
Non-committing encryption from Φ-hiding

Brett Hemenway Rafail Ostrovsky∗ Alon Rosen†

January 22, 2015

Abstract

A multiparty computation protocol is said to be adaptively secure if it retains its security even in the
presence of an adversary who can corrupt participants as the protocol proceeds. This is in contrast to
the static corruption model where the adversary is forced to choose which participants to corrupt before
the protocol begins.

A central tool for constructing adaptively secure protocols is non-committing encryption (Canetti,
Feige, Goldreich and Naor, STOC ’96). The original protocol of Canetti et al. had ciphertext expansion
that was quadratic in the security parameter, and prior to this work, the best known constructions had
ciphertext expansion that was linear in the security parameter.

In this work, we present the first non-committing encryption scheme that achieves ciphertext ex-
pansion that is logarithmic in the message length. Our construction has optimal round complexity
(2-rounds), where (just as in all previous constructions) the first message consists of a public-key of size
Õ(nλ) where n is the message length and λ is the security parameter. The second message consists of a
ciphertext of size O(n logn+ λ). The security of our scheme is proved based on the Φ-hiding problem.

∗The work of R. Ostrovsky was supported in part by NSF grants CCF-0916574, IIS-1065276, CCF-1016540, CNS-1118126,
CNS-1136174; US-Israel BSF grant 2008411; OKAWA Foundation Research Award; IBM Faculty Research Award; Xerox
Faculty Research Award; B. John Garrick Foundation Award; Teradata Re- search Award; and Lockheed-Martin Corporation
Research Award. This material is also based upon work supported by the Defense Advanced Research Projects Agency through
the U.S. Office of Naval Research under Contract N00014-11-1-0392.
†Work supported by ISF grant no. 1255/12 and by the European Research Council under the European Union’s Seventh

Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 307952. Part of this work done while visiting UCLA.

1 Introduction

Secure multiparty computation (MPC) allows a group of players to compute any joint function of their inputs
while maintaining the privacy of each individual player’s input. When defining security of an MPC protocol,
it is important to consider how and when players are corrupted. Traditionally security has been considered
in two adversarial models, static and adaptive. In the static model, the corrupted players are fixed before
the protocol begins, while in the adaptive model players may become corrupted at any point in the protocol.
In particular, the adversary may choose to corrupt players adaptively (up to a certain threshold) based on
messages sent in earlier rounds of the protocol. The adaptive security model, which more accurately reflects
conditions in the real-world, is widely recognized to be “the right” model for security in the MPC setting.
Unfortunately, analysis of protocols in the adaptive model can be difficult, and many protocols are only
proven secure in the weaker static corruption model.

The Goldreich, Micali, Wigderson protocol [14] provides computational security in the static model, and
it was observed in [11] that the original GMW proof of security does not hold in the adaptive corruption
model. The works of Ben-Or, Goldwasser and Wigderson [3] and Chaum, Crépeau and Damg̊ard [7] take an
alternate approach to MPC and create protocols with information theoretic security. These protocols rely
on a majority on private channels between the players, and require a majority of players to be honest. Like
the GMW protocol, the BGW and CCD protocols were only proven secure in the static corruption model.

1.1 Non-Committing Encryption

In [5], Canetti, Feige, Goldreich and Naor introduced the notion of non-committing encryption, and showed
that if the private channels in the BGW and CCD protocols are replaced by non-committing encryption, then
the MPC protocols can achieve adaptive security. Subsequent work has made similar use of non-committing
encryption in order to construct cryptographic protocols achieving security against adaptive adversaries
[1, 6].

Despite its utility, previous constructions of non-committing encryption have been much less efficient
than standard (IND-CPA secure) cryptosystems. The original construction of Canetti et. al. created non-
committing encryption from common-domain trapdoor permutations, which in turn could be realized from
either the CDH or RSA assumption. The resulting scheme requires O(λ) ciphertexts (each of bit length
O(λ)) to encrypt a single bit plaintext with security parameter λ.

Beaver [1] constructed a non-committing key-exchange protocol based on the DDH assumption, but his
protocol requires 3 rounds. Beaver’s construction provided an interactive encryption protocol with ciphertext
expansion O(λ). Damg̊ard and Nielsen [11] demonstrated a generalization of Beaver’s scheme that could
be implemented under general assumptions. The protocol of Damg̊ard and Nielsen, like that of Beaver,
requires three rounds and has ciphertext expansion O(λ). The construction of Damg̊ard and Nielsen was
later improved, reducing the round complexity to two rounds, by Choi, Dachman-Soled, Malkin and Wee
[8]. The construction of [8] gives a two-round protocol with ciphertext expansion O(λ) and public keys of
size O(nλ) for n-bit messages. Achieving non-interactive (2-round) non-committing encryption with optimal
rate (i.e., O(1) ciphertext expansion) remained an open question.

