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Abstract. Often, in privacy-sensitive cryptographic protocols, a party commits to a secret message m and later needs to prove
thatm belongs to a language L or thatm does not belong to L (but does not want to reveal any further information). We present
a method to prove in a non-interactive way that a committed value does not belong to a given language L. Our construction is
generic and relies on the corresponding proof of membership to L. We present an efficient realization of our proof system by
combining smooth projective hash functions and Groth-Sahai proof system.
In 2009, Kiayias and Zhou introduced zero-knowledge proofs with witness elimination which enable to prove that a committed
messagem belongs to a setL in such a way that the verifier accepts the interaction only ifm does not belong to a set determined
by a public relation Q and some private input m′ of the verifier. We show that the protocol they proposed is flawed and that
a dishonest prover can actually make a verifier accept a proof for any message m ∈ L even if (m,m′) ∈ Q. Using our
non-interactive proof of non-membership of committed values, we are able to fix their protocol and improve its efficiency.
Our approach finds also efficient applications in other settings, e.g. in anonymous credential systems and privacy-preserving
authenticated identification and key exchange protocols.
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1 Introduction

In cryptography, when designing privacy-sensitive applications, the use of commitments and corresponding zero-
knowledge proofs is often indispensable. They allow a prover to convince a verifier that a digitally committed value
is a member of a given language (without revealing any further information beyond this membership). An important
instance of this problem consists in showing that the committed value lies in a given finite set (e.g. in e-auctions
or e-voting protocols, a bidder or voter has to prove that his secret bid or vote is chosen from a list of candidates,
see [CCs08] and references therein). However one usually wants to demonstrate more complex properties about
committed values. For instance in anonymous credentials systems and privacy-preserving authenticated identification
or key exchange protocols, a participant must usually prove the possession of a credential issued by an authority
(without revealing it).

For the latter primitives, it is often necessary to prove combination of simple statements about several credentials
issued by the authority (OR, AND, and NOT connectives) [CG08,ILV11]. For instance, a crucial requirement is that
credentials issued can be later revoked. In principle, revocation lists can be used for anonymous credentials by having
the user to prove in zero-knowledge that his credential is not contained in the list. However, this is usually inefficient
since the computational and communication costs grow with the number of entries in the list. Recently, Bayer and
Groth [BG13] proposed an efficient interactive solution for blacklisting anonymous users (with logarithmic growth)
but their elegant technique does not generalize readily to prove the non-membership to arbitrary languages.

In these scenarios, it is usually desired that the zero-knowledge proofs are non-interactive. For example, in the
e-voting scenario, the membership proof is a part of the vote validity proof that is verified by various parties without
any active participation of the voter. In this paper, we present a generic method to prove in a non-interactive way that
a committed value does not belong to a given language. Our approach finds efficient applications in various settings,
e.g. in zero-knowledge with witness elimination [KZ09] or language authenticated key exchange [BBC+13a].
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1.1 Related work

A commitment scheme allows a user to commit to a messagem by publishing a commitment C, and this commitment
can be opened at a later point in time. It can be seen as the digital analogue of a “sealed envelope”: the security proper-
ties required are called the hiding property (one cannot learn anything about the message m from the commitment C)
and binding property (one cannot open the commitment C to a different message m′ 6= m). Zero-knowledge proofs
of knowledge are two party protocols, which allow a prover to convince a verifier that he knows some secret piece of
information, without the verifier being able to learn anything about the secret value (except for what is revealed by
the claim itself). Often in cryptographic protocols, a party chooses a message m and then commits to it. He keeps the
message secret and publishes the commitment. He later needs to prove that m belongs to a finite set L or that m does
not belong to L, but cannot reveal anything about m.

For a finite set L with no additional structure, the most efficient combination of commitment and zero-knowledge
proof was recently proposed by Bayer and Groth [BG13]. The interactive proof system is quite efficient: it has
O(log(#L)) communication and computational complexity and significantly improves the previous proposals with
O(
√
#L) complexity [Pen11]. It can be made non-interactive in the random oracle model by using the Fiat-Shamir

heuristic1.
There also exist efficient membership proofs for families of very large sets L equipped with an “algebraic struc-

ture” (e.g. the set of valid message/digital signatures pairs for a given public key whose cardinal is exponential in the
security parameter). Most of them also admit efficient non-membership proof systems. However, up to now there is
no generic construction and these zero-knowledge proofs of non-membership of committed values require specific
security analysis.

1.2 Contributions of the paper

The first contribution of the paper is to present an efficient non-interactive technique to prove (in zero-knowledge)
that a committed message does not belong to a set L. The proof is generic and relies on a proof of membership
to L with specific mild properties. In particular, it is independent of the size of L and if there exists an efficient
proof of membership for committed values, one gets readily an efficient proof of non-membership. Instantiated with
a combination of smooth projective hash functions and Groth-Sahai proof system, we obtain very efficient realization
for non-interactive proof of non-membership of committed values.

In 2009, Kiayias and Zhou [KZ09] introduced zero-knowledge proofs with witness elimination. This primitive
enables to prove that a committed message m belongs to a set L (with a witness w) in such a way that the verifier
accepts the interaction only if w does not belong to a set determined by a public relation Q and some private input
w′ of the verifier. The verifier does not learn anything about w (except that m ∈ L and (w,w′) /∈ Q) and the prover
does not learn anything about w′. The primitive can obviously be used to handle revocation lists. It was motivated in
[KZ09] by privacy-preserving identification schemes when a user wishes to authenticate himself to a verifier while
preserving his anonymity and the verifier makes sure the prover does not match the identity of a suspect user that is
tracked by the authorities (without leaking any information about the suspect identity).

We show that the original proposal of zero-knowledge proofs with witness elimination from [KZ09] is flawed and
that a dishonest prover can actually make a verifier accept a proof for any message m ∈ L even if (w,w′) ∈ Q. In
particular, in the suspect tracking scenario, a dishonest prover can identify himself even if he is on the suspect list.
Therefore, their protocol does not achieve the claimed security. However we explain how to apply our proof of non-
membership to fix it. We obtain a proof system that achieves the security goal and is more efficient than the original
(insecure) solution.

Eventually, we briefly present applications of our proof of non-membership to other settings such as anonymous
credentials and privacy-preserving authenticated key exchange.

1 It is worth noting that there exist protocols that are secure in the random oracle models and insecure in the plain model [CGH04].
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2 Preliminaries

In this section we recall various classical definitions, tools used throughout this paper. We use classical definitions and
notations and the familiar reader may skip this section.

2.1 Definitions

Encryption An encryption scheme E is described through four algorithms (Setup,KeyGen,Encrypt,Decrypt):

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
– KeyGen(param) outputs a pair of keys, a (public) encryption key ek and a (private) decryption key dk;
– Encrypt(ek,M ; ρ) outputs a ciphertext C, on the message M , under the encryption key ek, with randomness ρ;
– Decrypt(dk, C) outputs the plaintext M , encrypted in the ciphertext C or ⊥.

