
Observations on the SIMON block cipher family

Stefan Kölbl1, Gregor Leander2, and Tyge Tiessen1

stek@dtu.dk, gregor.leander@rub.de, tyti@dtu.dk

1 DTU Compute, Technical University of Denmark, Denmark
2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany

Abstract. In this paper we analyse the general class of functions underly-
ing the Simon block cipher. In particular, we derive efficiently computable
and easily implementable expressions for the exact differential and linear
behaviour of Simon-like round functions.
Following up on this, we use those expressions for a computer aided
approach based on SAT/SMT solvers to find both optimal differential
and linear characteristics for Simon. Furthermore, we are able to find all
characteristics contributing to the probability of a differential for Simon32
and give better estimates for the probability for other variants.
Finally, we investigate a large set of Simon variants using different rotation
constants with respect to their resistance against differential and linear
cryptanalysis. Interestingly, the default parameters seem to be not always
optimal.

Keywords: SIMON, differential cryptanalysis, linear cryptanalysis, block
cipher, Boolean functions

1 Introduction

Lightweight cryptography studies the deployment of cryptographic primitives in
resource-constrained environments. This research direction is driven by a demand
for cost-effective, small-scale communicating devices such as RFID tags that are
a cornerstone in the Internet of Things. Most often the constrained resource
is taken to be the chip-area but other performance metrics such as latency [7],
code-size [2] and ease of side-channel protection [12]) have been considered as
well. Some of these criteria were already treated in Noekeon [9].

The increased importance of lightweight cryptography and its applications
has lately been reflected in the NSA publishing two dedicated lightweight cipher
families: Simon and Speck [5]. Considering that this is only the third time within
four decades that the NSA has published a block cipher, this is quite remarkable.
Especially as NIST has started shortly after this publication to investigate the
possibilities to standardise lightweight primitives, Simon and Speck certainly
deserve a thorough investigation. This is emphasised by the fact that, in contrast
to common practice, neither a security analysis nor a justification of the design
choices were published by the NSA. This lack of openness necessarily gives rise
to curiosity and caution.

In this paper we focus on the Simon family of block ciphers; an elegant,
innovative and very efficient set of block ciphers. There exists already a large
variety of papers, mainly focussed on evaluating Simon’s security with regard
to linear and differential cryptanalysis. Most of the methods used therein are
rather ad-hoc, often only using approximative values for the differential round
probability and in particular for the linear square correlation of one round.

Our Contribution With this study, we complement the existing work threefold.
Firstly we develop an exact closed form expression for the differential probability
and a log(n) algorithm for determining the square correlation over one round.
Their accuracy is proven rigorously. Secondly we use these expressions to imple-
ment a model of differential and linear characteristics for SAT/SMT solvers which
allows us to find the provably best characteristics for different instantiations of
Simon. Furthermore we are able to shed light on how differentials in Simon profit
from the collapse of many differential characteristics. Thirdly by generalising
the probability expressions and the SAT/SMT model, we are able to compare
the quality of different parameter sets with respect to differential and linear
cryptanalysis.

As a basis for our goal to understand both the security of Simon as well as
the choice of its parameter set, we rigorously derive formulas for the differential
probabilities and the linear square correlations of the Simon-like round function
that can be evaluated in constant time and time linear in the word size respectively.
More precisely, we study differential probabilities and linear correlations of
functions of the form

Sa(x)� Sb(x) + Sc(x)

where Si(x) corresponds to a cyclic left shift of x and � denotes the bitwise
AND operation.

We achieve this goal by first simplifying this question by considering equivalent
descriptions both of the round function as well as the whole cipher (cf. Section 2.4).
These simplifications, together with the theory of quadratic boolean functions,
result in a clearer analysis of linear and differential properties (cf. Sections 3 and 4).
Importantly, the derived simple equations for computing the probabilities of the
Simon round function can be evaluated efficiently and, more importantly maybe,
are conceptually very easy. This allows them to be easily used in computer-aided
investigations of differential and linear properties over more rounds. It should be
noted here that the expression for linear approximations is more complex than
the expression for the differential case. However, with respect to the running
time of the computer-aided investigations this difference is negligible.

We used this to implement a framework based on SAT/SMT solvers to find
the provably best differential and linear characteristics for various instantiations
of Simon (cf. Section 5, in particular Table 1). Furthermore we are able to shed
light on how differentials in Simon profit from the collapse of many differential
characteristics by giving exact distributions of the probabilities of these char-
acteristics for chosen differentials. The framework is open source and publicly
available to encourage further research [13].

In Section 6 we apply the developed theory and tools to investigate the design
space of Simon-like functions. In particular, using the computer-aided approach,
we find that the standard Simon parameters are not optimal with regard to the
best differential and linear characteristics.

As a side result, we improve the probabilities for the best known differentials
for several variants and rounds of Simon. While this might well lead to (slightly)
improved attacks, those improved attacks are out of the scope of our work.

Interestingly, at least for Simon32 our findings indicate that the choices made
by the NSA are good but not optimal under our metrics, leaving room for further
investigations and questions. To encourage further research, we propose several
alternative parameter choices for Simon32. Here, we are using the parameters that
are optimal when restricting the criteria to linear, differential and dependency
properties. We encourage further research on those alternative choices to shed
more light on the undisclosed design criteria.

We also like to point out that the Simon key-scheduling was not part of our
investigations. Its influence on the security of Simon is left as an important open
question for further investigations. In line with this, whenever we investigate
multi-round properties of Simon in our work, we implicitly assume independent
round keys in the computation of probabilities.

Finally, we note that most of our results can be applied to more general
constructions, where the involved operations are restricted to AND, XOR, and
rotations.

Related Work There are various papers published on the cryptanalysis of
Simon [1,3,6,17,18,19]. The most promising attacks so far are based on differential
and linear cryptanalysis, however a clear methodology of how to derive the
differential probabilities and square correlations seems to miss in most cases.
Biryukov, Roy and Velichkov [6] derive a correct, but rather involved method
to find the differential probabilities. Abed, List, Lucks and Wenzel [1] state an
algorithm for the calculation of the differential probabilities but without further
explanation. For the calculation of the square correlations an algorithm seems to
be missing all together.

Previous work also identifies various properties like the strong differential
effect and give estimate of the probability of differentials.

The concept behind our framework was previously also applied on the ARX
cipher Salsa20 [14] and the CAESAR candidate NORX [4]. In addition to the
applications proposed in previous work we extend it for linear cryptanalysis,
examine the influence of rotation constants and use it to compute the distribution
of characteristics corresponding to a differential.

2 Preliminaries

In this section, we start by defining our notation and giving a short description of
the round function. We recall suitable notions of equivalence of Boolean functions
that allow us to simplify our investigations of Simon-like round functions. Most

of this section is generally applicable to AND-RX constructions, i.e. constructions
that only make use of the bitwise operations AND, XOR, and rotations.

2.1 Notation

We denote by F2 the field with two elements and by Fn2 the n-dimensional vector
space over F2. By 0 and 1 we denote the vectors of Fn2 with all 0s and all 1s
respectively. The Hamming weight of a vector a ∈ Fn2 is denoted as wt(a). By
Zn we denote the integers modulo n.

The addition in Fn2 , i.e. bit-wise XOR, is denoted by +. By � we denote the
AND operation in Fn2 , i.e. multiplication over F2 in each coordinate:

x� y = (xiyi)i.

By ∨ we denote the bitwise OR operation. By x we denote the bitwise negation
of x, i.e. x := (x + 1). We denote by Si : Fn2 → Fn2 the left circular shift by i
positions. We also note that any arithmetic of bit indices is always done modulo
the word size n.