1.2 Our Contributions

We construct the first non-committing encryption scheme with logarithmic ciphertext expansion. Our scheme
is 2-round, which is optimal in terms of round complexity. The security of our construction rests on the
Φ-hiding assumption [4]. Our construction improves on the ciphertext size of previous constructions, with
only a modest cost in key size (our public key sizes are Õ(nλ), compared to O(nλ) in [8]).

All prior constructions of non-committing encryption are loosely based on the following paradigm. The
receiver will generate a set of n public-keys for which he only knows the decryption keys corresponding to a
small subset, IR. The sender will first encode his message using an error-correcting code of block-length n,
then the sender will choose a small subset of keys, IS , and encrypt one symbol of the codeword under keys
in IS and sample ciphertexts obliviously for the remaining keys. The parameters then need to be tuned so
that if the sender’s and receiver’s sets are chosen independently, the intersection IR∩ IS will be large enough
to recover the message with high probability. On the other hand, the simulator (who knows decryption keys

1

Reference Rounds Ciphertext Expansion Assumption
[5] 2 O(λ2) Common-Domain TDPs
[1] 3 O(λ) DDH
[11] 3 O(λ) Simulatable PKE
[8] 2 O(λ) Simulatable PKE

This work 2 O(log |n|) Φ-hiding

Figure 1: Comparison to prior work. The parameter λ denotes the security parameter, and |n| denotes the
message length. Notice that λ � log |n| since by assumption super-polynomial time calculations in λ are
infeasible, while exponential-time calculation in log |n| are feasible.

for all public-keys, and encryption randomness for all ciphertexts) should be able to find a subset of secret
keys, and a subset of encryption randomness, such that the ciphertexts in their intersection decode to any
target message.

In these schemes, each of the underlying encryptions encrypts one symbol from an error-correcting en-
coding of the sender’s message. Let Σ denote the alphabet of the error-correcting code. Then, even if the
simulator knows decryptions for every one of the n ciphertexts, decryptions will only agree with a random
vector in Σn in a 1

|Σ| fraction of coordinates. Thus if Σ is large, the simulator’s job of finding an intersection

IR ∩ IS that matches the target message will be impossible. On the other hand, if Σ is small then the
scheme suffers from large ciphertext expansion because each codeword symbol is encrypted separately, and
the semantic security of the underlying cryptosystem puts a lower bound on the size of each ciphertext. This
has been a fundamental barrier to achieving non-committing encryption with good rate.

In order to overcome this barrier, we design a cryptosystem where randomness can be re-used across
keys. Cryptosystems with this property are easy to construct, and even El-Gamal has this property. In fact,
cryptosystems coming from smooth hash proof systems [10] have this property, as do cryptosystems based
on the extended decisional diffie-hellman assumption [16]. This notion of randomness re-use across keys was
a necessary ingredient in constructing lossy trapdoor functions [20] and multi-recipient cryptosystems [2].

Now, if we have n ciphertexts, but each uses the same randomness, the total length could be as small as
O(n+ λ) instead of O(nλ). Unfortunately, reusing randomness across ciphertexts makes the simulator’s job
much harder. Now, when the simulator generates encryption randomness, it must efficiently generate a single
random element that is simultaneously valid randomness for all n ciphertexts. For a given cryptosystem, it
can be difficult to determine whether such randomness exists, and more difficult still to devise an efficient
scheme for finding it.

Although we can build randomness-reusable cryptosystems from almost all standard hardness assump-
tions, (e.g. DDH, DCR, QR) in order to achieve the efficient randomness sampling required by the simulator,
we rely on the Φ-hiding assumption [4].

At a high level, our non-committing encryption behaves as follows. The receiver generates n public-keys
for a randomness-reusable cryptosystem based on the Φ-hiding assumption, in such a way that he only knows
the decryption keys for a small subset IR. The sender encodes his message using a binary error-correcting
code of block-length n, and chooses a subset of keys IS ⊂ [n]. The sender generates a single piece of
randomness and encodes the symbols of his codeword using this single random value for i ∈ IS , and the
sender samples ciphertexts obliviously otherwise.