Such encryption scheme is required to have the classical properties, Correctness and Indistinguishability under
Chosen Plaintext Attack [GM84]:

– Correctness: For every pair of keys (ek, dk) generated by KeyGen, every messages M , and every random ρ, we
should have Decrypt(dk,Encrypt(ek,M ; ρ)) =M.

– Indistinguishability under Chosen Plaintext At-
tack [GM84]: This notion (IND-CPA), formalized by
the adjacent game, states that an adversary should not be
able to efficiently guess which message has been encrypted
even if he chooses the two original plaintexts.
The advantages are:

AdvindE,A(K) = |Pr[Expind−1
E,A (K) = 1]− Pr[Expind−0

E,A (K) = 1]|

AdvindE (K, t) = max
A≤t

AdvindE,A(K).

Expind−b
E,A (K)

1.param← Setup(1K)
2.(ek, dk)← KeyGen(param)
3.(M0,M1)← A(FIND : ek)
4.c∗ ← Encrypt(ek,Mb)
5.b′ ← A(GUESS : c∗)
6.RETURN b′

Zero-Knowledge Proofs Classical definitions and notations for non-interactive zero-knowledge proof systems are
given in appendix A.

2.2 Classical Hypotheses

A bilinear group is a tuple (p,G1,G2,GT , e, g1, g2) where G1,G2 and GT are cyclic groups of prime order p, gener-
ated respectively by g1,g2 and e(g1, g2) and e : G1 ×G2 → GT is a non-degenerated bilinear form, i.e.:

∀X ∈ G1, ∀Y ∈ G2, ∀λ, µ ∈ Zp : e(Xλ, Y µ) = e(X,Y )λµ

and e(g1, g2) does indeed generate the prime order group GT . In the following we will suppose there exists a polyno-
mial time algorithm which outputs such bilinear groups.

In this paper, we will present concrete instantiation based on standard problems on groups:
Decisional Diffie Hellman (DDH) [Bon98]: The Decisional Diffie-Hellman hypothesis states that in a group (p,G, g)
(written in multiplicative notation), given (gµ, gν , gψ) for unknown µ, ν $← Zp, it is hard to decide whether ψ = µν.
Symmetric External Diffie Hellman (SXDH) [ACHdM05]: this variant used in bilinear groups (p,G1,G2,GT , e, g1, g2),
states that DDH is hard in both G1 and G2.
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2.3 Classical Tools

Smooth Projective Hash Functions [CS02] Smooth projective hash functions (SPHF) were introduced by Cramer and
Shoup [CS02]. A projective hashing family is a family of hash functions that can be evaluated in two ways: using the
(secret) hashing key, one can compute the function on every point in its domain, whereas using the (public) projected
key one can only compute the function on a special subset of its domain. Such a family is deemed smooth if the value
of the hash function on any point outside the special subset is independent of the projected key. The notion of SPHF
has found applications in various contexts in cryptography (e.g. [GL03,Kal05,ACP09,BPV12]).

Smooth Projective Hashing System: A Smooth Projective Hash Function over a language L ⊂ X , onto a set G, is
defined by five algorithms (Setup,HashKG,ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters param of the scheme, and the
description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp, possibly depending on the word W [GL03,ACP09]

thanks to the hashing key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing key hk, and W
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the projection key hp and the witness
w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X , i.e. it is computationally hard to distinguish a
random element in L from a random element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then, for all hashing keys hk and associated
projection keys hp we have Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically indistinguishable:

(L, param,W, hp, v)

param = Setup(1K),
hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W )

 '
(L, param,W, hp, v)

param = Setup(1K),
hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),

v
$← G

 .

– Pseudo-Randomness: If W ∈ L, then without a witness of membership the two previous distributions should
remain computationally indistinguishable.

The article [BBC+13b] introduced a new notation for SPHF: For a language L, we assume there exist a function
Γ and a family of functions Θ, such that u ∈ L, if and only if, Θ(u) is a linear combination of the rows of Γ (u). We
furthermore require that a user, who knows a witness w of the membership u ∈ L, can efficiently compute the linear
combination λ.

With the above notations, the hashing key is a vector hk = α, while the projection key is, for a word u, hp =
γ(u) = Γ (u) � α (where � denotes the Hadamard product, i.e. the entry-wise product). Then, the hash value is:
Hash(hk,u) def= Θ(u)�α = λ� γ(u) def= ProjHash(hp,u, w).

Groth-Sahai Proof System. Groth and Sahai [GS08] proposed non-interactive zero-knowledge proofs of satisfiability
of certain equations over bilinear groups, called pairing product equations. Using as witness group elements (and
scalars) which satisfy the equation, the prover starts with making commitments on them. The commitment key is of
the form u1 = (u1,1, u1,2) ,u2 = (u2,1, u2,2) ∈ G 2

1 and v1 = (v1,1, v1,2) ,v2 = (v2,1, v2,2) ∈ G 2
2 . We write

u =

(
u1

u2

)
=

(
u1,1 u1,2
u2,1 u2,2

)
and v =

(
v1

v2

)
=

(
v1,1 v1,2
v2,1 v2,2

)
.

4



The Setup algorithm initializes the parameters as follows: u1 = (g1, u) with u = gλ1 and u2 = u1
µ with

λ, µ
$← Z∗p, which means that u is a Diffie-Hellman tuple in G1, since u1 = (g1, g

λ
1 ) and u2 = (gµ1 , g

λµ
1 ). The TSetup

algorithm will use instead u2 = u1
µ � (1, g1)

−1: u1 = (g1, g
λ
1 ) and u2 = (gµ1 , g

λµ−1
1 ). And it is the same in G2 for

v. Depending on the definition of u2, v2, this commitment can be either perfectly hiding or perfectly binding. The
two parameter initializations are indistinguishable under the SXDH assumption.

To commit to X ∈ G1, one chooses randomness s1, s2 ∈ Zp and sets C(X) = (1, X) � us11 � us22 = (us11,1 ·
us22,1, X · u

s1
1,2 · u

s2
2,2). Similarly, one can commit to element in G2 and scalars in Zp. The committed group elements

can be extracted if u2 is linearly dependant of u1 by knowing the discrete logarithm x1 between u1,1 and u2,2:
c2/(c

x1
1 ) = X .

To prove satisfiability of an equation (which is the statement of the proof), a Groth-Sahai proof uses these com-
mitments and shows that the committed values satisfy the equation. The proof consists again of group elements and
is verified by a pairing equation derived from the statement.

We refer to [GS08] for details of the Groth-Sahai proof system.