In this paper we are mainly concerned with functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x) (1)

and we identify such functions with its triple (a, b, c) of parameters.
For a vectorial Boolean function on n bits, f : Fn2 → Fn2 , we denote by

f̂(α, β) =
∑
x

µ (〈β, f〉+ 〈α, x〉)

the Walsh (or Fourier) coefficient with input mask α and output mask β. Here
we use µ(x) = (−1)x to simplify the notation.

The corresponding squared correlation of f is given by

C2(α→ β) =
(
f̂(α, β)

2n

)2

.

For differentials we similarly denote by Pr(α −→ β) the probability that a given
input difference α results in a given output difference β, i.e.

Pr(α −→ β) = |{x | f(x) + f(x+ α) = β}|
2n .

Furthermore, Dom(f) is the domain of a function f , Img(f) is its image.

2.2 Description of SIMON

Simon is a family of lightweight block ciphers with block sizes 32, 48, 64, 96,
and 128 bits. The constructions are Feistel ciphers using a word size n of 16, 24,

32, 48 or 64 bits, respectively. We will denote the variants as Simon2n. The key
size varies between of 2, 3, and 4 n-bit words. The round function of Simon is
composed of AND, rotation, and XOR operations on the complete word (see
figure 1). More precisely, the round function in Simon corresponds to

S8(x)� S1(x) + S2(x),

that is to the parameters (8, 1, 2) for f as given in Equation (1). As we are not
only interested in the original Simon parameters, but in investigating the entire
design space of Simon-like functions, we denote by

Simon[a, b, c]

the variant of Simon where the original round function is replaced by fa,b,c (cf.
Equation (1)).

As it is out of scope for our purpose, we refer to [5] for the description of the
key-scheduling.

S8

S1

S2

ki

Fig. 1. The round function of Simon.

2.3 Affine equivalence of Boolean Functions

Given two (vectorial) Boolean functions f1 and f2 on Fn2 related by

f1(x) = (A ◦ f2 ◦B)(x) + C(x)

where A and B are affine permutations and C is an arbitrary affine mapping on
Fn2 we say that f1 and f2 are extended affine equivalent (cf. [8] for a comprehensive
survey).

With respect to differential cryptanalysis, if f1 and f2 are extended affine
equivalent then the differential α f1−→ β over f1 has probability p if and only if
the differential

B(α) f2−→ A−1 (β + C(α))

over f2 has probability p as well.
For linear cryptanalysis, a similar relation holds for the linear correlation. If

f1 and f2 are related as defined above, it holds that

f̂1(α, β) = f̂2

((
C ◦B−1)T β +

(
B−1)T α,ATβ) .

Thus up to linear changes we can study f2 instead of f1 directly. Note that,
for an actual attack, these changes are usually critical and can certainly not be
ignored. However, tracing the changes is, again, simple linear algebra.

For differential and linear properties of Simon-like functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x)

this implies that it is sufficient to find the differential and linear properties of
the simplified variant

f(x) = x� Sd(x)

and then transfer the results back by simply using linear algebra.3

2.4 Structural Equivalence Classes in AND-RX Constructions

AND-RX constructions, i.e. constructions that make only use of the operations
AND (�), XOR (+), and rotations (Sr), exhibit a high degree of symmetry.
Not only are they invariant under rotation of all input words, output words
and constants, they are furthermore structurally invariant under any affine
transformation of the bit-indices. As a consequence of this, several equivalent
representations of the Simon variants exist.

Let T be a permutation of the bits of an n-bit word that corresponds to an
affine transformation of the bit-indices. Thus there are s ∈ Z∗n and t ∈ Zn such
that bit i is renamed to s · i+ t. As the AND and XOR operations are bitwise, T
clearly commutes with these:

Tv � Tw = T (v � w)
Tv + Tw = T (v + w)

where v and w are n-bit words. A rotation to the left by r can be written bitwise
as Sr(v)i = vi−r. For a rotation, we thus get the following bitwise relation after
transformation with T

Sr(v)s·i+t = vs·(i−r)+t = vs·i+t−s·r .

Substituting s · i+ t with j this is the same as

Sr(v)j = vj−s·r .

3 Note that we can transform the equation f(x) = Sa(x)�Sb(x)+Sc(x) to the equation
S−a(f(x)) + Sc−a(x)) = x� Sb−a(x).

Thus the rotation by r has been changed to a rotation by s · r. Thus we can write

TSrv = Ss·rTv.

Commuting the linear transformation of the bit-indices with a rotation thus only
changes the rotation constant by a factor. In the special case where all input
words, output words and constants are rotated, which corresponds to the case
s = 1, the rotation constant are left untouched.

To summarise the above, when applying such a transformation T to all input
words, output words and constants in an AND-RX construction, the structure of
the constructions remains untouched apart from a multiplication of the rotation
constants by the factor s.

This means for example for Simon32 that changing the rotation constants
from (8, 1, 2) to (3·8, 3·1, 3·2) = (8, 3, 6) and adapting the key schedule accordingly
gives us the same cipher apart from a bit permutation. As s has to be coprime to
n, all s with gcd(s, n) = 1 are allowed, giving ϕ(n) equivalent tuples of rotation
constants in each equivalence class where ϕ is Euler’s phi function.

Together with the result from section 2.3, this implies the following lemma.

Lemma 1. Any function fa,b,c as defined in Equation (1) is extended affine
equivalent to a function

f(x) = x� Sd(x)

where d|n or d = 0 .

When looking at differential and square correlations of Simon-like round functions
this means that it is sufficient to investigate this restricted set of functions. The
results for these functions can then simply be transferred to the general case.

3 Differential Probabilities of SIMON-like round
functions

In this section, we derive a closed expression for the differential probability for
all Simon-like round functions, i.e. all functions as described in Equation (1).
The main ingredients here are the derived equivalences and the observation that
any such function is quadratic. Being quadratic immediately implies that its
derivative is linear and thus the computation of differential probabilities basically
boils down to linear algebra (cf. Theorem 1). However, to be able to efficiently
study multiple-round properties and in particular differential characteristics, it is
important to have a simple expression for the differential probabilities. Those
expressions are given for f(x) = x�S1(x) in Theorem 2 and for the general case
in Theorem 3.

3.1 A closed expression for the differential probability

The following statement summarises the differential properties of the f function.

Theorem 1. Given an input difference α and an output difference β the proba-
bility p of the corresponding differential (characteristic) for the function f(x) =
x� Sa(x) is given by

pα,β =
{

2−(n−d) if β + α� Sa(α) ∈ Img(Lα)
0 else

where
d = dim ker(Lα)

and
Lα(x) = x� Sa(α) + α� Sa(x)

Proof. We have to count the number of solutions to the equation

f(x) + f(x+ α) = β.

This simplifies to

Lα(x) = x� Sa(α) + α� Sa(x) = β + α� Sa(α)

As this is an affine equation, it either has zero solutions or the number of solutions
equals the kernel size, i.e. the number of elements in the subspace

{x | x� Sa(α) + α� Sa(x) = 0}.

Clearly, the equation has solutions if and only if β +α� Sa(α) is in the image of
Lα. ut

Next we present a closed formula to calculate the differential probability in
the case where a = 1. Furthermore we restrict ourselves to the case where n is
even.

Theorem 2. Let
varibits = S1(α) ∨ α

and
doublebits = α� S1(α)� S2(α).