Encryption under our scheme is conceptually similar to all previous constructions of non-committing
encryption, but re-using randomness makes creating an efficient simulator significantly more difficult. On
the positive side re-using randomness allows us to decrease the ciphertext size beyond the bounds achieved
compared to all previously known constructions.

2 Preliminaries

2.1 Notation

If A is a Probabilistic Polynomial Time (PPT) machine, then we use a
$← A to denote running the machine

A and obtaining an output, where a is distributed according to the internal randomness of A. If R is a set,

2

we use r
$← R to denote sampling uniformly from R.

We use the notation
Pr[A(x, r) = c : r

$← R, x
$← X],

to denote the probability that A outputs c when x is sampled uniformly from X and r is sampled uniformly
from R. We define the statistical distance between two distributions X,Y to be

∆(X,Y) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

If X and Y are families of distributions indexed by a security parameter λ, we use X ≈s Y to mean the
distributions X and Y are statistically close, i.e., for all polynomials p and sufficiently large λ, we have
∆(X,Y) < 1

p(λ) . We use X ≈c Y to mean X and Y are computationally close, i.e., for all PPT adversaries

A, for all polynomials p, then for all sufficiently large λ, we have |Pr[AX = 1]− Pr[AY = 1]| < 1/p(λ).

2.2 Non-Committing Encryption

In this section, we review the notion of non-committing encryption [5]. Essentially, a non-committing
encryption scheme is one where there is an efficient simulator, that can generate public keys and ciphertexts,
such that, at a later point, a corresponding secret key and encryption randomness can be generated which
“opens” the ciphertext to any given message. For security, we require that the distribution on simulated keys
and ciphertexts is computationally indistinguishable from the distribution on keys and ciphertexts generated
by the real encryption protocol. The formal definition is given in Definition 1.

Definition 1 (Non-Committing Encryption).
A cryptosystem PKE = (Gen,Enc,Dec) is called non-committing, if there exists a simulator Sim such that
the following properties hold:

1. Efficiency: The algorithms Gen,Enc,Dec and Sim are all probabilistic polynomial time.

2. Correctness: For any message m ∈M

Pr[Dec(sk, c) = m : (pk, sk)
$← Gen(1λ), c

$← Enc(pk,m)] = 1

3. Simulatability: The simulator Sim = (Sim1,Sim2) For any message m ∈M, define the distributions:

ΛSim
m = {(m, pk, sk, r1, r2) : (pk, c, t)

$← Sim1(1λ), (sk, r1, r2)
$← Sim2(m, t)}

and
ΛReal
m = {(m, pk, sk, r1, r2) : (pk, sk)

$← Gen(1λ; r1), c
$← Enc(pk,m; r2)}

We require that ΛSim
m ≈c ΛReal

m .

We do not explicitly require that the system be semantically secure, this is implied by the simulatability
of the system.

2.3 The Φ-hiding Assumption

The security of our construction rests on the Φ-hiding assumption [4]. Informally, the Φ-hiding assumption
asserts that it is hard to determine whether a given integer, e, divides the size of the group Z∗N when N = pq
is an RSA modulus.

Let PRIMES(λ) denote the set of primes of bit-length λ, and let RSA(λ) denote the set of RSA moduli
of bit-length λ, i.e.,

RSA(λ) = {N : N = pq, p, q ∈ PRIMES(λ/2), gcd(p− 1, q − 1) = 2}

Let RSAe(λ) denote the set of RSA moduli of length λ that Φ-hide e.

RSAe(λ) = {N ∈ RSA(λ) : e divides p− 1}

The Φ-hiding assumption states that a random sample from RSAe(λ) is computationally indistinguishable
from a random sample from RSA(λ).

3

Definition 2 (The Φ-hiding assumption).
For all ε > 0, and for all e ∈ Z such that 3 < e < 2blog(λ/4)c−ε and for all PPT distinguishers, A∣∣∣Pr[A(N, e) : N

$← RSA(λ)]− Pr[A(N, e) : N
$← RSAe(λ)]

∣∣∣ < ν(λ)

For some negligble function ν(·).

The original Φ-hiding assumption stated that RSAe(λ) and RSAe′(λ) are indistinguishable for all 3 < e ≤
e′ < 2λ/5. For simplicity, we use a slightly modified assumption (i.e., that RSAe(λ) ≈c RSA(λ)). All of our
constructions go through essentially unchanged under the original Φ-hiding assumption, except that the key
generator would have to choose an e to sample from RSAe(λ) and then ignore e throughout the protocol.

