of the corruptions in the output of P1 in case its honest
and view of Adv in final round in the case where P1 is corrupted.

We now proceed to formally describe a simulator for the n-party GMW protocol. Consider Con-
struction 5.9 below.

Construction 5.9. Let Adv be an adversary controlling a set of parties T such that |T | ≤ n−1. Assume
without loss of generality that Adv is deterministic. Define the simulator Sim that on inputs ~xT (of the
corrupted parties controlled by Adv), performs the following.

1. View generation phase. Let Simview be a simulator as guaranteed by the weak-privacy property of
ΠC

GMW. Invoke Simview on the inputs xT and obtain a simulated truncated view u′ of the adversary
(excluding the last communication round for the case where P1 is corrupted). Retrieve from u
the randomness r′Adv that Adv will be using during the execution of Π. Send xAdv and r′Adv to the
adversary and initialize two additive attacks A,B on C

2. The input sharing phase.

77

(a) For each input gate gc that is part of the inputs of the honest party Pi, retrieve from u′ the
values (g′cj)Pj∈T representing Adv’s shares for gc and send it to Adv.

(b) For each input gate gc belonging to the corrupted party Pi, the simulator performs the follow-
ing:

i. Receive a messages (g̃′cj)Pj∈T from Adv corresponding to the shares of the honest parties

in T .

ii. Let xc be Pi’s input to gc, generate (g′cj)Pj∈T uniformly at random such that∑
Pj∈T

g̃′cj +
∑
Pj∈T

g′cj = xc.

Notice that these are one (of many possible) vectors of shares that the adversary should
be using if it were to decide to behave honestly during this phase of the protocol.

3. Randomness generation phase. For each randomness gate gc retrieve from u′ the values
(g′ci)Pi∈T representing Adv’s shares for gc if it where to behave honestly during the evaluation of
randomness gates.

4. Circuit evaluation phase. For each gate gc of C with inputs ga and gb, proceed as follows:

Handling addition and subtraction gates. In this case no communication takes place. For
the corrupted party Pi compute g′ci ← g′ai + g′bi in the case of addition gates and g′ci ← g′ai − g′bi in
the case of subtraction gates.

Handling multiplication gates. If gc be a multiplication gate, the simulation proceeds as
follows.

(a) For each honest party Pi and corrupted party Pj retrieve from v′Adv the message s′i,j obtained
by Pj while Pi and Pj interacted with the OLE oracle where Pi was acting as a sender and
Pj was acting as a receiver.

(b) For each honest party Pi and corrupted party Pj obtain from Adv the message m′ bi,j sent by
Pj to the OLE oracle while Pi and Pj interacted with the OLE oracle where Pi was acting as
a sender and Pj was acting as a receiver. Send (s′i,j)Pi∈T ,Pj∈T to Adv.

(c) For each honest party Pi and corrupted party Pj obtain from Adv the message (m′ aj,i, r
′
j,i) sent

by Pj to the OLE oracle while Pi and Pj interacted with the OLE oracle where Pj was acting
as a sender and Pi was acting as a receiver.

(d) We split the simulation into two cases based on the values of the messages (m′ bi,j ,m
′ a
j,i)Pi∈T ,Pj∈T

obtained in Steps 4a and 4b above.

i. If for any corrupted party Pj there exists g̃aj ∈ F and g̃′bj ∈ F such that for every honest

party Pi it holds that g̃′aj = m′aj,i and g̃′bj = m′ bi,j. In this case, the simulation proceeds as
follows.

A. Update the additive attack A be setting Aa,c ←
∑

Pi∈T (g̃′ai −g′ai) and Ab,c ←
∑

Pi∈T (g̃′bi −
g′bi).

B. For every corrupted party Pj compute g′cj ←
∑

Pi∈T (s′i,j − r′j,i) +
∑

Pk∈T g̃
′a
k · g̃′bj .

ii. Otherwise, we have that there exists a corrupted party Pj such that for every g̃′aj ∈ F and

g̃′bj ∈ F there exists an honest party Pi such that g̃′aj 6= m′ aj,i or g̃′bj 6= m′ bi,j. In this case,
the simulation proceeds as follows.

A. Generate a random field element rc and for any gate gd connected to the output of
gc, updates the additive attack B by setting Bc,d ← rc.

78

B. For every corrupted party Pj set g′cj ← 0.

5. Output recovery phase. At the end of the of the circuit evaluation phase, for each output gate
gz every corrupted party Pi ∈ T holds a share g̃zi of the supposed output. Recall that only P1 is
learn the output. Thus, there are two cases to consider based on whether P1 is corrupted or not:

• P1 is corrupted. In this case only the adversary learns the output. The simulation proceeds
as follows:

(a) The simulator sets to 0 all the coordinates of A and B that were not previously set. In
addition, the simulator sets Aout = Bout = 0.

(b) The simulator computes the additive attack A′ such that for every wire (ga, gb) in C it
holds that A′a,b = Aa,b +Ba,b.

(c) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the aforementioned wire corruptions A′. The trusted party responds to
the simulator with the outputs y for P1.

(d) For each output gate gz of C the simulator generates the shares (g′zj)Pj∈T uniformly at

random such that
∑

Pj∈T g
′z
j +

∑
Pj∈T g

′z
j = yz adds them to u′ and sends them to Adv.