3 Proof of No-Statement

3.1 Generic Technique

In this section, we are going to present a way to prove exclusion statement, following a Commit and Prove approach
([CLOS02]).

The underlying idea is that, we are going to try to build a proof of validity for the statement (which is supposed to
not be verified), and prove that we are failing to do so while being completely honest. Hence once we prove that the
proof is correctly generated, the fact that the verification fails means that the initial statement did not hold (under the
completeness of the proof).

Let us consider a language L. We assume that it is easy to test whether a word w belongs to L (in probabilistic
polynomial time).

Let E = (Setup,KeyGen,Encrypt,Decrypt) be an encryption scheme and let (ek, dk) be a pair of keys output by
KeyGen(param) (where param are global parameters output by Setup(1K)). We assume that the encryption scheme
is without redundancy [PP03]: i.e. all ciphertexts are valid (which means here “reachable”), the encryption function
is not only a probabilistic injection, but also a surjection. A prover possesses a word w not in a language L which
is encrypted in C using some randomness r, C = Encrypt(ek, w; r). The prover wants to prove that C encrypts a
word that does not belong to L in zero-knowledge. To construct our proof system, we are going to follow a generic
approach by combining two different proof systems (in our following instantiations the first proof will be a SPHF,
while the second one will be a Groth Sahai NIZK).

Formally, we assume there is a sound and correct non-interactive (NI) proof system Πa for the language defined
by the binary relationR = {(C, (w, r)), C = Encrypt(ek, w; r)∧w ∈ L} and we will construct a NI zero-knowledge
proof system for the language defined by the binary relation R̂ = {(C, (w, r)), C = Encrypt(ek, w; r) ∧ w /∈ L}.

We assume that Πa satisfies the following properties:

– there exists a randomization algorithm that takes a proof πa output by Πa.Prove(C, (w, r)) and some random-
ness r′, ρ′ and outputs a properly distributed proof π′a on the same word w encrypted in the ciphertext C′ using
randomness r′2.

2 The idea is that there is no “weak” randomness, and so if the adversary breaks the completeness of the proof for a pair w, ρ, any pair w, ρ′

leads to invalid proofs even in w is in L. This property is easy to achieve with homomorphic proof system, Groth Sahai and SPHF are good
candidates for example.
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– Πa verifies the indistinguishability of proofs property: given a pair (C, (w, r)) ∈ R̂ where C is an encryption
of a word w 6∈ L using randomness r, it should be hard to distinguish an invalid proof generating honestly as
Πa.Prove(C, (w, r)) from a random value.3

– there exists a NI zero-knowledge proof system Πb where given an output πa proves that it is indeed the correct
result from Πa.Prove(C, (w, r); ρ) even if w 6∈ L. We also require the extra property, that either Πb has perfect
soundness or possesses a trapdoor allowing to recover ρ.

Assuming these three properties, our NI zero-knowledge proof system for the language defined by the binary
relation R̂, Π = (no.Setup, no.TSetup, no.Prove, no.Verify, no.Simulate), is defined as follows:

no.Setup(1K): runs E .Setup(1K) to compute the global parameters param and KeyGen(param) to obtain a key pair
(ek, dk). It also runs Πa.Setup(1K) to obtain crsa and Πb.Setup(1K) to obtain crsb. It outputs the common refer-
ence string crs = (crsa, crsb, param, ek).

no.TSetup(1K): runs E .Setup(1K) to compute the global parameters param and KeyGen(param) to obtain a key pair
(ek, dk). It also runs Πa.Setup(1K) to obtain crsa and Πb.TSetup(1K) to obtain (crsb, τb). It outputs the common
reference string crs = (crsa, crsb, param, ek) and the trapdoor τ = (dk, τb).

no.Prove(C, w, s, crs; ρ): Computes πa := Πa.Prove(C, (w, r); ρ), and a proof πb := Πb.Prove(πa, C, (w, r), ρ; ρ′),
and outputs (πa, πb)

no.Verify(C, πa, πb): returns 1 if and only if πa is invalid for Πa and πb is valid for Πb ((i.e. Πa.Verify(C, πa) = 0
and Πb.Verify(πb, πa, C) = 1).

no.Simulate(C, τ): picks uniformly at random πa and uses the trapdoor τb to run Πb.Simulate(τb, πa, C) to get πb. It
outputs (πa, πb).

The correctness follows immediately from the correctness of the two proofs. Indeed if (πa, πb) is output by
no.Prove(C, w, s, crs; ρ), πa output should not verify (i.e. Πa.Verify(C, πa) = 0) as the input (C, (w, s)) /∈ R.

Theorem 1. The proof system Π is sound if Πa is correct and Πb is sound.

Proof. We assume there exists an adversary against the soundness of our proof system, we will show there exists
an adversary B that can use this adversary to break the soundness of Πb. An adversary against the soundness of our
scheme outputs (C, πa, πb) such that while no.Verify(C, πa, πb) holds, the plaintext in C does indeed belong to L.

We will distinguish two kind of adversaries, those who compute πa honestly, and those who does not. This means
that either πa is invalid for a valid word w and some randomness ρ, or that the adversary gives an incorrect output πa
and managed to build a proof πb stating that it is computed correctly.

The adversary B now decrypts the ciphertext C to recover the word w, picks some fresh r′ and encrypts it into a
C′ (this is a randomization of the first ciphertext) and tries to compute Πa.Prove(C′, w, r′; ρ′). Either with advantage
greater than ε/2 this proof does not hold, and so B managed to break the correctness of the proof system Πa. Either
with advantage greater than ε/2 this proof holds, this means that the πa output by the adversary was not correctly
computed, hence this lead to breaking the soundness ofΠb. (As the second proof given by the adversary is valid while
proving an incorrect statement). ut

Theorem 2. The proof system Π is zero-knowledge assuming the zero-knowledge property of Πb and the indistin-
guishability of proofs of Πa.

Proof. It is easy to see that the output of no.TSetup and no.Setup are indistinguishable (by the zero-knowledge prop-
erty of Πb). We assume there exists an adversary against the Zero-Knowledge property of our scheme with advantage
ε, we are going to follow a sequence of games to give an upper bound on this value. We have to prove that the distri-
butions {Prove(crs, C, (w, r))} and {Simulate(crs, C)} are indistinguishable for a ciphertext C = Encrypt(ek, w; r)
with w /∈ L generated by the adversary.