Then the probability that difference α goes to difference β is

P (α→ β) =

2−n+1 if α = 1 and wt(β) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and β � varibits = 0

and (β + S1(β))� doublebits = 0
0 else

Proof. According to theorem 1, we need to prove two things. Firstly we need
to prove that the rank of Lα (i.e. n − dim kerLα) is n − 1 when α = 1, and
wt(varibits + doublebits)) otherwise. Secondly we need to prove that β+α�
S1(α) ∈ Img(Lα) iff wt(β) ≡ 0 mod 2 when α = 1, and that β + α � S1(α) ∈
Img(Lα) iff β � varibits = 0 and (β + S1(β))� doublebits = 0 when α 6= 1.

We first consider the first part. Let us write Lα(x) in matrix form and let us
take x to be a column vector. S1(α)� x can be written as MS1(α)�x with

MS1(α)� =

αn−1 0
... α0

...
...

. . .
...

0 αn−2

 . (2)

Equivalently we can write α� x and S1(x) with matrices as Mα�x and MS1x
respectively where

Mα� =

α0 0
... α1

...
...

. . .
...

0 αn−1

 and MS1 =
(

01,n−1 I1,1
In−1,n−1 0n−1,1

)
, (3)

i.e.MS1 consists of two identity and two zero submatrices. The result ofMS1(α)�+
Mα�MS1 can now be written as

αn−1 0 0 . . . α0
α1 α0 0 . . . 0

0 α2 α1
...

...
. 0

0 . . . 0 αn−1 αn−2

 (4)

Clearly the rank of the matrix is n− 1 when all αi are 1. Suppose now that not
all αi are 1. In that case, a set of non-zero rows is linearly dependent iff there
exist two identical rows in the set. Thus to calculate the rank of the matrix, we
need to calculate the number of unique non-zero rows.

By associating the rows in the above matrix with the bits in varibits, we
can clearly see that the number of non-zero rows in the matrices corresponds to
the number of 1s in varibits = S1(α) ∨ α.

To count the number of non-unique rows, first notice that a nonzero row can
only be identical to the row exactly above or below. Suppose now that a non-zero
row i is identical to the row (i− 1) above. Then αi−1 has to be 0 while αi and
αi−2 have to be 1. But then row i cannot simultaneously be identical to row
(i+ 1) below. Thus it is sufficient to calculate the number of non-zero rows minus
the number of rows that are identical to the row above it to find the rank of
the matrix. Noting that row i is non-zero iff αiαi−1 and that αiαi−1αi−2 is only

equal 1 when row i is non-zero and equal to the row above it. Thus calculating
the number of i for which

αiαi−1 + αiαi−1αi−2

is equal 1 gives us the rank of Lα. This corresponds to calculating wt(varibits +
doublebits).

For the second part of the proof, we need to prove the conditions that check
whether β + α� S1(α) ∈ Img(Lα). First notice that α� S1(α) is in the image
of Lα (consider for x the vector with bits alternately set to 0 and 1). Thus it is
sufficient to test whether β is in ImgLα. Let y = Lα(x). Let us first look at the the
case of α = 1. Then Lα(x) = x+ S1(x). We can thus deduce from bit yi whether
xi = xi−1 or xi 6= xi−1. Thus the bits in y create a chain of equalities/inequalities
in the bits of x which can only be fulfilled if there the number of inequalities is
even. Hence in that case β ∈ ImgLα iff wt(β) ≡ 0 mod 2.

For the case that α 6= 1, we first note that yi has to be zero if the corresponding
row i in the matrix of equation (4) is all zeroes. Furthermore following our
discussion of this matrix earlier, we see that yi is independent of the rest of y if
the corresponding row is linearly independent of the other rows and that yi has to
be the same as yi−1 if the corresponding rows are identical. Thus we only need to
check that the zero-rows of the matrix correspond to zero bits in β and that the
bits in β which correspond to identical rows in the matrix are equal. Thus β is in
the image of Lα iff β � varibits = 0 and (β + S1(β))� doublebits = 0. ut

3.2 The full formula for differentials.

Above we treated only the case for the simplified function f(x) = x · S1(x). As
mentioned earlier, the general case where gcd(a− b, n) = 1 can be deduced from
this with linear algebra. When gcd(d, n) 6= 1 though, the function f(x) = x�Sd(x)
partitions the output bits into independent classes. This not only raises differential
probabilities (worst case d = 0), it also makes the notation for the formulas more
complex and cumbersome, though not difficult. We thus restrict ourselves to the
most important case when gcd(a− b, n) = 1. The general formulas are then

Theorem 3. Let f(x) = Sa(x)�Sb(x) +Sc(x), where gcd(n, a− b) = 1, n even,
and a > b and let α and β be an input and an output difference. Then with

varibits = Sa(α) ∨ Sb(α)

and
doublebits = Sb(α)� Sa(α)� S2a−b(α)

and
γ = β + Sc(α)

we have that the probability that difference α goes to difference β is

P (α→ β) =

2−n+1 if α = 1 and wt(γ) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and γ � varibits = 0

and (γ + Sa−b(γ))� doublebits = 0
0 else .

For a more intuitive approach and some elaboration on the differential proba-
bilities, we refer to the ePrint version of this paper.

4 Linear Correlations of SIMON-like round functions

As in the differential case, for the study of linear approximations, we also build
up on the results from subsections 2.3 and 2.4. We will thus start with studying
linear approximations for the function f(x) = x� Sa(x). Again, the key point
here is that all those functions are quadratic and thus their Fourier coefficient, or
equivalently their correlation, can be computed by linear algebra (cf. Theorem
4). Theorem 5 is then, in analogy to the differential case, the explicit expression
for the linear correlations. It basically corresponds to an explicit formula for the
dimension of the involved subspace.

The first result is the following:

Theorem 4.

f̂(α, β)2 =
{

2n+d if α ∈ U⊥β
0 else

where
d = dimUβ

and
Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

Proof. We compute

f̂(α, β)2 =
∑
x,y

µ (〈β, f(x) + f(y)〉+ 〈α, x+ y〉)

=
∑
x,y

µ (〈β, f(x) + f(x+ y)〉+ 〈α, y〉)

=
∑
x,y

µ (〈β, x� Sa(x) + (x+ y)� Sa(x+ y)〉+ 〈α, y〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ (〈β, x� Sa(y) + y � Sa(x)〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)
.

Now for the sum over x only two outcomes are possible, 2n or zero. More precisely,
it holds that∑

x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)
=
{

2n if β � Sa(y) + S−a(β � y) = 0
0 else .

Thus, defining
Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

we get
f̂(α, β)2 = 2n

∑
y∈Uβ

µ (〈β, f(y)〉+ 〈α, y〉) .

Now as

〈β, f(y)〉 =〈β, y � Sa(y)〉 (5)
=〈1, y � β � Sa(y)〉 (6)
=〈1, y � S−a(β � y)〉 (7)

(8)

Now, the function fβ := 〈β, f(y)〉 is linear over Uβ as can be easily seen by the
definition of Uβ . Moreover, as fβ is unbalanced for all β, it follows that actually
fβ is constant zero on Uβ . We thus conclude that

f̂(α, β)2 = 2n
∑
y∈Uβ

µ (〈α, y〉) .

With a similar argument as above, it follows that f̂(α, β)2 is non-zero if and only
if α is contained in U⊥β . ut

Let us now restrict ourselves to the case where f(x) = x�S1(x). The general
case can be deduced analogously to the differential probabilities. For simplicity
we also restrict ourselves to the case where n is even.

First we need to introduce some notation. Let x ∈ Fn2 with not all bits equal
to 1. We now look at blocks of consecutive 1s in x, including potentially a block
that “wraps around” the ends of x. Let the lengths of these blocks, measured
in bits, be denoted as c0, . . . , cm. For example, the bitstring 100101111011 has
blocks of length 1, 3, and 4. With this notation define θ(x) :=

m∑
i=0
d ci2 e.