(e) The simulator outputs u′.

• P1 is honest. The simulation proceeds as follows:

(a) For each output gate gz of C and for each corrupted party Pj obtain the share g̃′zj that
Pj sends to P1.

(b) For each output gate gz of C, the simulator updates the additive attack A by setting
(Aout)z ←

∑
Pj∈T (g̃′zj − g′zj).

(c) The simulator sets to 0 all the coordinates of A and B that were not previously set. In
addition, the simulator sets Bout = 0.

(d) The simulator computes the additive attack A′ such that for every wire (ga, gb) in C it
holds that A′a,b = Aa,b +Ba,b and A′out = Aout +Bout.

(e) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the wire corruptions A′.

(f) The simulator outputs u′.

The following Lemma claims that for any adversary Adv and for any input ~x, the simulator Sim
constructed in Construction 5.9 correctly simulates the view of Adv together with the output of the
honest parties during a real execution of the GMW protocol on inputs x in the presence of Adv.

Lemma 5.8. For any circuit C and for any adversary Adv in the real world controlling a set of parties
T such that |T | < n it holds that for any ~x

Ideal
f̃C ,Sim,T

(~x) ≡ RealfOLE

ΠCGMW,Adv,T
(~x)

where Sim is the simulator constructed in Construction 5.9.

Proof. Assume without loss of generality that Adv is deterministic and fix an input ~x for all
the parties. Notice that Sim invokes Simview in order to generate U ′T . By Definition 5.11 we have that
Simview correctly simulates the view of Adv excluding the last communication round. Thus, Sim correctly
simulates the view of Adv excluding the last communication round and therefore we have that UT ≡ U ′T .

It remains to prove that Sim correctly simulates the remaining rounds. For any view u from the
support of UT denote by (Lu

T ,T
, Ou

T
) the random variables (LT ,T , OT) conditioned on UT = u during

79

a real execution of the protocol. Similarly, denote by (L′u
T ,T

, O′u
T

) the random variables (L′
T ,T

, O′
T

)

conditioned on U ′T = u during an ideal execution of the protocol. Since RealΠ,Adv,T (~x) = (UT , LT ,T , OT)
and Ideal

f̃C ,Sim,T
(~x) = (U ′T , L

′
T ,T

, O′
T

) it is therefore sufficient to prove that for any view u it holds that

(Lu
T ,T

, Ou
T

) ≡ (L′u
T ,T

, O′u
T

).

We now proceed to analyze the input sharing, randomness generation and circuit evaluation phases
of Π.

Let g1, · · · , g|C| be a topological ordering of the gates of C starting from the input gates and ending
with the output gates. For any view u in the support of U ′T and for any gate gc ∈ C we denote by Ỹ c

T ,u

the shares held by the honest parties corresponding to the output of gc during a real execution of the
protocol conditioned on U ′

T
= u.

In addition, for any 1 ≤ c ≤ |C|, and for any view u in the support of U ′T denote by Zcu the random
variable corresponding to the value of the output wire of gc during an ideal execution of the protocol
(as computed by f̃C) conditioned on U ′T = u. Also, for any view u in the support of U ′T denote by Bu

the additive attack B computed by the simulator conditioned on U ′T = u. By construction, for a gate
ga and for any pair of gates gb, gb

′
connected to the output of ga it holds that Bu

a,b = Bu
a,b′ . Thus, we

denote by Ba
u the value Bu

a,b for every gate gb connected to the output of ga.
Moreover, for any view u in the support of U ′T denote by ycT,u the variables (g′ck)Pk∈T generated in

Steps 2a, 2(b)i, 3, 4(d)iB, 4(d)iiB and during the processing of addition and subtraction gates of the
simulator. Intuitively, these variables represent shares of the output of gc that the adversary should
have if it where to start behaving honestly during the evaluation of the output of gc. Notice that these
shares are completely determined by u and the deterministic adversary Adv.

Finally, denote by recover (s1, · · · , sn) the result of recovering the value from the shares (s1, · · · , sn),
namely recover (s1, · · · , sn) =

∑n
i=1 si.

The following claim (which can be proved by induction) states that the shares (Ỹ 1
T ,u
, · · · , Ỹ c

T ,u
) held

by the honest parties after a real execution of the protocol in the presence of Adv as well as the shares(
y1
T,u, · · · , y

|C|
T,u

)
as computed by the simulator correspond to the values (Z1

u + B1
u, · · · , Z

|C|
u + B

|C|
u) of

the internal wires inside C̃ when attacked by the additive attack A′.

Claim 5.5. For any view u in the support of UT , it holds that(
Z1
u +B1

u, · · · , Z |C|u +B|C|u

)
≡
(

recover((Ỹ 1
T ,u
, y1
T,u)), · · · , recover((Ỹ

|C|
T ,u

, y
|C|
T,u))

)
.

With Claim 5.5 in hand it can be easily verified that for any circuit C and for any adversary Adv in
the real world controlling a set of parties T such that |T | < n it holds that for any ~x

Ideal
f̃C ,Sim,T

(~x) ≡ RealfOLE

ΠCGMW,Adv,T
(~x).

The following theorem states the result of applying the our methodology to the protocol from Con-
struction 5.8. We obtain a protocol allowing any constant number of parties to evaluate an arithmetic
circuit in the OLE-hybrid model with security against an active adversary corrupting an arbitrary
number of parties. Moreover, π requires only a constant number of OLE calls per gate.