The bound e < 2blog(λ/4)c−ε is necessary to avoid Coppersmith’s attack [9]. The Φ-hiding assumption
was originally used to build efficient Private Information Retrieval (PIR) protocols [4, 13]. In [17] it was
observed that the Φ-hiding assumption turns the RSA map x 7→ xe mod N into a lossy trapdoor function
(LTF) [20]. Kiltz, O’Neill and Smith leveraged the lossiness to remove the random oracle from the proof of
security of RSA-OAEP. More recently, the regularity of the lossy RSA map has been explored [18].

3 Smooth Hash Proofs from Φ-hiding

Our work builds on the notion of smooth hash proof systems as defined by Cramer and Shoup [10]. A
hash proof system for a language, L, is a set of keyed hash functions Hk, along with “public” and “private”
evaluation algorithms for Hk. A hash function Hk (for k ∈ K) takes X → Π.

The public algorithm takes x ∈ L, along with a witness w, and the “projected key” α(k), and outputs
Hk(x). The private evaluation algorithm simply takes x, k and outputs Hk(x). While the public and private
evaluations must match on x ∈ L, if x 6∈ L, the smoothness property says that Hk(x) should be almost
uniformly distributed (even conditioned on α(k)). Formally, we have

Definition 3 (Hash Proof Systems [10]). The set (H,K,X,L,Π, S, α) is a hash proof system if, for all
k ∈ K, the action of Hk on the subset L is completely determined by α(k).

Thus for a hash proof system the projection key α(k) determines the action of Hk on L. We also require
that given x ∈ L, and a witness w, along with the projection key α(k) then the hash value Hk(x) can be
efficiently computed. This is called the public evaluation algorithm.

A hash proof system is smooth if the projected key α(k) encodes almost no information about the action
of Hk(·) outside L.

Definition 4 (Smooth Hash Proof Systems [10]). Let (H,K,X,L,Π, S, α) be a hash proof system, and
define two distributions Z1, Z2 taking values on the set X \L×S×Π. For Z1, we sample k ← K, x← X \L,
and set s = α(k), π = Hk(x), for Z2 we sample k ← K, x← X \L, and π ← Π, and set s = α(k). The hash
proof system is called ν-smooth if ∆(Z1, Z2) < ν.

We will call an infinite family of hash proof systems smooth if the family is ν-smooth for some negligible
function ν. For a language, L with no polynomial-time distinguisher, smooth hash proof systems immediately
imply IND-CPA secure encryption by letting k be the secret key, α(k) be the public key, and to encrypt a
message m ∈ Π you sample x ∈ L along with a witness and use the public evaluation algorithm to output
E(m) = (x,Hk(x) +m).

We begin by describing a simple smooth hash proof system from the Φ-hiding assumption. Building
a hash proof system based on Φ-hiding is straightforward, because Φ-hiding essentially implies that the
discrete-log problem is hard1, and then we can used the framework for the original discrete-log based hash
proof systems from [10].

1Suppose g is a generator for the largest cyclic component of Z∗N and let h = gp mod N . If N Φ-hides p, then h most
elements of Z∗N will not be powers of h. On the other hand, if gcd(p, ϕ(N)) = 1, then h will generate the largest cyclic
component of Z∗N . If we had an oracle that could find the discrete-logarithm (with base h) in Z∗N , then we could distinguish
these two cases. For the same reason, the Φ-hiding assumption also implies that the determining membership in the subgroup
of pth powers is hard.

4

• Key Generation: Choose a strong (τ, 2−λ)-extractor2 Ext : {0, 1}d×ZN → {0, 1} Fix a prime p with

2τ < p < N
1
4 . Sample N

$← RSAp(λ) Sample r
$← ZN . Set g = rp ∈ ZN .

Sample an extractor seed, s
$← {0, 1}d.

The language will be the set of pth powers in ZN .3

Sample k
$← ZN Set the projection key, α(k) = gk mod N .

• Public Evaluation: Given x = gw mod N , and a witness, w,

Hk(x) = Exts
(
(gk)w mod N

)
• Private Evaluation: Given the secret key, k, and a point x,

Hk(x) = Exts
(
xk mod N

)
Correctness is easy to verify. To see smoothness, suppose N Φ-hides p. Then, Z∗N has a subgroup of order

p, but g = rp mod N has no component in that subgroup. In particular, h = gk mod N , only depends on
k mod ϕ(N)/p.