Noting that the linear square correlation of f is f̂(α,β)2

22n , we then have the
following theorem:

Theorem 5. With the notation from above it holds that the linear square corre-
lation of α f→ β can be calculated as

C(α→ β) =

2−n+2 if β = 1 and α ∈ U⊥β
2−θ(β)) if β 6= 1 and α ∈ U⊥β
0 else.

Proof. Define Lβ(x) := β � S1(x) + S−1(β � x). Clearly Lβ is linear. Also
Uβ = kerLβ(x). Let us determine the rank of this mapping. Define the matrices
Mβ·, MS1 , and MS−1 as

Mβ· =

β0 0
... β1

...
...

. . .
...

0 βn−1

MS1 =

(
01,n−1 I1,1
In−1,n−1 0n−1,1

)

MS−1 =
(

0n−1,1 In−1,n−1
I1,1 01,n−1

) (9)

We can then write Lβ in matrix form as

0 β1 0 . . . 0 β0
β1 0 β2 0 . . . 0

0 β2 0 β3
. . .

...
...

. 0

0 0 0
. . . 0 βn−1

β0 0 . . . 0 βn−1 0

(10)

Clearly, if β is all 1s, the rank of the matrix is n−2 as n is even.4 Let us therefore
now assume that β is not all 1s. When we look at a block of 1s in β e.g., βi−1 = 0,
βi, βi+1, . . . , βi+l−1 = 1, and βl = 0. Then clearly the l rows i, i+ 1, . . . , i+ l − 1
are linearly independent when l is even. When l is odd though, the sum of rows
i, i + 2, i + 4, up to row i + l − 3 will equal row i + l − 1. In that case there
are thus only l − 1 linearly independent rows. As the blocks of 1s in β generate
independent blocks of rows, we can summarise that the rank of the matrix is
exactly θ(β). ut

Analogously to the differential probabilities, the linear probabilities in the
general case can be derived from this. It is likewise straightforward to derive how
to determine whether α ∈ U⊥β . As an explicit formulation of this is rather tedious,
we instead refer to the implementation in Python given in the Appendix B where
both is achieved in the case where gcd(a− b, n) = 1 and n is even.

For a more intuitive approach and some elaboration on the linear probabilities,
we refer to the ePrint version of this paper.

5 Finding Optimal Differential and Linear Characteristics

While there are various methods for finding good characteristics, determining
optimal differential or linear characteristics remains a hard problem in general.
The formulas derived for both differential and linear probabilities enable us to
apply an algebraic approach to finding the best characteristics. A similar technique
has been applied to the ARX cipher Salsa20 [14] and the CAESAR candidate
4 The rank is n− 1 when n is odd.

NORX [4]. For finding the optimal characteristics for Simon we implemented an
open source tool [13] based on the SAT/SMT solvers CryptoMiniSat [15] and
STP [11].

In the next section we will show how Simon can be modelled to find both
the best differential and linear characteristics in this framework and how this
can be used to solve cryptanalytic problems.

5.1 Model for Differential Cryptanalysis of SIMON

First we define the variables used in the model of Simon. We use two n-bit
variables xi, yi to represent the XOR-difference in the left and right halves of the
state for each round and an additional variable zi to store the XOR-difference of
the output of the AND operation.

For representing the log2 probability of the characteristic we introduce an
additional variable wi for each round. The sum over all probabilities wi then
gives the probability of the corresponding differential characteristic. The values
wi are computed according to theorem 3 as

wi = wt(varibits + doublebits) (11)

where wt(x) is the Hamming weight of x and

varibits = Sa(xi) ∨ Sb(xi)
doublebits = Sb(xi)� Sa(xi) ∧ S2a−b(xi)

Therefore, for one round of Simon we get the following set of constraints:

yi+1 = xi

0 = (zi � varibits)
0 = (zi + Sa−b(zi))� doublebits

xi+1 = yi + zi + Sc(xi)
wi = wt(varibits + doublebits)

(12)

A model for linear characteristics, though slightly more complex, can be
implemented in a similar way. A description of this model can be found in the
implementation of our framework. Despite the increase in complexity, we could
not observe any significant impact on the solving time for the linear model.

5.2 Finding Optimal Characteristics

We can now use the previous model for Simon to search for optimal differen-
tial characteristics. This is done by formulating the problem of finding a valid
characteristic, with respect to our constraints, for a given probability w. This
is important to limit the search space and makes sense as we are usually more
interested in differential characteristics with a high probability as they are more

promising to lead to attacks with a lower complexity. Therefore, we start with
a high probability and check if such a characteristic exists. If not we lower the
probability.

The procedure can be described in the following way:

– For each round of the cipher add the corresponding constraints as defined
in (12). This system of constraints then exactly describes the form of a valid
characteristic for the given parameters.

– Add a condition which accumulates the probabilities of each round as defined
in (11) and check if it is equal to our target probability w.

– Query if there exists an assignment of variables which is satisfiable under the
constraints.

– Decrement the probability w and repeat the procedure.

One of the main advantages compared to other approaches is that we can
prove an upper bound on the probability of characteristics for a given cipher and
number of rounds. If the solvers determines the set of conditions unsatisfiable,
we know that no characteristic with the specified probability exists. We used this
approach to determine the characteristics with optimal probability for different
variants of Simon. The results are given in Table 1.

Table 1. Overview of the optimal differential (on top) and linear characteristics for
different variants of Simon. The probabilities are given as log2(p), for linear characteristic
the squared correlation is used.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −34 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −46 −50
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Linear
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −34 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −46 −50
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Upper Bound for the Characteristics. During our experiments we observed
that it seems to be an easy problem for the SMT/SAT solver to prove the
absence of differential characteristics above wmax. This can be used to get a lower
bound on the probability of characteristics contributing to the differential. The
procedure is similar to finding the optimal characteristics.

– Start with a very low initial probability wi.
– Add the same system of constraints which were used for finding the charac-

teristic.

– Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.
– Query if there is a solution for this weight.
– Increase the probability wi and repeat the procedure until a solution is found.

5.3 Computing the Probability of a Differential

Given a differential characteristic it is of interest to determine the probability of
the associated differential Pr(∆in

fr−→ ∆out) as it might potentially have a much
higher probability then the single characteristic. It is often assumed that the
probability of the best characteristic can be used to approximate the probability of
the best differential. However, this assumption only gives an inaccurate estimate
in the case of Simon.

Similarly to the previous approach for finding the characteristic, we can
formalise the problem of finding the probability of a given differential in the
following way:

– Add the same system of constraints which were used for finding the charac-
teristic.

– Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.
– Use a SAT solver to find all solutions si for the probability w.
– Decrement the probability w and repeat the procedure.

The probability of the differential is then given by

Pr(∆in
fr−→ ∆out) =

wmax∑
i=wmin

si · 2−i (13)

where si is the number of characteristics with a probability of 2−i.
We used this approach to compute better estimates for the probability of

various differentials (see Table 2). In the case of Simon32 we were able to find
all characteristics contributing to the differentials for 13 and 14 rounds. The
distribution of the characteristics and accumulated probability of the differential
is given in Figure 2. It is interesting to see that the distribution of w in the range
[55, 89] is close to uniform and therefore the probability of the corresponding
differential improves only negligible and converges quickly towards the measured
probability5.

The performance of the whole process is very competitive compared to
dedicated approaches. Enumerating all characteristics up to probability 2−46 for
the 13-round Simon32 differential takes around 90 seconds on a single CPU core
and already gives a better estimate compared to the results in [6]. A complete
enumeration of all characteristics for 13-round Simon32 took close to one core
month using CryptoMiniSat4 [15]. The computational effort for other variants
of Simon is comparable given the same number of rounds. However, for these
5 We encrypted all 232 possible texts under 100 random keys to obtain the estimate of
the probability for 13-round Simon32.

variants we can use differentials with a lower probability covering more rounds
due to the increased block size. In this case the running time increases due to
the larger interval [wmin, wmax] and higher number of rounds.