Theorem 5.7. For any n-party circuit C : FI1×· · ·×FIn → FO1 there exists a protocol π for ε-securely
computing C with abort in the OLE hybrid model where ε = O(|C|/|F|). Moreover π invokes the OLE
oracle O(n2|C|) times and has a total communication complexity of O(n2|C|) field elements.

80

Proof. The proof is similar to the proof of Corollary 5.2. Apply Construction 5.3 on C and
obtain the circuit CAMD. Next, let ĈAMD be an O(|C|/|F|)-secure implementation of CAMD. Using a
variant of Construction 5.4 obtain a O(|C|/|F|)-secure protocol π′ for computing C with abort in the

f̃
ĈAMD-hybrid model. Finally, obtain π by replacing the oracle call of π′ with the protocol ΠĈAMD

GMW from
Construction 5.8.

Using the transformations in the proof of Corollary 5.5, Theorem 5.7 can be extended to multi-output
functionalities and have its security guarantee be independent of the size of F.

Corollary 5.9. Let n, σ be positive integers, let F be a finite field and let C : FI1 × · · · × FIn →
FO1 × · · · × FOn be n-party circuit such that |C| ≥ ` log |F| where ` =

∑n
i=1 Ii. Then there exists an

n-party protocol π that O (2−σ · |C|)-securely computes C with abort in the OLE hybrid model where the
communication complexity of π is O

(
n2 · σ · |C|

)
field elements.

5.10 Securing multiparty computation with preprocessing

In this section we present an n-party protocol for securely computing an arithmetic circuit C without
honest majority in the plain model. Since this task is impossible for general circuits, our protocol utilizes
a preprocessing phase that runs before the computation of C starts and does not depend on the parties
inputs to C. Thus, this phase can be modeled as an additional party called the dealer that sends each
party the corresponding results of the preprocessing phase. Will will not require the dealer to behave
honestly. Specifically, we allow for two types of adversaries: adversaries that corrupt any number of
parties and do not corrupt the dealer or adversaries that only corrupt the dealer and do no corrupt any
of the other parties.

Our protocol is constructed as follows. We start from the GMW protocol in the OLE-hybrid model
presented in Section 5.9. Next, we replace the OLE oracle used in Construction 5.8 with a random
OLE oracle which computes the OLE functionality on random inputs (while making the necessary
adaptations to Construction 5.8). Finally, the outputs of the random OLE oracle will be computed by
the dealer. Concretely, consider Construction 5.10 below.

Construction 5.10. Let C : FI1 × · · · × FIn → FO1 be an n-party circuit containing ` multiplication
gates. Define the following protocol ΠC for computing C as follows.

1. Preprocessing phase. At this phase the dealer computes the outputs of the OLE oracle needed
the rest of the protocol.

(a) For every multiplication gate gc and for every pair of parties Pi, Pj such that Pi 6= Pj generate
random field elements mc

i,j , n
c
i,j , r

c
i,j ∈ F.

(b) For every multiplication gate gc and for every pair of parties Pi, Pj such that Pi 6= Pj compute
sci,j ← mc

i,j · rci,j + nci,j and send mc
i,j , n

c
i,j to Pi and rci,j , s

c
i,j to Pj.

2. Input sharing phase. For each input gate gc belonging to a party Pi, Pi generates n−1 random
values gc1, · · · , gcn−1 ∈ F, computes gcn ← xc−

∑n−1
t=1 g

c
t and sends each party Pk the share gck where

xc is Pi’s input for gc.

3. Randomness generation phase. For each random gate gc every party Pi generates a random
share gci ∈ F.

4. Circuit evaluation phase. For each gate gc, c = 1, · · · , |C|, if gc is a gate with inputs ga and
gb perform the following:

(a) If gc is an addition gate, each party Pj computes a share of the output locally as gcj ← gaj +gbj .

Similarly, if gc is a subtraction gate, each party Pj locally computes gcj ← gaj − gbj .

81

(b) If gc is a multiplication gate, then the protocol proceeds as follows.

i. Each ordered pair of parties Pi, Pj such that Pi 6= Pj performs the following:

A. Pj computes uci,j ← gbj − rci,j and sends it to Pi.

B. Pi computes vci,j ← uci,j ·mc
i,j, w

c
i,j ← gai −mc

i,j and sends vci,j , w
c
i,j to Pj. Notice that

vci,j = (gbj − rci,j) ·mc
i,j.

C. Pj computes tci,j ← wci,j · gbj + vci,j + sci,j. Notice that tci,j = gai g
b
j + nci,j.

ii. Each party Pi computes gci ← gai · gbi +
∑

j∈[n]\{i}
(tcj,i − nci,j).

5. Output recovery phase. At the end of the computation, for each output gate z each party Pj
holds a share gzj of the zth output of C(~x). Parties P2, · · · , Pn send their shares gz2 , · · · , gzn to P1,
who then recovers the value of gz by computing gz ←

∑n
i=1 g

z
i .

The following theorem can be easily verified

Theorem 5.8. For any n-party circuit C : FI1 × · · · × FIn× → FO1, the protocol ΠC for computing C
defined in Construction 5.10 is private in the presence of any passive adversary controlling any subset
of parties or the dealer.