Now, if x has full order in the largest cyclic subgroup4 of Z∗N then, assuming gcd(p, w) = 1, the value (xw)k

mod N depends on all of k, and in particular has log p bits of entropy even conditioned on k mod ϕ(N)/p
(and hence the same holds conditioned on gx). Thus the extractor produces an almost uniform value, even
conditioned on the projected key gk mod N .

3.1 A compact hash proof system from the Φ-hiding assumption

In this section, we build a simple IND-CPA secure cryptosystem that will be the foundation of our full
non-committing construction.

• Key Generation: Let ` be the (bit) length of messages that will be encrypted. Choose a strong
(τ, 2−λ)-extractor5 Ext : {0, 1}d × ZN → {0, 1}
Let pi = (i+ 2)nd prime,

(p1, p2, p3, . . .) = (5, 7, 11, . . .)

Let ei = dτ logpi 2e for i = 1, . . . , `. Let qi = peii , thus qi > 2τ .

Sample N
$← RSA(λ).

Sample an extractor seed, s
$← {0, 1}d. Sample a1, . . . , a`

$← ZN . Set

hi =
(
g
∏
j 6=i qi

)ai
mod N

for i = 1, . . . , `.

• Encryption: Given a message ~m = (m1, . . . ,m`) ∈ {0, 1}`

Pick w
$← ZN

~c = (gw mod N, s, c1, . . . , c`)

where
ci = Exts ((hi)

w
)⊕mi

2 In other words, Ext, if X is a random variable supported on ZN with min-entropy at least τ , then if s
$← {0, 1}d the

statistical distance between (s,Exts(X)) and (s, U{0,1}) is less than 2−λ.
3Note that if N Φ-hides p then Z∗N has a cyclic subgroup of order p, and so at most ϕ(N)/p residues in Z∗N that are pth

powers, otherwise all elements in Z∗N will be pth powers.
4If we choose N to be the product of two primes, N1, N2 and gcd(N1 − 1, N2 − 1) = 2, then we have that Z∗N has a cyclic

subgroup of order ϕ(N)/2 = (N1 − 1)(N2 − 1)/2, and we can work in this group.
5 The explicit extractors of [15] give seed length d = O(log logN + log 1/ε) and can extract ω(k) bits where k is the

min-entropy of the source. In our construction, we will only need to extract one bit.

5

• Decryption: Notice that

(hi)
w

=
(

(gw)
Πj 6=iqj

)ai
Thus the receiver, who has ai, can recover mi by setting

mi = Exts

((
(gw)

Πj 6=iqj
)ai)

⊕ ci

The IND-CPA security of this scheme follows immediately from the security of the underlying hash proof
system.

Remark 1: Since messages must be polynomial in the security parameter, λ, we have that ` log ` <
5
√
N ≈ 2λ/5, so the conditions of the Φ-hiding assumption are satisfied.
Remark 2: Although the security follows from the Φ-hiding assumption, the honest receiver does not

need to choose a modulus that Φ-hides anything.
Remark 3: Notice that the factorization of N is never used, and need not be known for decryption.

4 Non-committing encryption from Φ-hiding

The high level idea is as follows: to encrypt a message m the sender encodes the message m using a standard
binary error correcting code. The sender will then flip a small number of bits of the codeword. The sender
then encrypts each bit of this corrupted codeword separately (using different public-keys, but the same
encryption randomness).

The receiver will know only a subset of the total set of possible secret keys. The receiver will decode
only the bits corresponding to the keys he knows. With high probability, the overlap between the receiver’s
decryption keys and the bits of the codeword flipped by the sender will be small enough to be handled by
the error correcting code. The formal scheme is given in Figure 2.

4.1 Probability of Decryption Error

First, we examine the probability of decryption error. It is a simple calculation to verify that the bits in
IR ∩ IS ⊂ [n] will be decrypted correctly. Since IR is uniformly chosen, and the bits in IR ∩ IS are decrypted
correctly while the others will be in error with probability 1

2 , we can bound the probability of decryption
error.