3 This property does not hold for Groth Sahai proofs, given a correctly computed invalid proof for an equation like X = A, when in fact
X = B, one can simply rely on the homomorphic properties of the verification to check if GS.Verify(π, C,B) holds, hence distinguishing
π from a random value.
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G0 We start from the real game (i.e. π $← Prove(crs, C, (w, r))).
G1 In this game, the simulator uses the Zero-Knowledge trapdoor τb from Πb to simulate the proofs on the valid

statement πa (i.e. it outputs πa := Πa.Prove(C, (w, r); ρ) and πb := Πb.Simulate(πa, C, (w, r); ρ′).
Here the adversary has advantage ε1 ≤ ε+ AdvZK,

G2 In this game, the simulator outputs a random value instead of πa and simulates πb. Under the indistinguishability
of the proofs on πa, this game is similar to the previous one.
Here the adversary has advantage ε2 ≤ ε1 + Advindπ ,

In this last game, one obtains the algorithm no.Simulate(C, τ) and we get ε ≤ AdvZK + Advind. ut

3.2 Concrete Examples

In order to instantiate the previous proposition, we need some techniques to prove that a statement is invalid. To do
so, we propose the approach consisting in generating a proof as if the statement was valid, and show that while this
proof does not hold it was honestly generated.

As we show in our application to zero-knowledge with witness elimination in Section 4, Kiayias and Zhou aimed
to do so in [KZ09], but incompletely. Additionally, they did it using an external proof system, that adds several rounds
of interaction. (i.e. they use a sigma protocol to prove the (partial-)validity of a proof based on smooth projective hash
functions.)

In the following we propose new techniques to do so via classical proof systems, first by proving the validity of a
SPHF-proof via another SPHF, and then by mixing Groth-Sahai methodology with SPHF. Our generic approach from
Section 3.1, requires the second proof to be zero-knowledge, and the first one to be homomorphicly randomizable and
to achieve the indistinguishability on the proof. Groth Sahai provides the zero-knowledge while smooth projective
hashing provides the indistinguishability via its pseudo-randomness.

We are going to work on SPHF-friendly languages. Recent works have drastically increased the range of languages
manageable with SPHF (e.g. [BBC+13a,BBC+13b]), to every kind of pairing product equations over graded rings,
so this will not really limit applications of theses techniques in concrete protocols.

We assume that languages L have additional parameters Lp,Lu, the first part is a public description of a specificity
of the language needed to build a smooth projective hash function on it, while the other one is private and is needed
for verification purpose. (In case of a revocation language L, Lp is a commitment to the revocation list, while Lu is
the randomness from the commitment.)

Non-Zero-Knowledge Proofs, Using Smooth Projective Hash Functions. To show that a word committed into v
is not in a language described by Lp, one ends up doing the following (cf Figure 1):

Prover Verifier
V,v, wv Lp,Lu

(hpv, hkv) := (Γv(Lp)�αv,αv)

Hv := Θv(V,Lp)�αv

V = (hpv, Hv,v)−−−−−−−−−−−−−−→ H ′
v := Lu � hpv 6

?= Hv
hpu←−−−−−−−−−−−−−− (hpu, hku) := (Γu(V)�αu,αu)

H ′
u := (wv, hkv)� hpu

H ′
u−−−−−−−−−−−−−−→ H ′

u
?= Θu(V)� hku.

Fig. 1. Generic SPHF-based proof of exclusion

Where the first SPHF is on the language described by Lp while the other one is based on the language of a correct
computation between a hash value, a projection key and a ciphertext (as there is a dependency between those two
terms it seems improbable to be able to do better in this case).
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A more concrete example. In order to explain the previous formalism, let us now give a more concrete example, with
a language described by an ElGamal encryption of a word U . The prover possesses a word V , the verifier the word U
and publishes an ElGamal ciphertext ofU : Lp = (hsU, gs). The prover encrypts his word V using ElGamal encryption
scheme and proves to the verifier that V is not the plaintext encrypted in Lp. Following the previous technique we
can achieve a 3-round proof as described on Figure 2. The second SPHF is smooth if and only if V = U , this means

Prover Verifier
V, hrV, gr, r Lp = (hsU, gs), U, s

(hpv, hkv) := (hλgµ, (λ, µ))
V′ = (hpv, h

rV, gr)
−−−−−−−−−−−−−−→ H ′

v := hpsv
hpu,Lp←−−−−−−−−−−−−−− hpu := (hδ(hsU/(hrV ))β , gδ(gs/gr)β , hpβvg

γ),
hku := (δ, β, γ)

H ′
u := hpλu,1hpµu,2hpru,3

H ′
u, Hv−−−−−−−−−−−−−−→ H ′

v 6 ?= Hv ∧H ′
u

?= hpδvH
β
v (g

r)γ .

Hv := (hsU/V )λ(gs)µ

Fig. 2. Tweaked ElGamal based SPHF proof of inequality

that technically an adversary can break the soundness of the verification of the valid computation of hpv, Hv when the
word V is different from U . However in this case, the protocol should already return yes so he cannot gain anything
from doing so. The proof requires overall 10 group elements: 2 for the initial commit of U , 2 for the one of V , 2
overall for hpv, Hv and 4 for hpu, H

′
u.

We stress that, this construction differs from the generic approach in the sense that Lp instead of being known
before the protocol like in the generic construction from Figure 1, can be set on the fly and postpone to the second
flow. While this proof is not zero-knowledge in any way, it will find some use in our LAKE (Language-Authenticated
Key Exchange) application in Appendix C.2.

Zero-Knowledge Proofs, Using Groth-Sahai Non-Interactive Proof Technique.
We now want to supersede the last proof with a zero-knowledge proof. So once again we do a smooth projective hash
function for the first language, and then prove using a Groth Sahai proof that we indeed know the associated hash key,
such that the hash value and the projection key are consistent, that way we can reduce the protocol interactivity to one
flow as explained in Figure 3.

Prover Verifier
V,v, wv Lp,Lu

(hpv, hkv) := (Γv(Lp)�αv,αv)
Hv := Θv(V,Lp)�αv

π = GS.Prove(Hv ∧ hpv; hkw)
V′ = hpv,v, π,Hv−−−−−−−−−−−−−−→ H ′

v := Lu � hpv
Hv 6 ?= H ′

v ∧ Verify(π).

Fig. 3. Generic SPHF + NIZK proof of inequality

A more concrete example. If we consider our former example with a Groth Sahai proof instead of the second SPHF we
end up with a one-round protocol. Overall this would require 4 elements in G1 for the hash proof, 6 other in G1 for the
additional commitments, 4 in each group for the quadratic proof, 1 in G1 for one of the multi scalar exponentiation
equation and 2 scalars for the other. Overall, the protocol is very efficient and only requires the transmission of
15 elements in G1, 4 elements in G2 and 2 scalars in Zp.
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3.3 Transformation from a NIZK to a SS-NIZK

In one of the following applications, we will need our proof of exclusion to be simulation-sound ([Sah99]). There is
a generic transformation from Groth Sahai based NIZK proofs to Simulation-Sound.