We start claiming that ΠC is weakly-private against active adversaries. The following theorem can
be easily verified.

Lemma 5.9. For any n-party circuit C, the protocol ΠC for computing C defined in Construction 5.10
is weakly-private against any active adversary controlling the dealer or any subset of parties.

We now claim that when ΠC securely computes f̃C when invoked against an active adversary con-
trolling (only) the dealer.

Lemma 5.10. Let C : FI1×· · ·×FIn → FO1 be a n-party circuit. The protocol ΠC defined in Construc-
tion 5.10 is a secure protocol against any active adversary controlling only the dealer for computing f̃C
as defined in Definition 5.1.

Proof. Let Adv be an adversary controlling the dealer. Assume without loss of generality that Adv
is deterministic. Define the simulator Sim that on inputs ⊥ (of the dealer), performs the following.

1. View generation phase. Let Simview be a simulator as guaranteed by the weak-privacy property
of ΠC . Invoke Simview on the inputs ⊥ and obtain a simulated view v′Adv of the adversary.

2. Circuit evaluation phase. The simulation proceeds as follows.

(a) Send v′Adv to Adv.

(b) For every multiplication gate gc and for every pair of parties Pi and Pj such that Pi 6= Pj
obtain the from Adv the messages m′ci,j and n′ci,j sent to Pi in Step 1b of Construction 5.10. In
addition, obtain from Adv the messages r′ci,j and s′ci,j sent to Pj in Step 1b of Construction 5.10.

(c) For every multiplication gate gc and for every pair of parties Pi and Pj such that Pi 6= Pj

compute δ′ci,j ← s′ci,j −
(
m′ci,j · r′ci,j + n′ci,j

)
.

(d) For every multiplication gate gc compute δc ←
∑

i 6=j δ
c
i,j .

(e) For every multiplication gate gc and for every gate gd connected to the output of gc set
Ac,d ← δc.

3. Output recovery phase. The simulation proceeds as follows.

82

(a) The simulator sets to 0 all the coordinates of A that were not previously set.

(b) The simulator invokes the trusted party computing f̃C with the aforementioned wire corrup-
tions A.

(c) The simulator outputs v′Adv.

It can easily be verified that for any circuit C, and for any adversary Adv in the real world controlling
the dealer it holds that for any ~x

Ideal
f̃C ,Sim,dealer

(~x) ≡ RealΠC ,Adv,dealer(~x).

We now claim that when ΠC securely computes f̃C when invoked against an active adversary con-
trolling any subset of parties and not the dealer.

Lemma 5.11. Let C : FI1×· · ·×FIn → FO1 be a n-party circuit. The protocol ΠC defined in Construc-
tion 5.10 is a secure protocol for computing f̃C as defined in Definition 5.1 against any active adversary
controlling any subset of parties and not the dealer.

Proof. Let Adv be an adversary controlling a set of parties T and not the dealer. If |T | = n then the
theorem follows immediately. Otherwise, we have that |T | ≤ n− 1. Assume without loss of generality
that Adv is deterministic. Define the simulator Sim that on inputs ~xT (of the corrupted parties controlled
by Adv), performs the following.

1. View generation phase. Let Simview be a simulator as guaranteed by the weak-privacy property
of ΠC . Invoke Simview on the inputs xAdv and obtain a simulated truncated view u′Adv of the
adversary (excluding the last communication round for the case where P1 is corrupted). Retrieve
from u′Adv the randomness r′Adv that Adv will be using during the execution of Π. Send xAdv and
r′Adv to the adversary and initialize two additive attacks A,B on C.

2. Preprocessing phase. For every multiplication gate gc for every honest party Pi and corrupted
party Pj retrieve from u′Adv the values m′cj,i, n

′c
j,i, r

′c
i,j and s′ci,j obtained by the adversary from the

dealer during the preprocessing phase and send them to Adv.

3. The input sharing phase.

(a) For each input gate gc that is part of the inputs of the honest party Pi, retrieve from u′Adv
the values (g′cj)Pj∈T representing Adv’s shares for gc and send it to Adv.

(b) For each input gate gc belonging to the corrupted party Pi, the simulator performs the
following:

i. Receive a messages (g̃′cj)Pj∈T from Adv corresponding to the shares of the honest parties

in T .

ii. Let xc be Pi’s input to gc, generate (g′cj)Pj∈T uniformly at random such that
∑

Pj∈T g̃
′c
j +∑

Pj∈T g
′c
j = xc. Notice that these are one (of many possible) vectors of shares that the

adversary should be using if it were to decide to behave honestly during this phase of the
protocol.

4. Randomness generation phase. For each random gate gc and for each corrupted party Pi
retrieve from u′Adv the values (g′ci)Pi∈T representing Adv’s shares for gc.

83

5. Circuit evaluation phase. For each gate gc of C with inputs ga and gb, proceed as follows:

Handling addition and subtraction gates. In this case no communication takes place. For
the corrupted party Pi compute g′ci ← g′ai + g′bi in the case of addition gates and g′ci ← g′ai − g′bi in
the case of subtraction gates.

Handling multiplication gates. If gc be a multiplication gate, the simulation proceeds as
follows.

(a) For every honest party Pi and corrupted party Pj retrieve from u′Adv the value u′cj,i that Pj
receives during Step 4(b)iA of Construction 5.10 and send it to Adv.