Lemma 1. The probability the receiver decrypts more than δn bits incorrectly is bounded by

Pr[more than δn bits are decrypted incorrectly] ≤ e− 1
2 c

2
rcsn + e−2(crcs2 +δ− 1

2)
2
n/(1− crcs2)

Proof. First, we lower-bound |IR ∩ IS | (recall these bits are always decrypted correctly).
Since IR and IS are both chosen uniformly at random, we can imagine fixing IR and choosing IS at

random. Now, let Xi be the indicator variable indicating whether the ith element of IS is in IR. Let

X =
∑|IS |
i=1 Xi. Thus X = |IR ∩ IS |. Then Pr[Xi = 1] = cr, so E(X) = cr|IS | = crcsn.

Since the Xi are negatively correlated we can apply a Chernoff bound ([12] Thms 1.1 and 4.3) to obtain

Pr[X < E(X)− t] ≤ e−2t2/|IS |

taking t = E(X)
2 = crcsn

2 we have

Pr
[
X <

crcsn

2

]
< e−

1
2 c

2
rcsn

Now, for the elements in [n] \ IR ∩ IS , these have a half chance of decrypting correctly. Let Yi be the
indicator random variable that indicates whether the ith element of [n] \ IR ∩ IS decrypts correctly. Thus

E(Yi) = 1
2 . If we let Y =

∑n−|IR∩IS |
i=1 Yi, we have E(Y) = n−X

2 = (n− |IR ∩ IS |)/2.

6

• Key Generation:
Choose an error correcting code ECC : {0, 1}` → {0, 1}n such that n = O(`) that is recover-

able from a 1
2 − δ fraction of errors.a Sample N

$← RSA(min(λ,O(` log `)). Choose a strong
(τ, 2−λ) extractor Ext : {0, 1}d × ZN → {0, 1}. Let qi = peii where pi is the (i + 2)nd prime
and ei is the smallest integer such that qi > 2τ .

Chooses a random subset IR ⊂ [n], with |IR| = crn. Then

– for i ∈ IR, the receiver chooses ai
$← ZN and sets hi =

(
g
∏
j 6=i qi

)ai
mod N .

– For i ∈ [n] \ IR, The receiver chooses hi
$← ZN .

The receiver will know the decryption key, ki, for the hi with i ∈ IR. The receiver will not be
able to decrypt messages sent under public-keys hi for I ∈ [n] \ IR. As in the basic scheme,
the factorization of N is not part of the secret key, and will not be used for decryption.

public key: {hi}ni=1 secret key: {ai}i∈IR

• Encryption:
Given a message m = m1, . . . ,m` ∈ {0, 1}`, the sender encodes m as (y1, . . . , yn) = ECC(m),

then chooses a random w
$← ZN , and sets x = gw mod N . The sender chooses a random

extractor seed, s
$← {0, 1}d. Then the sender chooses a random subset IS ⊂ [n], with

|IS | = csn and

– for i ∈ IS , the sender sets

ci = Exts ((hi)
w

mod N)⊕ yi

– for i ∈ [n] \ IS , the sender chooses bi uniformly from {0, 1}, and sets ci = bi.

The encryption randomness is {IS , w, s, {bi}i∈[n]\IS}. The sender sends the ciphertext

C = (x, s, c1, . . . , cn) ∈ ZN × {0, 1}d × {0, 1}n

• Decryption:
Given a ciphertext C = (x, s, c1, . . . , cn) and a secret key {ki}i∈IR the receiver decrypts as
follows:

– if i ∈ IR the receiver calculates

y′i = Exts

((
xΠj 6=iqj

)ai)⊕ ci = Exts

((
(gw)

Πj 6=iqj
)ai)

⊕ ci = Exts

((
(gai)

Πj 6=iqj
)w)

⊕ ci

– if I ∈ [n] \ IR the receiver sets y′i = ⊥.

Given y′1, . . . , y
′
n the receiver decodes using the decoding algorithm for ECC to obtain a

message m′1, . . . ,m
′
`.

aConstant rate binary codes that can efficiently recover from a 1
2
− δ fraction of errors exist in the bounded

channel model [19].