To construct a Simulation-Sound proof that some word w does not belong to a language L, one uses the following
roadmap, assuming the common reference string crs contains a common reference string for the Groth-Sahai proof
system crsGS , a verification key pk for a Structure-Preserving Signature scheme [AFG+10], and the prover already
possesses a pair of primary keys (psk, ppk) for a one-time two-tier signature scheme [BS07]4:

1. generates a secondary signing/verification key pair (ssk, spk) for the one-time two-tier signature.
2. commits to a random tuple of elements R corresponding to a signature.
3. generates, using Groth Sahai and our exclusion proof, a proof π that either w does not belong to L, or that R is a

valid signature of the verification key spk of the one-time signature, under the public key pk contained in the CRS
crs.

4. sends this proof π, the verification key of the one-time signature, and the corresponding one-time signature of
everything under (psk, ssk).

Referring to [HJ12], it can be shown that this scheme is Zero-Knowledge under the Indistinguishability of the
two types of Groth-Sahai common reference strings, and that both the simulation-soundness and the soundness come
from the unforgeability of the two involved signatures.

4 Application to Zero-Knowledge with Witness Elimination

In [KZ09], Kiayias and Zhou introduced the notion of zero-knowledge proofs with witness elimination. They de-
scribed it through a universally composable ideal functionality, directly giving strong guideline as how to achieve a
generic construction.

Ideal Functionality for Zero-Knowledge with Witness Elimination In the universal composability (UC) frame-
work, once a protocol is proved secure, it can be used in arbitrary contexts retaining its security properties (i.e. when
composed with other instances of the same or other protocols). The security in this framework is defined in the sense
of protocol emulation (i.e. a protocol P emulates some protocol P ′, if P does not affect the security of anything
else than P ′ would have). To prove security in the UC framework, we define an ideal functionality F which can be
thought of as an incorruptible trusted party that takes inputs from all parties and hands back outputs to the parties.
The functionality F is a formal specification of a cryptographic task and is secure by definition. Hence, if a protocol
P emulates F , one can infer that it securely realizes the given task in arbitrary contexts.

The ideal functionality for Zero-Knowledge with Witness Elimination FR,QZKWE proposed by Kiayias and Zhou
builds upon that of Zero-Knowledge (proposed in 2001 by Canetti [Can01]) , with the extra requirement that the
prover shows that it did not use some eliminated witnesses to prove the statement. We recall it on Figure 4.

It is parametrized by two binary relations R and Q. The prover P is given an input 〈x,w〉 (Prove query) and
the verifier V is given an input w′ (Verify query). The verifier should only accept if R(x,w) and ¬Q(w,w′) hold.
Furthermore, it should not learn anything from the protocol except the value x and the existence of such a witness w.
Following the authors of [KZ09], we do not deal here with adaptive corruptions. The functionality proceeds in three
steps:

– Upon receiving a (Prove, sid, 〈x,w〉) query from the prover P: While blocking the secret inputs from the adver-
sary, it leaks a bit through the (LeakProve, sid, 〈x, ϕ〉,P) answer to tell the adversary whetherR(x,w) holds. As
explained in [KZ09], this does not affect the security properties of the protocol as long as the elimination relation

4 This can easily be achieved by applying a Chameleon Hash on itself for example.
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Q is such that the FR,QZKWE functionality emulates the FRZK functionality (the prover can easily learn whether the
witness is valid or not). The requirement on Q is that given a witness w, one can sample a witness w′ such that
Q(w,w′) happens with negligible probability. This is in particular the case for the substring equality considered
in their article and for the more general membership to the languages considered here (see Section 5).

– Upon receiving a (Verify, sid, w′) query from party V: While blocking the secret inputs from the adversary, it
leaks the information that V sent his witness through the (LeakVerify, sid,V) answer.

– Upon receiving a (InflVerify, sid) query from the adversary: it leaks a last bit through the (RetVerify, sid, b) answer
to tell the adversary whether Q(w,w′) holds. The query InflVerify can be asked only once, capturing a similar
property to the resistance to offline dictionary attacks in the case of password-based protocols.

FR,Q
ZKWE is parametrized with the ZK relationR and the elimination relation Q.

– Upon receiving (Prove, sid, 〈x,w〉) from party P where sid = (P,V, sid′), record 〈P, x, w〉, send (LeakProve, sid, 〈x, ϕ〉,P) to
the adversary, where ϕ = 1 ifR(x,w) holds, and ϕ = 0 otherwise. Ignore future (Prove, . . .) inputs.

– Upon receiving (Verify, sid, w′) from party V where sid = (P,V, sid′), record 〈T,w′〉 , send (LeakVerify, sid,V) to the adversary.
Ignore future (Verify, . . .) inputs.

– Upon receiving (InflVerify, sid) from the adversary, if R(x,w) and ¬Q(w,w′) hold, then send (RetVerify, sid, 1) to party V . Else
if ¬R(x,w) holds orQ(w,w′) holds, then send (RetVerify, sid, 0) to party V .

Fig. 4. Functionality FR,QZKWE

Generic Approach. After receiving the witness w′ eliminated by the verifier, the construction of a zero-knowledge
proof with witness elimination as presented by Kiayias and Zhou in [KZ09] requires two main parts by the prover.
First, in a regular zero-knowledge proof, he starts by proving that the statementR(x,w) is indeed fulfilled, and then,
in another part a little bit trickier, he has to prove that the witness he used does not belong to the elimination list, which
is ¬Q(w,w′). We recall on Figure 5 their original generic construction. In a nutshell, they proceed in three steps:

– In a first step, the verifier sends an encryption C′ of the eliminated witness w′ to the prover.
– In a second step, the prover computes an encryption C of his witness w, generates a hash key hk = HashKG,

computes a projection key hp = ProjKG(hk) and computes the hash value κ = Hash(C′, (C, w), hk). He sends hp
and κ to the verifier. The aim of this smooth projective hash function is to ensure that w 6= w′.

– In a last step, both players engage in a zero-knowledge proof of membership (ZKPM) subprotocol to show that
R(x,w) holds.

A Flaw in the Original Approach. In the protocol presented in [KZ09] that we recalled in the previous section,
Kiayias and Zhou propose to prove that ¬Q(w,w′) by doing an implicit proof of equality (i.e. Q(w,w′)) using a
smooth projective hash function. They make the prover send the hash value κ, and ask the verifier to check whether it
is equal to the projected hash value κ′. If those values are different, then the relation Q(w,w′) does not stand, which
proves that the witness is not eliminated.

However, this requires the prover to be honest in this process, as if he sends a inconsistent projection key to the
verifier, then it will lead to an inequality between the hash and the projected hash values, meaning that the proof of
membership to the elimination list (i.e.Q(w,w′)) will not hold, and finally that he will be able to convince the verifier
with an invalid statement with overwhelming probability.
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Common reference string: crs = (pk, ρ), where pk is a public key of an encryption scheme E , and ρ is a reference string of a
Zero-Knowledge Proof of Membership (ZKPM) scheme.