(b) For every honest party Pi and corrupted party Pj obtain from Adv the value ũ′ci,j that Pi
receives during Step 4(b)iA of Construction 5.10.

(c) For every honest party Pi and corrupted party Pj retrieve from u′Adv the values v′ci,j , w
′c
i,j that

Pj receives during Step 4(b)iB of Construction 4(b)iB and send it to Adv.

(d) For every honest party Pi and corrupted party Pj obtain from Adv the values ṽ′cj,i, w̃
′c
j,i that

Pi receives during Step 4(b)iB of Construction 5.10.

(e) We split the simulation into two cases based on the values of ũ′ci,j , and w̃′cj,i obtained by the
simulator from the adversary in Steps 5b and 5d above.

i. If for every corrupted party Pj there exists g̃′aj , g̃
′b
j such that for every honest party Pi it

holds that ũ′ci,j = g̃′bj − r′ci,j and w̃′cj,i ← g̃′aj −m′cj,i. In this case the simulation proceeds as
follows.

A. For every corrupted party Pj and honest party Pi compute v′cj,i ← (g̃′bj − r′cj,i) ·m′cj,i.
B. For every corrupted party Pj and honest party Pi compute t′ci,j ← w′ci,j · g̃′bj +v′ci,j +s′ci,j .

C. Update the additive attack A be computing Aa,c ←
∑

Pj∈T (g̃′aj − g′aj) and Ab,c ←∑
Pj∈T (g̃′bj − g′bj).

D. For any gate gd connected to the output of gc update the additive attack B by
computing Bc,d ←

∑
Pj∈T
Pi∈T

(ṽ′cj,i − v′cj,i).

E. For every corrupted party Pj compute g′cj ←
∑

Pi∈T (t′ci,j − v′cj,i) + g̃′aj g̃
′b
j .

ii. Otherwise, there exists a corrupted party Pj such that for any g̃′aj , g̃
′b
j there exists an

honest party Pi such that ũ′ci,j 6= g̃′bj − r′ci,j or w̃′cj,i 6= g̃′aj −m′cj,i. In this case the simulation
proceeds as follows.

A. Generate a random field element rc and for any gate gd connected to the output of
gc, updates the additive attack B by setting Bc,d ← rc.

B. For every corrupted party Pj set g′cj ← 0.

6. Output recovery phase. At the end of the of the circuit evaluation phase, for each output gate
gz every corrupted party Pi ∈ T holds a share g̃zi of the supposed output. Recall that only P1 is
learn the output. Thus, there are two cases to consider based on whether P1 is corrupted or not:

• P1 is corrupted. In this case only the adversary learns the output. The simulation proceeds
as follows:

(a) The simulator sets to 0 all the coordinates of A and B that were not previously set. In
addition, the simulator sets Aout = Bout = 0.

(b) The simulator computes the additive attack A′ such that for every wire (ga, gb) in C it
holds that A′a,b = Aa,b +Ba,b.

84

(c) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the aforementioned wire corruptions A′. The trusted party responds to
the simulator with the outputs y for P1.

(d) For each output gate gz of C the simulator generates shares (g′zj)Pj∈T uniformly at

random such that
∑

Pj∈T g
′i
j +

∑
Pj∈T g

′i
j = yz adds them to u′Adv and sends them to Adv.

(e) The simulator outputs u′Adv.

• P1 is honest. The simulation proceeds as follows:

(a) For each output gate gz of C and for each corrupted party Pj obtain the share g̃′zj that
Pj sends to P1.

(b) For each output gate gz of C, the simulator updates the additive attack A by setting
(Aout)z ←

∑
Pj∈T (g̃′zj − g′zj).

(c) The simulator sets to 0 all the coordinates of A and B that were not previously set. In
addition, the simulator sets Bout = 0.

(d) The simulator computes the additive attack A′ such that for every wire (ga, gb) in C it
holds that A′a,b = Aa,b +Ba,b and A′out = Aout +Bout.

(e) The simulator invokes the trusted party computing f̃C with the inputs of the corrupted
parties and with the wire corruptions A′ computed so far.

(f) The simulator outputs u′Adv.

It can be verified that for any circuit C, and for any adversary Adv in the real world controlling a set
of parties T and not the dealer such that |T | ≤ n− 1 it holds that for any ~x

Ideal
f̃C ,Sim,T

(~x) ≡ RealΠC ,Adv,T (~x).

We now state the following corollary the proof of which immediately follows from Lemmas 5.10 and 5.11.

Corollary 5.10. Let C : FI1 × · · · × FIn → FO1 be a n-party circuit. The protocol ΠC defined in
Construction 5.10 is a secure protocol for computing f̃C as defined in Definition 5.1 in the presence of
any active adversary controlling the dealer or any subset of parties.

The following theorem states the result of applying our methodology to the protocol from Construc-
tion 5.10. We obtain a protocol that is secure in the presence of an active adversary controlling any
subset of parties or the dealer.