Figure 2: Non-committing encryption from Φ-hiding

7

Now X is the size of |IR∩ IS | and Y is the number of bits outside of IR∩ IS that are decrypted correctly.
So the probability that more than δn of the bits are decrypted incorrectly is

Pr [X + Y < (1− δ)n]

= Pr [Y < (1− δ)n−X]

= Pr [Y < E(Y)− (E(Y)− (1− δ)n+X)]

= Pr

[
Y < E(Y)−

(
n−X

2
− (1− δ)n+X

)]
= Pr

[
Y < E(Y)−

(
X

2
−
(

1

2
− δ
)
n

)]
= Pr

[
Y < E(Y)−

(
X

2
−
(

1

2
− δ
)
n

)∣∣∣∣X <
crcsn

2

]
Pr
[
X <

crcsn

2

]
+ Pr

[
Y < E(Y)−

(
X

2
−
(

1

2
− δ
)
n

)∣∣∣∣X ≥ crcsn

2

]
Pr
[
X ≥ crcsn

2

]
≤ e− 1

2 c
2
rcsn + Pr

[
Y < E(Y)−

(
X

2
−
(

1

2
− δ
)
n

)∣∣∣∣X ≥ crcsn

2

]
≤ e− 1

2 c
2
rcsn + Pr

[
Y < E(Y)−

(
crcs

2
+ δ − 1

2

)
n

∣∣∣∣X ≥ crcsn

2

]
≤ e− 1

2 c
2
rcsn + e−2((crcs2 +δ− 1

2)n)
2
/((1− crcs2)n) (X ≥ crcsn

2 and Chernoff)

≤ e− 1
2 c

2
rcsn + e−2(crcs2 +δ− 1

2)
2
n/(1− crcs2)

In the second to last line, recall that X is the number of summands in Y so the Chernoff bound for Y
gets better as X increases.

Note that to apply Chernoff, we need crcs
2 + δ− 1

2 > 0, in other words δ > 1
2 −

crcs
2 . Thus we will need a

code ECC that can correct from an error-rate of 1
2 −

crcs
2 . This can be achieved, and in fact constant-rate

codes that can recover from a δ fraction of errors exist for any δ < 1
2 in the bounded channel model [19].

5 The Simulator

The simulation game in a non-committing encryption proceeds as follows: the simulator generates a public-
key and a ciphertext. The adversary then chooses a target message, and the simulator must produce a
secret key and encryption randomness such that the entire ensemble of public-key, secret key, ciphertext,
encryption randomness and target message is indistinguishable from a valid run of the key-generation and
encryption algorithms encrypting the target message.

• Key Generation: As in the real scheme the simulator makes use of an error correcting code ECC :
{0, 1}` → {0, 1}n, and an extractor Ext : {0, 1}d × ZN → {0, 1}.
Note that unlike the valid sender and receiver, the simulator will need the factorization of the RSA
modulus N (details below).

– The simulator chooses a random extractor seed s
$← {0, 1}d.

– The simulator uniformly chooses a subset Igood ⊂ [n] of size cgn, and sets Ibad = [n] \ Igood. Let

cb = |Ibad|
n = 1− cg.

– The simulator generates an Φ-hiding modulus, N , such that N Φ-hides qj for j ∈ Ibad.6

6 This means that N ≥
(∏

j∈Ibad
qj

)5
to avoid Coppersmith’s attack. Since |Ibad| = O(n), and the pi ≈ i log i by the

Prime Number Theorem, we have N ≈ (n logn)O(n), which implies logN = O(n logn).

8

– The simulator chooses r
$← ZN and sets g = r

∏
j∈Ibad

qj mod N .

– The simulator then chooses keys ai
$← ZN for i = 1, . . . , n.

– The simulator then outputs:

public parameters: N, g Public key:{hi}ni=1

The public-key will be the collection {hi}ni=1. A crucial point of our scheme is that the simulator knows
the decryption keys for all hi for all i, and will be able to decrypt for all i ∈ Igood, unlike in the real
scheme, where the receiver only knows the keys for some smaller subset IR.

• Ciphertext Generation:

– The simulator generates w
$← Zn

– The simulator partitions Igood into two random disjoint sets A1 and A0, with |A1| ≈ |A0| ≈ cgn/2,
and A1 ∪A0 = Igood.

– For i ∈ A1, the simulator sets ci = Exts(h
w
i mod N) ⊕ 1 and for i ∈ A0, the simulator sets

ci = Exts(h
w
i mod N).

– For i ∈ Ibad the simulator chooses a random bit bi and sets ci = bi.

The simulator outputs the ciphertext

C = (x, s, c1, . . . , cn) ∈ ZN × {0, 1}d × {0, 1}n

• Simulating Encryption Randomness: After generating a public-key and a ciphertext, the simulator
is given a target message m∗. The simulator calculates y∗ = ECC(m∗).

The receiver chooses the set IS as follows: Let M1 = {i : y∗i = 1}, and M0 = {i : y∗i = 0}.
If |M1 ∩A1 ∪M0 ∩A0| < csn the simulator outputs ⊥.