Protocol steps: Upon receiving (Verify, sid, w′) from the environment, party V selects r′
$← U and computes C′ =

Encrypt(pk, w′; r′), and sends (move1, C′) to party P .
Upon receiving (Prove, sid, x, w) from the environment, party P first checks if (x,w) ∈ R and waits for a move1 message from party
V . After receiving move1 message:

– if ¬R(x,w) holds, then party P sends party V a message (move2, “no valid proof”),
– else if R(x,w) holds, then party P computes C = Encrypt(pk, w; r), and then party P sends party V a message (move2, hp, κ),

where hk = HashKG, hp = ProjKG(hk), κ = Hash(C′, (C, w), hk). Now, parties P and V play the roles of prover and verifier
respectively to run a ZKPM subprotocol, to show that x, C′, κ is consistent:

∃(w, r), (x,w) ∈ R ∧ C = Encrypt(pk, w; r) ∧ κ = Hash(C′, (C, w), hk).

Upon receiving (move2, “no valid proof”) from party P , party V returns (RetVerify, sid, 0) to the environment. Else if receiving
(move2, hp, κ), party V computes κ′ = ProjHash(C, (C′, w′, r′), hp) and if κ 6= κ′ party and V accepts the ZKPM proof in the subpro-
tocol above, then party V returns (RetVerify, sid, 1) to the environment; otherwise returns (RetVerify, sid, 0) to the environment.

Fig. 5. Initial Generic construction of the protocol for Zero-Knowledge Proofs with Witness Elimination

This issue comes from the fact that the validity of the projection key hp is nowhere verified in the generic descrip-
tion. Intuitively, this verification should be part of the following ZKPM subprotocol. In their description, the latter
does not involve the computation of hp in any way, so that there is the possibility for the prover to send a bogus one
in order to avoid collision for words in the elimination list. This way, the prover is able to get its ZKPM proof for
R(x,w) accepted while using a witness of the elimination list, without being caught by the verifier.

5 A Generic Fix and Several Concrete Instantiations

Improvement. Before fixing Kiayias and Zhou’s protocol, we start by giving some other improvements. First, the
authors only considered equalities or substring equalities for the relation Q. We improve this by allowing Q to be a
more general relation of membership to a language specified by w′: Q(w,w′) ⇔ w ∈ Lw′ . More precisely, follow-
ing 3.1, we assume that the description of the language is public, meaning that given w′, one learns Lw′ automatically.
We also assume that given w, one can easily and publicly check whether w ∈ Lw′ or w /∈ Lw′ .

Furthermore, in order to be able to satisfy FR,QZKWE , we assume that given Lw′ , the simulator will be able to
generate w1 ∈ Lw′ and w2 /∈ Lw′ . This is a natural assumption and can be achieved in different ways: either, this is
publicly achievable by anybody; Or the language Lw′ is randomizable and w′ includes a witness included in Lw′ from
which it is possible to generate w ∈ Lw′ ; Or we assume that S possesses a trapdoor (stored into the CRS). In most
applications, we will be in the second case, where the language Lw′ is randomizable.

Our second improvement is to replace most of the interactive proofs by possibly non-interactive proofs of knowl-
edge, using the proofs of non-membership given in Section 3. More details follow in the next section.

A Generic Fix. As already explained in Section 4, the problem of the initial generic protocol given by the authors
of [KZ09] lies in the Sigma protocol, which does not involve the computation of hp in any way. To avoid this issue,
we now include in the Zero-Knowledge proof a new proof that the projection key hp was correctly generated.

Our new generic protocol is presented on Figure 6. From a high point of view, the proof π1 is the same as in [KZ09]
and proves the validity of the statement x under the witness w, namely thatR(x,w) holds.

The non-interactive proof π2 replaces their interactive ZKPM subprotocol, and ensures that Q(w,w′) does not
hold (i.e. w is not in the exclusion language). As explained in Section 3, this proof consists in the combination of
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a ciphertext C of w and a proof π2 of non-membership. This latter proof is divided into a proof πa of membership
of w in the language defined by w′ (which should not hold), and a second proof πb showing that, while the proof
πa does not hold, it has been honestly generated, so there exists some randomness used to prove π1, and some extra
randomness, such that the expected proof of equality is indeed πa. By completeness of the proof, this proves that w is
indeed not included in the language defined by w′.

Common Reference String: crs = (pk, ρ1, ρ2), where pk is a public key of an encryption scheme E (both Encrypt and no.Encrypt
use E), ρ1 is a reference string of a zero-knowledge proof of membership (for the relation R), and ρ2 is a reference string of a zero-
knowledge proof of non-membership (for the relationQ).

Protocol steps: Upon receiving (Verify, sid, w′) from the environment, party V selects a random r′ and computes C′ =
Encrypt(pk, w′; r′), and sends (move1, C′) to party P .

Upon receiving (Prove, sid, x, w) from the environment, party P first checks ifR(x,w) holds and waits for a move1 message from party
V . After receiving move1 message:

– if ¬R(x,w) holds, then party P sends party V a message (move2, “no valid proof”),
– else ifR(x,w) holds, then partyP selects three random values r, r1 and r2 and sends party V a message (move2, π1, (C, π2)), where
π1 = ZK.Prove(x,w,R; r1) and (C, π2) = SS.no.Prove(w,w′,Q, r1; r2), meaning in particular that C = Encrypt(pk, w; r).

Upon receiving (move2, “no valid proof”) from party P , party V returns (RetVerify, sid, 0) to the environment. Else if receiv-
ing (move2, π1, (C, π2)), party V checks both proofs and returns (RetVerify, sid, 1) to the environment if they are correct, and
(RetVerify, sid, 0) otherwise.

Fig. 6. Generic Construction of Zero Knowledge proof with Witness Elimination

Theorem 3. This generic construction fulfils the Zero-Knowledge with Witness-Elimination Functionality FR,QZKWE

under the assumption that π1 is a zero-knowledge proof of membership for the relationR, and π2 is a zero-knowledge
proof of non-membership for the relation Q, as defined in section 3.

Due to lack of space, the proof of Theorem 3 is provided in Appendix B =

Concrete Instantiation of the Fixed and Improved Protocol. In their original article [KZ09], Kiayias and Zhou
present a concrete instantiation of the protocol, where a user proves being in a possession of a valid pair (m,σ) of a
Boneh Boyen [BB04] signature σ, on a message m. To show the potency of our approach, we propose to instantiate
their original scheme more efficiently, in a round-optimal way, without the initial flaw described in Section 4. In order
to have an easy message recovery, we are going to do a naive bit per bit commitment. While this is not necessarily the
most efficient approach in practice, asymptotically this is already more efficient than their use of Paillier encryption
(a quadratic cost instead of a cubic one using Paillier encryption).