Theorem 5.9. For any n-party circuit C : FI1 × · · · × FIn → FO1 there exists a protocol π using n
parties and an additional special party called the dealer such that is a O(|C|/|F|)-secure protocol for
computing C with abort in the presence of any active adversary controlling the dealer or any subset of
parties. Moreover, the communication complexity of π is O(n2|C|)

Proof. Apply Construction 5.3 on C and obtain the circuit CAMD. In addition, let ĈAMD be an
O(|C|/|F|)-secure implementation of CAMD. Using a variant of Construction 5.4 obtain a O(|C|/|F|)-
secure protocol π′ for computing C with abort in the presence of any active adversary controlling the
dealer or any subset of parties in the f̃

ĈAMD-hybrid model. Finally, obtain π by replacing the oracle call

of π′ with the protocol ΠĈAMD
from Construction 5.10.

Using the transformations in the proof of Corollary 5.5, Theorem 5.9 can be extended to multi-output
functionalities and have its security guarantee be independent of the size of F.

85

Corollary 5.11. Let n, σ be a positive integer, let F be a finite field and let C : FI1 × · · · × FIn →
FO1 × · · · × FOn be an n-party circuit such that |C| ≥ ` log |F| where ` =

∑n
i=1 Ii. Then there exists a

protocol π using n parties and and an additional special party called the dealer that O(2−σ · |C|)-securely
computes C with abort in the presence of any active adversary controlling the dealer or any subset of
the parties. Moreover the communication complexity of π is O

(
n2 · σ · |C|

)
field elements.

Appendices

A A MIP-based construction

In this section, we present a construction for additive correctness which is based on multiprover in-
teractive proofs (MIP) systems. While the main advantage of this construction is its high efficiency
for circuits with short succinct descriptions, the construction will not achieve full security but only
correctness with a decoder. Moreover, since the size of the resulting decoder will be linear in the size of
the circuit description, the construction is only meaningful for circuits with small descriptions. Finally,
the size of the resulting decoder is also linear in the input size of the original circuit. This limitation
prevents improving this construction as done in Section 4.2.2 by applying it to every layer of the original
circuit, treating the obtained decoder as part of the next layer.

Despite the above limitations, for a circuit C : {0, 1}n → {0, 1}k with a succinct description F (see
Definition A.1), we present a construction which produces AMD circuits of size |Ĉ| = (σ + |C| · |F |) ·
polylog(σ, |C|, |F |) and |D| = (n+ k+ |F |) ·σ ·polylog(|C|, |F |) where σ is the security parameter. This
is compared with Theorem 1.2 where |Ĉ| = |C| · poly(σ) and |D| = k · poly(σ).

We begin by defining the notion of a succinct circuit descriptor.

Definition A.1 (Circuit descriptor, Cf. Definition 2.1 in [BSCGT13]). Let C be a circuit containing
2n gates with each gate labeled by some n-bit string. In addition let F : {0, 1}n+2 → {0, 1}n be a circuit.
We say that F is the succinct circuit descriptor of C is the following holds. For any s ∈ {0, 1}n let
s00 = F (s00), s01 = F (s01), s10 = F (s10), and s11 = F (s11). We require that gates s00 and s01 have
wires going into gate s, and gate s has wires going into s10 and s11. If s = s00 = s01 then s is an input
gate and if s = s10 = s11 then s is an output gate. Notice that |F | ≤ O(|C|).

Basic MIP-based construction. The main idea behind the construction is as follows: we start from
a PCP with a polynomial time prover. Next, using the transformation of [TS96] we obtain a constant
soundness MIP system from the PCP by putting two non-communicating PCP proves side by side and
using one to verify answers of the other. Next, we observe that in order to amplify the soundness of
the MIP system, all we need is a circuit that will select additional bits from the PCP proof in response
to additional queries from the verifier. The correctness of this construction follows from the fact that
even though the adversary can additively corrupt each prover of the MIP system, it cannot cause the
provers to communicate. Thus, the soundness of the MIP system is maintained. In fact, notice that
this construction is much more robust. As long as the adversary does not corrupt the randomness
gate (for example by setting their output to be identically zero) and does not cause the provers to
communicate (by moving wires from place to place inside the circuit), the MIP system remains sound
and the construction withstands the attack.

Notice that unlike the constructions presented in Section 4.1, we cannot make the guarantee that
the soundness of the PCP will be preserved even when the verifier is additively attacked. Thus, since
the verifier needs to be protected inside the decoder, and since it still needs to store a description of C
this construction achieves non trivial parameters only for sufficiently uniform circuits.

Instantiating the PCP to MIP transformation with PCPs with polylogarithmic overhead [BSGH+05,
BSS08, BSCGT13] we obtain the following theorem.

86

Theorem A.1. For any positive integer σ and for any circuit descriptor F describing a circuit C :
{0, 1}n → {0, 1}k there exists a 2−σ-correct implementation (Ĉ,D) of C such that |Ĉ| = σ · |C| · |F | ·
polylog(|C|, |F |) and |D| = (n+ k + |F |) · σ · polylog(|C|, |F |).