For Simon48 and Simon64 we are able to improve the estimate given in [16].
Additionally we found differentials which can cover 17 rounds for Simon48 and
22 rounds for Simon64 which might have potential to improve previous attacks.
Our results are also closer to the experimentally obtained estimates given in [10]
but give a slightly lower probability. This can be due to the limited number of
characteristics we use for the larger Simon variants or the different assumptions
on the independence of rounds.

Our results are limited by the available computing power and in general
it seems to be difficult to count all characteristics for weights in [wmin, wmax],
especially for the larger variants of Simon. However the whole process is embar-
rassingly parallel, as one can split up the computation for each probability wi.
Furthermore, the improvement that one gets decreases quickly. For all differentials
we observed that the distribution of differential characteristics becomes flat after
a certain point.

20

25

210

215

220

2−40 2−50 2−60 2−70 2−80 2−90 2−37

2−36

2−35

2−34

2−33

2−32

2−31

2−30

2−29

2−28

#
C
ha

ra
ct
er
is
ti
cs

D
iff
er
en
ti
al

P
ro
ba

bi
lit
y

Probability of one characteristic

#Characteristics
Probability

Measured DP

Fig. 2. Distribution of the number of characteristics for the differential (0, 40) →
(4000, 0) for 13-round Simon32 and the accumulated probability. A total of ≈ 225.21

characteristics contribute to the probability.

Table 2. Overview of the differentials and the range [wmin, wmax] of the log2 probabilities
of the characteristics contributing to the differential. For computing the lower bound
log2(p) of the probability of the differentials, we used all characteristics with probabilities
in the range from wmin up to the values in brackets in the wmax column.

Cipher Rounds ∆in ∆out wmin wmax log2(p)

Simon32 13 (0, 40) (4000, 0) 36 91 (91) −28.79
Simon32 14 (0, 8) (800, 0) 38 120 (120) −30.81
Simon48 15 (20, 800088) (800208, 2) 46 219 (79) −41.02
Simon48 16 (800000, 220082) (800000, 220000) 50 256 (68) −44.33
Simon48 17 (80, 222) (222, 80) 52 269 (85) −46.32
Simon64 21 (4000000, 11000000) (11000000, 4000000) 68 453 (89) −57.57
Simon64 22 (440, 1880) (440, 100) 72 502 (106) −61.32

6 Analysis of the Parameter Choices

The designers of Simon so far gave no justification for their choice of the rotation
constants. Here we evaluate the space of rotation parameters with regard to
different metrics for the quality of the parameters. Our results are certainly not
a definite answer but are rather intended as a starting point to evaluating the
design space and reverse engineering the design choices. We consider all possible
sets of rotation constants (a, b, c)6 and checked them for diffusion properties and
the optimal differential and linear characteristics.

6.1 Diffusion

As a very simple measure to estimate the quality of the rotation constants,
we measure the number of rounds that are needed to reach full diffusion. Full
diffusion is reached when every state bit principally depends on all input bits.
Compared to computing linear and differential properties it is an easy task to
determine the dependency.

In Table 3 we give a comparison to how well the standard Simon rotation
parameters fare within the distribution of all possible parameter sets. The exact
distributions for all Simon variants can be found in the appendix in Table 8.

6.2 Differential and Linear

As a second criteria for our parameters, we computed for all a > b and gcd(a−
b, n) = 1 the optimal differential and linear characteristics for 10 rounds of
Simon32, Simon48 and Simon64. A list of the parameters which are optimal for
all three variants of Simon can be found in Appendix D.

It is important here to note that there are also many parameter sets, including
the standard choice, for which the best 10-round characteristics of Simon32 have
6 Without lack of generality, we assume though that a ≥ b.

Table 3. The number of rounds after which full diffusion is reached for the standard
Simon parameters in comparison to the whole possible set of parameters.

Block size 32 48 64 96 128

Standard parameters 7 8 9 11 13
Median 8 10 11 13 14
First quartile 7 9 9 11 12
Best possible 6 7 8 9 10
Rank 2nd 2nd 2nd 3rd 4th

a probability of 2−25 compared to the optimum of 2−26. However, this difference
by a factor of 2 does not seem to occur for more than 10 rounds and also not
any larger variants of Simon.

6.3 Interesting Alternative Parameter Sets

As one result of our investigation we chose three exemplary sets of parameters that
surpass the standard parameters with regards to some metrics. Those variants
are Simon[12, 5, 3], Simon[7, 0, 2] and Simon[1, 0, 2].

Simon[12, 5, 3] has the best diffusion amongst the parameters which have
optimal differential and linear characteristics for 10 rounds. The two other
choices are both restricted by setting b = 0 as this would allow a more efficient
implementation in software. Among those Simon[7, 0, 2] has the best diffusion
and the characteristics behave similar to the standard parameters. Ignoring the
diffusion Simon[1, 0, 2] seems also an interesting choice as it is optimal for the
differential and linear characteristics.

If we look though at the differential corresponding to the best differential
characteristic of Simon[7, 0, 2] and Simon[1, 0, 2], then we can see the number
of characteristics contributing to it is significantly higher than for the standard
parameters (see Appendix Table 6). However, for Simon[12, 5, 3] the differential
shows a surprisingly different behaviour and the probability of the differential
is much closer to the probability of the characteristic. On the other side, the
characteristics seem to be worse for the larger variants as can be seen in Table 7.
Furthermore it might be desirable to have at least one rotation parameter that
corresponds to a byte length, something that the standard parameter set features.

7 Conclusion and Future Work

In this work we analysed the general class of functions underlying the Simon block
cipher. First we rigorously derived efficiently computable and easily implementable
expressions for the exact differential and linear behaviour of Simon-like round
functions.

Building upon this, we used those expressions for a computer aided approach
based on SAT/SMT solvers to find both optimal differential and linear character-
istics for Simon. Furthermore, we were able to find all characteristics contributing

to the probability of a differential for Simon32 and gave better estimates for the
probability for other variants.

Finally, we investigated the space of Simon variants using different rotation
constants with respect to diffusion, and the optimal differential and linear char-
acteristics. Interestingly, the default parameters seem to be not always optimal.

This work opens up for further investigations. In particular, the choice and
justifications of the NSA parameters for Simon remains unclear. Besides our first
progress concerning the round function, the design of the key schedule remains
largely unclear and further investigation is needed here.

Acknowledgements First of all, we wish to thank Tomer Ashur. Both the
method to check whether a linear input mask gives a correlated or uncorrelated
linear 1-round characteristic for a given output mask as well as the first version
of the SMT/SAT model for linear characteristics in Simon were an outcome of
our discussions. We furthermore wish to thank the reviewers for comments that
helped to improve the paper.