The scheme is described on Figure 7. The proof consists of a commitment to σ, λ, µ, θ (i.e. 12 group elements), and
a proof of two linear multi-scalar exponentiation equations (2 elements each), one of a quadratic (9 group elements),
and ` quadratic scalar equations. Overall, 31 + 9` group elements are exchanged 5 in two flows. For a concrete
security parameter, the initial (flawed) scheme was more efficient but required 2 additional rounds. However, as many
elements live in a RSA modulus space, asymptotically our scheme has a better efficiency, both in number of rounds
and communication size.

5 This estimation is very rough, and optimization like running a KDF on the hash value could further improve the efficiency, but that is beyond
the point of this construction.
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Prover Verifier
(m,σ) σ′

r′, s′
$← Zp

Cv := Encrypt(σ; t, z)
c′←−−−−−−−−−−−−−− c′ := Encrypt(σ′; r′, s′)

hpv := (uλgµ, vθgµ)
hkv := (λ, θ, µ)

Hv := (c′3/σ)
µ(c′1)

λ(c′2)
θ

π = GS.Prove(hpv, Hv; hkv, Cv;
(hpv, Cv, π)−−−−−−−−−−−−−−→ H ′

v := hp(r′,s′)
v = (uλgµ)r

′
(vθgµ)s

′

σ, t, z, hkv) H ′
v 6 ?= Hv ∧ Verify(π).

The proof π considers the language:

∃t, z,m, λ, θ, µ, σ,


Cv = Encrypt(σ; t, z)
hpv = (uλgµ, vθgµ)

Hs = (c′3/σ)
µ(c′1)

λ(c′2)
θ

e(σ, vkgm) = 1T

Fig. 7. Concrete Construction of zero-knowledge with witness elimination
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A Zero-Knowledge Definitions

A.1 General definitions

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R, we call x the statement and w the witness.
Let L be the language consisting of statements in R.

Definition 4. A zero-knowledge proof system for a language L is a pair (Prove,Verify) of (interactive) Turing ma-
chines where Verify is probabilistic polynomial time, with the following three properties:
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– Completeness: for all (x,w) ∈ R, on input x, Verify always outputs 1 when interacting with Prove with input
(x,w)

〈Prove(x,w)↔ Verify(x)〉 1

(i.e. if the statement is true, the honest verifier will be convinced of this fact by an honest prover).
– Soundness: for all x /∈ L, for any (interactive) Turing machine Prove∗, on input x, Verify outputs 0 with over-

whelming probability when interacting with Prove∗ with input x

〈Prove∗(x)↔ Verify(x)〉 0

(i.e. if the statement is false, no cheating prover can convince the honest verifier that it is true, except with some
small probability).

– Zero-knowledge: for any probabilistic polynomial time Turing machine Verify∗, there exists a probabilistic poly-
nomial time Turing machine Simulate such that for all (x,w) ∈ R and all z ∈ {0, 1}∗, the transcript of the
interaction of Prove and Verify∗ on respective inputs (x,w) and (x, z) is indistinguishable from the output of
Simulate(x, z)

〈Prove(x,w)↔ Verify∗(x, z)〉 ≈ Simulate(x, z)

(i.e. if the statement is true, no cheating verifier learns anything other than this fact).

Definition 5. A non-interactive zero-knowledge proof system for a language L is a tuple

(Setup,TSetup,Prove,Verify, Simulate)

of probabilistic polynomial time Turing machines, with the following three properties:

– Completeness: given crs output by Setup, a pair (x,w) ∈ R, and a proof π output by Prove(crs, x, w), Verify
always outputs 1 on input (crs, x, π) (i.e. if the statement is true, the honest verifier will be convinced of this fact
by an honest prover).

– Soundness: given crs output by Setup, given x /∈ L, for any bit-string π∗, Verify outputs 0 with overwhelming
probability on input (crs, x, π∗) (i.e. if the statement is false, no cheating prover can convince the honest verifier
that it is true, except with some small probability).

– Zero-knowledge: for all probabilistic polynomial-time adversaries A we have

Pr[crs
$← Setup(1k) : A(crs) = 1] ≈ Pr[(crs, τ)

$← TSetup(1k) : A(crs) = 1]

and

Pr[(crs, τ)
$← TSetup(1k), (x,w)

$← A(crs), π
$← Prove(crs, x, w) : A(π) = 1]

≈ Pr[(crs, τ)
$← TSetup(1k), (x,w)

$← A(crs), π
$← Simulate(crs, x, τ) : A(π) = 1]

B Proof of Theorem 3

We prove the protocol by showing that, for any adversary A, one can construct a simulator S such that, for every
environment Z , the interaction between, for one hand the environment, the players and the adversary (the real world),
and for the other hand the environment, the ideal functionality and the simulator (the ideal world), are indistinguishable
for the environment.

For the most part, the simulator simulates the protocol by executing it honestly on behalf of the honest parties,
but using random dummy witnesses as inputs since the secret inputs (given to them by the environment) are unknown
to the simulator. Furthermore, the simulator uses the simulators for the proof systems instead of the regular prove
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algorithms. More details follow. Recall that we only deal with static adversaries, which means that we know in
advance which user is corrupted, and that the adversary cannot corrupt any player during an execution of the protocol.

Setup. The simulator generates the parameters, knowing the encryption scheme trapdoor (i.e. the decryption key) and
the trapdoors for the reference strings of the proof schemes. It enables him to be able to use the simulation algorithms
ZK.Simulate and SS.no.Simulate instead of the proving algorithms ZK.Prove and SS.no.Prove.

When P and V are honest.
VERIFY STAGE: After receiving (LeakVerify, sid,V) from the functionality, the simulator S chooses a random wit-
ness w̃′, computes honestly the ciphertext C′ = Encrypt(pk, w̃′; r′) and sends it to P in a move1 message on behalf
of V .
PROVE STAGE: We consider two cases.

After receiving (LeakProve, sid, 〈x, 0〉,P) from the functionality and any move1 message from V , then S sends
(move2, “no valid proof”) to V on behalf of P .

After receiving (LeakProve, sid, 〈x, 1〉,P) from the functionality and a message (move1, C′) from V containing a
ciphertext C′, the simulator uses a randomly chosen w̃ to compute C, and uses the simulation algorithms ZK.Simulate
and SS.no.Simulate to compute π1 and π2. It then sends party V a message (move2, π1, (C, π2)) on behalf of P .
INFLUENCED VERIFY STAGE: After receiving the move2 message from party P , S sends (InflVerify, sid) to the
functionality.

This simulation is computationally indistinguishable from the real game due to the zero-knowledge property of
the proof systems, and the indistinguishability property of the ciphertext.