Efficient MIP-based construction. We now present a more efficient version of the above construc-
tion. The construction in Theorem A.1 achieved 2−σ-correctness by running the PCP prover O(σ)
times each time selecting the necessary bits for the verifier to read. We now improve this part in the
construction by utilizing a sorting network which does not require the PCP prover to be invoked O(σ)
times but only a constant number of times. A sorting network is a directed acyclic graph with disjoint
set of sources and sinks. Each node in the graph is either a source, a sink or a comparator node. The
input to the sorting network is a list of records where the i-th source node is assigned the i-th record
from the list. Each comparator node is connected by inbound edges to two other comparator or source
nodes and is connected by an outbound edge to two other comparator or sink nodes. Every comparator
node maps its inputs to its outputs using some comparison logic. The guarantee of the entire sorting
network is that the sink nodes will contain the sorted list of record that was given to the network as
input. The i-th sink node will contain the i-th recored of the result. For a comprehensive reference on
sorting networks see Section 3.5 in [Lei92]. Optimal sorting networks where presented in the work of
Ajtai et al. [AKS83] where a graph of size O(n log n) is needed to sort n records.

Using sorting networks it is possible to construct a circuit seln,k that is able to efficiently select k
records out of a list of length n such that |seln,k| = O((n + k) · log(n + k)). This is compared to the
naive solution for this problem using k n-to-1 multiplexers resulting in a circuit of size O(k · n).

Notice that the MIP provers described above simulate the PCP prover P ′ and select specific coor-
dinates from its output based on the queries given to them as input. Thus, amplifying the soundness of
the MIP system used in Theorem A.1 by parallel repetitions where the selection process is implemented
using an efficient n-out-of-k selector seln,k yields the following theorem.

Theorem A.2. For any positive integer σ and for any circuit descriptor F describing a circuit C :
{0, 1}n → {0, 1}k there exists a 2−σ-correct implementation (Ĉ,D) of C such that |Ĉ| = (σ+ |C| · |F |) ·
polylog(σ, |C|, |F |) and |D| = (n+ k + |F |) · σ · polylog(|C|, |F |).

Acknowledgments

D. Genkin and Y. Ishai were supported by European Union’s Tenth Framework Programme (FP10/2010-
2016) under grant agreement no. 259426 ERC-CaC. Y. Ishai was additionally supported by ISF grant
1361/10 and BSF grant 2012378. M. Prabhakaran was supported by NSF grants 07-47027 and 12-
28856. A. Sahai was supported in part from a DARPA/ONR PROCEED award, NSF grants 1228984,
1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award,
an Intel equipment grant, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval
Research under Contract N00014-11-1-0389. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense, the National Science Foundation,
or the U.S. Government. E. Tromer was supported, and D. Genkin was additionally supported, by
the Check Point Institute for Information Security, the Israeli Centers of Research Excellence I-CORE
program (center 4/11), the Israeli Ministry of Science and Technology, and NATO’s Public Diplomacy
Division in the Framework of “Science for Peace”.

References

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi, An O(n log n) sorting network, STOC,
1983, pp. 1–9.

87

[AL11] Gilad Asharov and Yehuda Lindell, A full proof of the BGW protocol for perfectly-secure
multiparty computation, IACR Cryptology ePrint Archive 2011 (2011), 136.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy, Proof
verification and hardness of approximation problems, FOCS, 1992, pp. 14–23.

[BCG+06] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam
Smith, Secure multiparty quantum computation with (only) a strict honest majority, FOCS,
2006, pp. 249–260.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias, Semi-homomorphic
encryption and multiparty computation, EUROCRYPT, 2011, pp. 169–188.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky, Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority, CRYPTO, 2012, pp. 663–680.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract), STOC, 1988,
pp. 1–10.

[BSCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer, On the concrete
efficiency of probabilistically-checkable proofs, STOC, 2013, pp. 585–594.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan,
Short pcps verifiable in polylogarithmic time, IEEE Conference on Computational Com-
plexity, 2005, pp. 120–134.

[BSS08] Eli Ben-Sasson and Madhu Sudan, Short PCPs with polylog query complexity, SIAM J.
Comput. 38 (2008), no. 2, 551–607.

[Can00] Ran Canetti, Security and composition of multiparty cryptographic protocols, J. Cryptology
13 (2000), no. 1, 143–202.

[Can01] , Universally composable security: A new paradigm for cryptographic protocols,
FOCS, 2001, pp. 136–145.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard, Multiparty unconditionally secure pro-
tocols (extended abstract), STOC, 1988, pp. 11–19.

[CDF+08] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padró, and Daniel Wichs, Detection
of algebraic manipulation with applications to robust secret sharing and fuzzy extractors,
EUROCRYPT, 2008, pp. 471–488.

[CDI05] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai, Share conversion, pseudorandom secret-
sharing and applications to secure computation, TCC, 2005, pp. 342–362.

[CW79] Larry Carter and Mark N. Wegman, Universal classes of hash functions, J. Comput. Syst.
Sci. 18 (1979), no. 2, 143–154.

[DI05] Ivan Damg̊ard and Yuval Ishai, Constant-round multiparty computation using a black-box
pseudorandom generator, CRYPTO, 2005, pp. 378–394.

[DI06] , Scalable secure multiparty computation, CRYPTO, 2006, pp. 501–520.

[DIK10] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard, Perfectly secure multiparty computation
and the computational overhead of cryptography, EUROCRYPT, 2010, pp. 445–465.

88

[DK12] Dana Dachman-Soled and Yael Tauman Kalai, Securing circuits against constant-rate tam-
pering, CRYPTO, 2012, pp. 533–551.

[DKRS06] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith, Robust fuzzy extractors
and authenticated key agreement from close secrets, CRYPTO, 2006, pp. 232–250.