References
1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced

SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) Fast Software Encryption,
FSE 2014. Lecture Notes in Computer Science, vol. 8540, pp. 525–545. Springer
(2015)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block
ciphers - focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology - CRYPTO 2014. Lecture Notes in Computer Science, vol.
8616, pp. 57–76. Springer (2014)

3. Alizadeh, J., AlKhzaimi, H., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with
connections. In: Saxena, N., Sadeghi, A. (eds.) Radio Frequency Identification:
Security and Privacy Issues, RFIDSec 2014. Lecture Notes in Computer Science,
vol. 8651, pp. 90–107. Springer (2014)

4. Aumasson, J., Jovanovic, P., Neves, S.: Analysis of NORX: investigating differen-
tial and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) Progress in
Cryptology - LATINCRYPT 2014. Lecture Notes in Computer Science, vol. 8895,
pp. 306–324. Springer (2015)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/

6. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) Fast Software Encryption, FSE
2014. Lecture Notes in Computer Science, vol. 8540, pp. 546–570. Springer (2015)

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S.,
Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing applica-
tions - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in Cryptology
- ASIACRYPT 2012. Lecture Notes in Computer Science, vol. 7658, pp. 208–225.
Springer (2012)

8. Carlet, C.: Vectorial boolean functions for cryptography. In: Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, Encyclopedia of
Mathematics And Its Applications, vol. 134, pp. 398–469. Cambridge Univ. Press
(2010)

9. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: The NOEKEON block cipher.
Submission to the NESSIE project (2000)

10. Dinur, I., Dunkelman, O., Gutman, M., Shamir, A.: Improved top-down techniques
in differential cryptanalysis. Cryptology ePrint Archive, Report 2015/268 (2015),
http://eprint.iacr.org/

11. Ganesh, V., Hansen, T., Soos, M., Liew, D., Govostes, R.: STP constraint solver
(2014), https://github.com/stp/stp

12. Grosso, V., Leurent, G., Standaert, F., Varici, K.: LS-designs: Bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
Fast Software Encryption, FSE 2014. Lecture Notes in Computer Science, vol. 8540,
pp. 18–37. Springer (2015)

13. Kölbl, S.: CryptoSMT: An easy to use tool for cryptanalysis of symmetric primitives
(2015), https://github.com/kste/cryptosmt

14. Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for
ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013),
http://eprint.iacr.org/

15. Soos, M.: CryptoMiniSat SAT solver (2014), https://github.com/msoos/
cryptominisat/

16. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers
and automatic enumeration of (related-key) differential and linear characteristics
with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014),
http://eprint.iacr.org/

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.:
Constructing mixed-integer programming models whose feasible region is exactly
the set of all valid differential characteristics of SIMON. Cryptology ePrint Archive,
Report 2015/122 (2015), http://eprint.iacr.org/

18. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014. Lecture Notes in
Computer Science, vol. 8873, pp. 158–178. Springer (2014)

19. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of
reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D. (eds.)
Progress in Cryptology - INDOCRYPT 2014. Lecture Notes in Computer Science,
vol. 8885, pp. 143–160. Springer (2014)

A Short tutorial for calculating differential probabilities
and square correlations in SIMON-like round functions

The idea of this section is to complement the rigorous proofs with a more intuitive
approach to calculating the differential probabilities and square correlation of
one round of Simon. This should also allow us to better understand the Python

code given later for calculating these values. We restrict ourselves to a simplified
version of the Simon round function:

f : Fn2 → Fn2 (14)
f(m) = S1(m)�m . (15)

Writing this equation bitwise where mi denotes the ith bit of m we obtain:

fi(m) = mi−1 �mi . (16)

When using a bit subscript, we will always implicitly assume that the subscript is
calculated modulo n, the number of bits. Thus m−1 and mn−1 will for example
refer to the same bit.

A.1 Differential probabilities

Suppose now we are given a message m = (mn−1, . . . ,m1,m0) and an input
difference d = (dn−1, . . . , d1, d0). Then the resulting difference D for the function
f is calculated as D(m, d) = f(m)⊕ f(m⊕ d). This can be written bitwise as:

Di(m, d) = (mi−1 �mi)⊕ ((mi−1 ⊕ di−1)� (mi ⊕ di)) . (17)

By differentiating between the four possible different cases for di and di−1, we
obtain the following:

Di(m, d) =

0, if di = 0 and di−1 = 0
mi, if di = 0 and di−1 = 1
mi−1, if di = 1 and di−1 = 0
mi ⊕mi−1, if di = 1 and di−1 = 1 .

(18)

In the last case, Di is 1 exactly when mi = mi−1 and is 0 when mi 6= mi−1.
Let us now look at a first example. Let n = 6, and d = 001010. We then

calculate D(m, d) using the above bitwise definition of D:

i 5 4 3 2 1 0
d 0 0 1 0 1 0
S1(d) 0 1 0 1 0 0
D(m, d) 0 m4 m2 m2 m0 0

. (19)

We can see that the resulting difference depends only on m4, m2 and m0. Thus
by adapting these bits appropriately we can generate the following resulting
differences:

000000, 000010, 001100, 001110, 010000, 010010, 011100, 011110.

All these differences then have the same probability of 8/64 = 1/8. Note that
the reuse of a message bit, m2 in this case, is due to a subsequence 101 in the
difference.

Let us take a look at another example. Let again n = 6 and now d = 011010.
Then we can again calculate D(m, d) as

i 5 4 3 2 1 0
d 0 1 1 1 1 0
S1(d) 1 1 1 1 0 0
D(m, d) m5 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m0 0

. (20)

We can see here that consecutive 1s in the input difference will cause the respective
output difference bit to depend on two message bits. Nevertheless are all five
non-zero output difference bits independent of each other. Thus 25 different
output differences are possible, each one with probability 1/32.

With the observations made above, we can now devise a rule that allows us
to determine the probability of a given pair (α, β) of an input difference α and
an output difference β. First we calculate the set of varibits which is the bits
in which the output difference can be non-zero. So output bit βi is in varibits
if and only if αi or αi−1 is non-zero:

varibits = α | S1(α) (21)

where | denotes the bitwise or.
Next we have to calculate which of these output difference bits have to be the

same because of patterns 101 in the input difference. We do this by calculating
the set doublebits which is the output difference bits that always have to be
the same as the difference bit one position to the right. Thus βi is in doublebits
if and only if αi is 1, αi−1 is 0, and αi−2 is 1.

doublebits = α� S1(α)� S2(α) (22)

To check whether input difference α can map to output difference β with
non-zero probability, we only need to check whether all non-zero bits of β lie
in varibits and that all bits of β that are in doublebits are the same as the
bits to their right. The probability of the transition is then determine by the
number of output difference bits that can be chosen freely, i.e. the number of bits
in varibits minus the number of bits in doublebits.

Before we write this procedure down, we have to take a look at one special
case, namely when all input difference bits are set, e.g. n = 6 and d = 111111.
Then we can again calculate D(m, d) as

i 5 4 3 2 1 0
d 1 1 1 1 1 1
S1(d) 1 1 1 1 1 1
D(m, d) m5 ⊕m4 m4 ⊕m3 m3 ⊕m2 m2 ⊕m1 m1 ⊕m0 m0 ⊕m4

. (23)

Although all bits of the output are influenced and all bits of the input take equal
influence, there are not 64 possible output differences since by switching all bits
of m the output difference does not change.

So which output differences are possible then? By fixing an output difference,
we get a sequence of equations of the kind mi = mi+1 or mi 6= mi+1. This creates
a closed chain of equations that have to be coherent to be satisfiable. As a 0 in
the output difference creates an inequality and a 1 creates an equality, in the end
it boils down to the condition that the number of 0s in the output difference has
to be even when the input difference only consists of 1s.

Let us now summarise all of this in a method to calculate the probability
that a given input difference α is mapped to a given output difference β:

1. Check if α is the difference with all bits set to 1. If that is the case, calculate
the number of 0s in β. If this number is even, return probability 2−n+1,
otherwise return probability 0. If α is not all 1s, go to next step.

2. Calculate varibits as varibits = α | S1(α). Check if β has any bits set to
1 which are not in varibits, i.e. check if varibits� β 6= 0. Should this be
the case, return probability 0. Otherwise continue with next step.

3. Calculate doublebits as doublebits = α� S1(α)� S2(α). Check whether
there are any bits of β in doublebits that are not equal to their right
neighbour, i.e. check

(
β + S1(β)

)
�doublebits 6= 0. Should this be the case,

return probability 0. Otherwise continue with next step.
4. Return probability 2−wt(varibits+doublebits).