When P is corrupted.
VERIFY STAGE: After receiving (LeakVerify, sid,V) from the functionality, the simulator S chooses a random wit-
ness w̃′, computes honestly a ciphertext C′ = Encrypt(pk, w̃′; r′) and sends it to P in a (move1, C′) message on behalf
of V .
PROVE STAGE: If S receives a (move2, “no valid proof”) message from the corruptedP , the simulator sends (Prove, sid, 〈x,⊥〉)
to the functionality on behalf of P , with ¬R(x,⊥).

If S receives a (move2, π1, (C, π2)) message from a corrupted party P , S executes honestly the verification pro-
tocols ZK.Verify and SS.no.Verify of the zero-knowledge proofs. If these verifications succeed, the simulator uses its
trapdoor for the encryption scheme no.Encrypt to decrypt C and recover w. It then sends (Prove, sid, 〈x,w〉) to the
functionality on behalf of P . If these verifications fail, it sends (Prove, sid, 〈x,⊥〉) to the functionality on behalf of
P , with ¬R(x,⊥).
INFLUENCED VERIFY STAGE: After receiving a message (LeakProve, sid, 〈x, ϕ〉,P) from the functionality, S sends
(InflVerify, sid) to the functionality.

The perfect bindness of the encryption scheme ensures the correctness of the decryption and thus of the recovery
of the witness w sent by the adversary.

If the adversary uses an input 〈x,w〉 such that R(x,w) and ¬Q(w,w′) hold, then the correctness of the proof
systems ensure that the verification made by the simulator will succeed.

On the contrary, if it uses an input such that at least one of the two relations does not hold, then the simulation-
soundness of the proof systems ensure that the verification made by the simulator will fail. Recall that the simulator
is likely to make false zero-knowledge proofs while simulating an honest prover, so that the adversary will most
certainly have seen false proofs. This explains the need for simulation-soundness.

Due to these reasons, this simulation is thus computationally indistinguishable to the real world.

When V is corrupted.
VERIFY STAGE: After receiving (LeakProve, sid, 〈x, ϕ〉,P) from the functionality and a (move1, C′) message from
the corrupted V , then S uses its trapdoor for the encryption scheme Encrypt to decrypt C′ and recover w′. It then sends
(Verify, sid, w′) to the functionality on behalf of V .
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INFLUENCED VERIFY STAGE: After receiving (LeakVerify, sid,V) from the functionality, the simulator S sends a
query (InflVerify, sid) to the functionality.
PROVE STAGE: If ϕ = 0, then S sends (move2, “no valid proof”) to V on behalf of P .

If ϕ = 1, we face two cases. If the functionality returns (RetVerify, sid, 0), this means thatw ∈ Lw′ . The simulator
S then generates a witness w ∈ Lw′ and uses it to generate honestly a message (move2, π1, (C, π2)), using ZK.Prove
and SS.no.Prove, that it sends to V on behalf of P . If the functionality returns a message (RetVerify, sid, 1), this
means that w /∈ Lw′ . The simulator S then generates a witness w /∈ Lw′ and uses it to generate honestly a ciphertext
C = no.Encrypt(pk, w; r). It then uses the simulation algorithms ZK.Simulate and SS.no.Simulate to compute π1
and π2 and sends party V a message (move2, π1, (C, π2)) on behalf of P .

The encryption scheme being perfectly binding ensures the correctness of the decryption and thus of the recovery
of the witness w sent by the adversary. This simulation is then computationally indistinguishable from the real game
due to the zero-knowledge property of the proof systems.

C Other Applications

C.1 Anonymous Credentials not Verifying a Property

Anonymous Credentials were introduced by Chaum in [Cha85], and were widely used ever since as a means for users
to authenticate themselves while protecting their privacy (see, e.g. [Dam88,LRSW99,CL01,BCKL08]).

Most constructions consist in a first interaction, where a user obtains a signature on some message which cor-
responds to “his credentials”. When this user wants to authenticate, he then proves that he knows a signature on a
message he does not want to leak but that fulfils some property.

Camenisch and Groß[CG08] proposed a way to build anonymous credentials with efficient attributes, and more
recently Izabachène et al. proposed in [ILV11] a nearly non-interactive instantiation of this protocol. Their protocol
requires an interaction to prove the AND of several credentials. Interestingly, their technique for proving the NAND of
credentials is non-interactive, so combining this technique with our proof of No-Statement we can non-interactively
prove the AND of several credentials by doing a NOT(NAND). Similarly, we can transform their non-interactive
NOR into the non-interactive OR they were lacking, rendering their protocol completely non-interactive. Another
transformation to achieve non-interactivity was recently sketched in [BNF13], however it requires an accumulator
and so induces stronger and non-standard hypotheses.

Another application of our technique allows to conceive non-interactive anonymous credentials where an individ-
ual may require information but at the time of the proof may not necessarily know if he possesses the appropriate
credential (like for example if the server revokes some secret credential). Once again our proof technique leads to
such instantiation.

C.2 Language Authenticated Key Exchange

In [BBC+13a], the authors introduced the notion of Language Authenticated Key Exchange which allows two users
to agree on a shared session key if and only if they each possess a word in a language chosen secretly by the other.

Interestingly, the construction requires their languages to be “randomizable” which fits well with our description.
In [BBC+13a], they handle AND connectives of languages (i.e. intersection of languages) and limited form of OR
connectives (i.e. union of languages). However, there was no known way to handle exclusion languages, but our
technique allows to solve this and so extend the range of advanced languages manageable by those LAKE. We can
also remove the limitation on the union of languages by using the connective NOT(AND(NOT)).

In their LAKE constructions, the SPHF is of course not zero-knowledge, and no simulation is required on this
part (as everything is managed by the UC commitment) so one can use our proofs without requiring the “simulation
sound” part. An interesting trade-off can also be achieved if the proof of validity of the SPHF computation is managed
with a SPHF instead of a Groth Sahai proof, at the cost of (at most) one extra round in the protocol which would allow
to avoid the use of pairings.
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We now present our 3-round No-Proof, in order to prove that a word x is not in a language L:

– Prove(x,L): This algorithm is interactive between Pi and Pj :
1. Pi initiates the protocol by computing C = Encrypt(w; r) and (hp, hk, H)no(C,L, r). Pi sends C, hp to Pj .
Pj generates hkj , hpj = SPHF.Gen(L2, Hno, hpno), and hpj .
Pi computes H ′ = SPHF.ProjHash(L2, hpj , hkno, x) and sends H ′.

2. Pj accepts if and only if H 6= SPHF.ProjHash(L, C) and H ′ = SPHF.Hash(L2, Hno, hpno, hkj).

In the inner part of a LAKE protocol, those proofs can be run simultaneously on both sides, making it 4 flows
instead of 2 in the original paper, but it allows to handle previous languages as well as their complements.
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