[DN07] Ivan Damg̊ard and Jesper Buus Nielsen, Scalable and unconditionally secure multiparty
computation, CRYPTO, 2007, pp. 572–590.

[DO77] R. Dobrushin and E. Ortyukov, Upper bound on the redundancy of self-correcting arrange-
ments of unreliable functional elements, Problems of Information Transmission 23 (1977),
no. 2, 203–218.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias, Multiparty computation
from somewhat homomorphic encryption, CRYPTO, 2012, pp. 643–662.

[DSK14] Dana Dachman-Soled and Yael Tauman Kalai, Securing circuits and protocols against
1/poly(k) tampering rate, TCC, 2014, pp. 540–565.

[FPV11] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi, Tamper-proof circuits: How to
trade leakage for tamper-resilience, ICALP, 2011, pp. 391–402.

[Fre77] Rusins Freivalds, Probabilistic machines can use less running time, IFIP Congress, 1977,
pp. 839–842.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin, On 2-round secure multi-
party computation, CRYPTO, 2002, pp. 178–193.

[GLM+04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin, Algorith-
mic tamper-proof (ATP) security: Theoretical foundations for security against hardware
tampering, TCC, 2004, pp. 258–277.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson, How to play any mental game or a
completeness theorem for protocols with honest majority, STOC, 1987, pp. 218–229.

[Gol04] Oded Goldreich, The foundations of cryptography - volume 2, basic applications, Cambridge
University Press, 2004.

[GS95] Anna Gál and Mario Szegedy, Fault tolerant circuits and probabilistically checkable proofs,
Structure in Complexity Theory Conference, 1995, pp. 65–73.

[HL10] Carmit Hazay and Yehuda Lindell, Efficient secure two-party protocols - techniques and
constructions, Information Security and Cryptography, Springer, 2010.

[IKHC14] Dai Ikarashi, Ryo Kikuchi, Koki Hamada, and Koji Chida, Actively private and correct
mpc scheme in t<n/2 from passively secure schemes with small overhead, IACR Cryptology
ePrint Archive 2014 (2014), 304.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky, On the power of correlated randomness in secure computation, TCC, 2013,
pp. 600–620.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai,
Efficient non-interactive secure computation, EUROCRYPT, 2011, pp. 406–425.

89

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai, Founding cryptography on oblivious
transfer – efficiently, CRYPTO, 2008, pp. 572–591.

[IPS09] , Secure arithmetic computation with no honest majority, TCC, 2009, pp. 294–314.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner, Private circuits ii: Keep-
ing secrets in tamperable circuits, EUROCRYPT, 2006, pp. 308–327.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner, Private circuits: Securing hardware against
probing attacks, CRYPTO, 2003, pp. 463–481.

[Kil88] Joe Kilian, Founding cryptography on oblivious transfer, STOC, 1988, pp. 20–31.

[KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai, Cryptography with tamperable
and leaky memory, CRYPTO, 2011, pp. 373–390.

[KLM94] Daniel J. Kleitman, Frank Thomson Leighton, and Yuan Ma, On the design of reliable
boolean circuits that contain partially unreliable gates, FOCS, 1994, pp. 332–346.

[KLR12] Yael Tauman Kalai, Allison B. Lewko, and Anup Rao, Formulas resilient to short-circuit
errors, FOCS, 2012, pp. 490–499.

[KN89] Mark G. Karpovsky and Prawat Nagvajara, Optimal codes for minimax criterion on error
detection, IEEE Transactions on Information Theory 35 (1989), no. 6, 1299–1305.

[Lei92] F. Thomson Leighton, Introduction to parallel algorithms and architectures: array, trees,
hypercubes, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[LL12] Feng-Hao Liu and Anna Lysyanskaya, Tamper and leakage resilience in the split-state model,
CRYPTO, 2012, pp. 517–532.

[NN93] Joseph Naor and Moni Naor, Small-bias probability spaces: Efficient constructions and
applications, SIAM J. Comput. 22 (1993), no. 4, 838–856.

[NP06] Moni Naor and Benny Pinkas, Oblivious polynomial evaluation, SIAM J. Comput. 35
(2006), no. 5, 1254–1281.

[Pip85] Nicholas Pippenger, On networks of noisy gates, FOCS, 1985, pp. 30–38.

[RB89] Tal Rabin and Michael Ben-Or, Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract), STOC, 1989, pp. 73–85.

[Sha79] Adi Shamir, How to share a secret, Commun. ACM 22 (1979), no. 11, 612–613.

[SY10] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: A survey of recent results and
open questions, Foundations and Trends in Theoretical Computer Science 5 (2010), no. 3-
4, 207–388.

[TS96] Amnon Ta-Shma, A note on pcp vs. mip, Inf. Process. Lett. 58 (1996), no. 3, 135–140.

[vN56] J. von Neumann, Probabilistic logics and synthesis of reliable organisms from unreliable
components, Automata Studies 34 (1956), 43–98.

[WC79] Mark N. Wegman and Larry Carter, New classes and applications of hash functions, FOCS,
1979, pp. 175–182.

90

[WC81] , New hash functions and their use in authentication and set equality, J. Comput.
Syst. Sci. 22 (1981), no. 3, 265–279.

[Yao86] Andrew Chi-Chih Yao, How to generate and exchange secrets (extended abstract), FOCS,
1986, pp. 162–167.

91