This method allows us to determine differential probabilities of the function
f(x) = S1(x)� x. We only have to apply some affine transformation to convert
this to a method for calculating the probability of the Simon round function. A
Python implementation of the more general method can be found in Section B.

A.2 Square correlations

Let us now look at how to calculate square correlations for f(x) = S1(x)� x.
First we look at the case where the input mask α is all 0s. Let n = 6 and let

the output mask β be 010110:

α 0 0 0 0 0 0
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 1 0

. (24)

The resulting expression is then

m4m3 +m2m1 +m1m0. (25)

Let us look at the first term. It is zero in 3 out of 4 cases. It thus has a correlation
of 1

2 and hence a square correlation of 1
4 .

Let us look at the next two terms m2m1 and m1m0. First we note that
they are not independent as they share the variable m1. So we cannot calculate

the square correlation of the sum of these terms as the product of the square
correlations of the single terms. But we can rewrite the sum of these terms as

m2m1 +m1m0 = m1(m2 +m0). (26)

Now (m2 + m0) behaves like a single one bit variable. Therefore the square
correlation of m1(m2 +m0) is 1

4 as well. As m4m3 and m1(m2 +m0) do not share
any variables, the square correlation of the whole expressionm4m3+m2m1+m1m0
is then 1

4 ·
1
4 = 1

16 . It is easy to see that different “blocks” of 1s in β that are
separated by at least one 0, will generate independent terms. We thus only need
to look at the square correlations of the terms generated from these blocks and
multiply these to get the final result.

Let us thus look at a longer block of 1s with β = 011111:

α 0 0 0 0 0 0
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 1 1 1 0

. (27)

The resulting expression is

m5m4 +m4m3 +m3m2 +m2m1 +m1m0. (28)

By combining the first and the second as well as the third and the fourth term,
we get

m4(m5 +m3) +m2(m3 +m1) +m0m1. (29)
As (m5 + m3), (m3 + m1), and m1 are independent of each other, the three
terms m4(m5 +m3), m2(m3 +m1), and m0m1 are independent and the square
correlation of the whole expression is thus

(1
4
)3 = 2−6.

At this point we already dare to formulate a rule. The square correlation
of the term generated by m consecutive blocks of 1s is 2−2dm2 e. As every pair
of consecutive single terms can be combined to create one independent term of
square correlation 2−2, the total square correlation just depends on the number
of terms left after such pairing. And this number is

⌈
m
2
⌉
.

Let us now consider a non-zero input mask α. Let α = 010010 and let
β = 010100:

α 0 1 0 1 1 1
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 0 1 0 1 0 0

. (30)

The resulting expression is then

m4m3 +m4 +m2m1 +m2 +m1 +m0. (31)

We see that we can combine the first two terms to get a term of square correlation
2−2 again: m4m3 +m4 = m4(m3 + 1). Note that if the second term had been m3

instead, it would have worked too. For the next three terms we can do the same:
m2m1 + m2 + m1 = (m2 + 1)(m1 + 1) + 1. Note that the bias of this term is
now flipped; the square correlation is nonetheless also 2−2. As the first two terms
are independent of the next three terms, the square correlation of the combined
first five terms is 2−4. But when looking at the last term m0, we see that it is
independent of all other terms and unbiased. Thus the square correlation of the
complete expression is 0.

As a matter of fact, it is easy to see that when for any i the respective bit αi
of the input mask is 1 but both βi and βi+1 are 0, the resulting expression will
always be unbiased. Thus we can say that every non-zero bit in the input mask
belonging to some block of 1s in the output mask is a necessary condition for the
whole expression to be unbiased. Note that every bit in the input mask can at
most be associated with one block of 1s in the output mask.

Thus we can evaluate the square correlation of f for an input mask α and
an output mask β like this: First we check whether every non-zero bit in the
input mask is associated to a block of 1s in the output mask. Is this not the
case, we already know that the square correlation is zero. Otherwise we continue
to partition the output mask and the input mask into blocks of 1s and their
associated input mask bits. For each of these blocks we determine the square
correlation of the resulting expression and finally multiply these together to get
the total square correlation.

But how do we evaluate a block of 1s with the associated input mask bits in
general? In the last example, we saw that for a block of a single 1 in the output
mask, the two associated bits of the input mask can take any value; the square
correlation remains 2−2.

How about in the case of a block of two 1s? Let us look at the case of
α = 111001 and let β = 110110:

α 1 1 1 0 0 1
m m5 m4 m3 m2 m1 m0
S1(m) m4 m3 m2 m1 m0 m5

β 1 1 0 1 1 0

. (32)

The resulting expression is

m5m4 +m4m3 +m5 +m4 +m3 +m2m1 +m1m0 +m0. (33)

Let us first look at the first block of 1s in the output mask β, i.e. at the expression
m5m4 +m4m3 +m5 +m4 +m3. Combining the first two terms, we get

m4(m5 +m3) +m5 +m4 +m3. (34)

We can now combine the first term with m4 to get

m4(m5 +m3 + 1) +m5 +m3. (35)

Finally we can also incorporate m5 and m3 to get

(m4 + 1)(m5 +m3 + 1) + 1. (36)

The expression thus has a square correlation of 2−2.
Let us look at the expression generated by the second block of 1s in the

output mask:
m2m1 +m1m0 +m0. (37)

Combining the first two terms, we get

m1(m2 +m0) +m0. (38)

But now we see that the term m0 is independent of the first term. Thus we are
left with a square correlation of 0. Note that the square correlation would also
be 0 if the last term were m2 but not if the last term were m1 in which case the
square correlation would be 2−2.

As a matter of fact, the rule to determine the square correlation of an
expression generated by a block of two 1s in the output mask and the associated
bits in the input mask is straightforward. There are three associated input mask
bits. If and only if both or none of the two outer bits (m2 and m0 in the last
example) are set to 1, is the expression biased and the square correlation is 2−2.

In fact, for a block of an even number of 1s in the output mask, any combi-
nation of associated input bits, will lead to a biased expression with the same
square correlation. For a block of an odd number of 1s in the output mask, we
need to check the input mask though. There is an odd number of associated bits
to this block in the input mask. Let us refer to the first bit and then every second
bit as the odd bits, and to the second bit and then every second bit as the even
bits (from which direction we count does not matter). The even bits do not have
an influence on the square correlation. But the parity of the odd bits determines
whether the expression for this block will be unbiased or not. If and only if the
parity is even, the expression is biased.

We can summarise a method to calculate the square correlation for a given
input mask α and a given output mask β that is not all 1s as follows:

1. Partition the 1s in the output mask into consecutive blocks of 1s. The total
square correlation is now the product of the square correlations for each
block.

2. For each block calculate the square correlation:
(a) If the block length is odd, this block is always biased and the square

correlation is solely determined by its length.
(b) If the block length is even, we need to check the input mask. There is

an odd number of bits in the input mask that are associated with this
output block. Calculate the XOR of every second bit of these associated
bits starting with the first one (such that both outer bits are considered).
If this XOR sum is 1, the block is unbiased and thus the whole expression
is unbiased. If the XOR sum is 0, the square correlation for this block is
determined by its length.

For an implementation of the method to calculate the square correlation in
Python, see Section B.

B Python code to calculate differential probabilities and
square correlations in SIMON-like round functions

In the following, code for calculating the differential probabilities and square
correlations of Simon-like round functions (fa,b,c(x) = Sa(x)�Sb(x)+Sc(x)) are
given in Python. Restrictions are that the constants need to fulfil gcd(a−b, n) = 1.
We assume that the functions Sd(x) and wt(x) have been implemented as well
as a function parity that calculates the parity wt(x) mod 2 of a bit vector x.
a, b, and c have to be defined in the program as well.

The differential probability of α f−→ β can then be calculated with the following
function:
def pdiff (alpha ,beta):

Use gamma instead of beta to get rid of linear part
gamma = beta ^ S(alpha ,c)
Take care of the case where alpha is all 1s
if alpha == 2**n -1:

if hw (~ gamma)%2 == 0:
return 2**(n -1)

else:
return 0

Determine bits that can take a nonzero difference
varibits = S(alpha , a) | S(alpha ,b)
Check whether gamma conforms with varibits
if gamma & ~ varibits != 0:

return 0
Determine the bits that are duplicates
doublebits = S(alpha ,2*a-b) & ~S(alpha ,a) & S(alpha ,b)
Check whether the duplicate bits are the same as there counterpart
if (gamma ^ S(gamma ,a-b)) & doublebits != 0:

return 0
return 2**(- hw(varibits ^ doublebits))

The squared correlation of α f→ β can be calculated with the following function.
Here we assume n to be even, which is relevant for the case where β is all 1s.
def plin (alpha ,beta):

Get rid of linear part of round function
alpha ^= S(beta ,-c)
If the input masks uses bits that have corresponding bits
in the output mask , the correlation is 0.
if ((S(beta ,-a) | S(beta ,-b)) ^ alpha) & alpha != 0:

return 0
Take care of the case where beta is all 1s
if beta == 2**n -1:

t, v = alpha , 0
while t != 0:

v ^= t & 3
t >>= 2

if v != 0:
return 0

else:
return 2**(-n+2)

Set in the abits mask the first and then every second bit of each
block of 1s in the output mask beta. Each corresponds to one
independent multiplication term , and thus adds a factor of 2^(-2)
to the square correlation .
Example : beta = 0111101110110 -> abits = 0101001010100
tmp = beta
abits = beta

while tmp != 0:
tmp = beta & S(tmp , -(a-b))
abits ^= tmp

The sbits correspond to bits one to the right of each block of an
even number of 1s in the output mask.
Example : beta = 0111101110110 -> sbits = 0000010000001
sbits = S(beta , -(a-b)) & ~beta & ~S(abits , -(a-b))
Adopt sbits to correspond to the respective bits in the input
mask
sbits = S(sbits , -b)
The pbits are used to check whether the input mask removes the
bias from one of the output mask blocks . It checks the parity of
the sum of every second inputmask bit for each block that
corresponds to a block of an even number of 1s in the output mask.
pbits = 0
while sbits != 0:

pbits ^= sbits & alpha
sbits = S(sbits , (a-b)) & S(beta ,-b)
sbits = S(sbits , (a-b))
pbits = S(pbits , 2*(a-b))

If the parity is uneven for any one of the blocks , there is no bias.
if pbits != 0:

return 0
return 2**(-2* hw(abits))

C Additional Differential Bounds

In Table 4 resp. 5 we give the distributions for the characteristics contributing to
a differential up to the bound we computed them.

D Optimal parameters for differential characteristics

The following sets of rotation constants (a, b, c) are optimal for 10 rounds regarding
differential characteristics for Simon32, Simon48, and Simon64

(1, 0, 2), (1, 0, 3), (2, 1, 3), (4, 3, 5), (5, 0, 10), (5, 0, 15), (5, 4, 3), (7, 0, 14), (7, 6, 5)
(8, 1, 3), (8, 3, 14), (8, 7, 5), (10, 5, 15), (11, 6, 1), (12, 1, 7), (12, 5, 3), (12, 7, 1)
(13, 0, 10), (13, 0, 7), (13, 8, 2)

Similar to the experiments for the default parameters, we used our framework
to evaluate the quality of various rotation constants. In Table 7 we give an
overview of the best differential characteristics for variants of Simon using a
different set of rotation constants. Table 6 shows that a carefully chosen set of
constants can have a very strong effect on the differentials.

Table 4. Number of differential characteristics for the differential (80, 222) f17
−−→ (222, 80)

for Simon48.

log2(p) #Characteristics log2(p) #Characteristics

−52 1 −69 20890
−53 6 −70 38837
−54 15 −71 72822
−55 46 −72 133410
−56 100 −73 240790
−57 208 −74 353176
−58 379 −75 279833
−59 685 −76 235071
−60 1067 −77 259029
−61 1607 −78 225836
−62 2255 −79 256135
−63 2839 −80 252193
−64 3476 −81 252654
−65 4088 −82 198784
−66 5032 −83 229843
−67 7063 −84 208757
−68 11481 −85 253112

Table 5. Number of differential characteristics for the differential
(4000000, 11000000) f21

−−→ (11000000, 4000000) for Simon64.

log2(p) #Characteristics log2(p) #Characteristics

−68 2 −83 185709
−69 14 −84 173860
−70 70 −85 171902
−71 276 −86 171302
−72 951 −87 168190
−73 2880 −88 164694
−74 8101 −89 163141
−75 21062 −90 161089
−76 52255 −91 159354
−77 123206 −92 155804
−78 238297 −93 150954
−79 239305 −94 145061
−80 171895 −95 141914
−81 170187 −96 138480
−82 165671 −97 132931

Table 6. Distribution of the characteristics for a 13-round differential for Simon32
using different set of constants.

log2(p) [8, 1, 2] [12, 5, 3] [7, 0, 2] [1, 0, 2]

−36 1 1 4 1
−37 4 2 16 6
−38 15 3 56 27
−39 46 2 144 88
−40 124 1 336 283
−41 288 0 744 822
−42 673 0 1644 2297
−43 1426 0 3420 6006
−44 2973 0 6933 14954
−45 5962 0 13270 34524
−46 11661 1 24436 73972
−47 21916 3 43784 150272
−48 40226 14 76261 292118
−49 72246 32 130068 /
−50 126574 54 218832 /
−51 218516 83 362284 /

Table 7. Overview of the optimal differential characteristics for Simon variants.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential (12, 5, 3)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −28 −34 −36 −42 −44 −47
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −37 −43 −47 /

Differential (1, 0, 2)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 −54

Differential (7, 0, 2)
Simon32 −2 −4 −6 −8 −12 −14 −18 −20 −25 −30 −35 −36 −38 −40 −42
Simon48 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −35 −38 −44 −48 −53
Simon64 −2 −4 −6 −8 −12 −14 −18 −20 −26 −30 −36 −38 −44 −48 /

Table 8. For each Simon variant and each possible number of rounds, the number of
possible combinations of rotation constants (a, b, c) with a ≥ b is given that reaches full
diffusion.

Simon32
Rounds 6 7 8 9 10 11 17 ∞

#(a, b, c) 48 600 528 88 144 128 64 576

Simon48
Rounds 7 8 9 10 11 13 14 15 25 ∞

#(a, b, c) 48 1392 1680 792 528 344 144 128 64 2080

Simon64
Rounds 8 9 10 11 12 13 15 17 18 19 33 ∞

#(a, b, c) 384 4800 2112 2256 1152 608 512 48 288 256 128 4352

Simon96

Rounds 9 10 11 12 13 14 15 16 17

#(a, b, c) 336 4272 13920 7104 5568 3456 912 1152 800
19 21 25 26 27 49 ∞

1568 640 48 288 256 128 16000

Simon128

Rounds 10 11 12 13 14 15 16 17 18 19 20

#(a, b, c) 768 10944 26112 25536 9024 6912 7488 2496 192 1824 2304

21 23 24 25 33 34 35 65 ∞

1792 1024 960 512 96 576 512 256 33792