We show in Section 5.1 that this happens with negligible probability.

Otherwise, the simulator samples csn elements uniformly from M1 ∩ A1 ∪M0 ∩ A0 and calls this set
IS .

• Generating the Secret Key: If |M1 ∩A1 ∪M0 ∩A0| < crn the simulator outputs ⊥.

We show in Section 5.1 that this happens with negligible probability.

Otherwise, the simulator samples crn elements uniformly from |M1 ∩A1 ∪M0 ∩A0| and calls this set
IR. Since A1 ∪ A0 = Igood, and the receiver knows all the secret keys corresponding to the indices in
Igood the simulator can output ai for i ∈ IR.

5.1 Good randomness and secret keys exists with overwhelming probability

The simulator outputs ⊥ if |M1∩A1∪M0∩A0| < max(cr, cs)n, thus we need to show that this happens with
only negligible probability. Recall that Mi is the set of indices where the (encoded) target message has value
i, whereas Ai is the set of indices where the ciphertext encrypts value i. The sets Ai were chosen uniformly
at random, and the sets Mi were adversarially chosen (since they are determined by the adversary’s choice
of message).

We begin by showing that |M1 ∩ A1 ∪M0 ∩ A0| will be large if M0,M1 were chosen independently of
A0, A1. Then we will argue that the adversary cannot do much better than choosing M0,M1 independently.

If M0 and M1 were chosen independently of A0, and A1, then the probability that the simulator outputs
⊥ can be bounded by Chernoff.

In particular, we have E(|Mi ∩Ai|) = |Ai||Mi|
n =

cg|Mi|
2 (since |Ai| = cg

2 n).

Pr

[
|Mi ∩Ai| <

cg|Mi|
2
− cg|Mi|

4

]
< e−2

cg|Mi|
2

8n

9

Since |M0|+ |M1| = n, at least one of the |Mi| will have |Mi| ≥ n
2 , thus

Pr
[
|M1 ∩A1 ∪M0 ∩A0| <

cgn

8

]
< e−2

cgn

32

which is negligible in n. Thus we have the desired result whenever max(cr, cs) <
cg
8 .

Now, the sets M0,M1 are not independent of A0, A1 because they were generated adversarially after
seeing the ciphertext C (which encodes A0, A1). Since the adversary is polynomially-bounded, and the sets
A0 and A1 are hidden by the semantic security of the underlying Φ-hiding based encryption, a standard
argument shows that if the adversary could cause |M1 ∩ A1 ∪M0 ∩ A0| > min(cr, cs)n with non-neglible
probability, then this adversary could be used to break the Φ hiding assumption. (Note that the simulator
does not need the factorization of N to determine the size |M1 ∩A1 ∪M0 ∩A0|.)

5.2 Simulating the Choice of w

5.2.1 Simulating w

Most of the technical difficulty in this construction lies in finding a suitable w∗ for the simulator to output.
Since gw mod N is part of the ciphertext, gw

∗
= gw mod N .

Since g is a power of qj for all j ∈ Ibad this means w = w∗ mod ϕ(N)/(
∏
j∈Ibad qj). If we simply output

w∗ = w, the adversary can distinguish the simulator’s output from a true output.
In a valid encryption for i ∈ [n] \ Is about half of the ci should equal Exts(h

w
i mod N) + yi, but if the

simulator simply outputs w∗ = w, by using w∗ to “decrypt” ci for i ∈ [n] \ IS and the adversary will find
that many fewer than half the locations i ∈ [n] \ Is match the encoded message. In the next section we will
provide an algorithm for choosing w∗.

5.2.2 Finding a target set T

The simulator will have revealed secret keys for all i ∈ IR ⊂ M1 ∩ A1 ∪M0 ∩ A0 ⊂ Igood. The simulator
cannot lie about values whose indices are in Igood.

From the adversary’s view, for i ∈ [n] \ IS the encryptions ci will be encryptions of y∗. In an honest
execution of the encryption algorithm, for i 6∈ [n] \ IS , the encryptions, ci should be uniformly random (in
particular, they should be independent of y∗).

Thus the simulator needs to choose values in Ibad so that the ci for i ∈ [n] \ IS encrypt values that are
uniformly distributed on {0, 1}. This is because the honest encrypter will choose ci at random for i 6∈ IS .

Let αb = {i ∈ Igood \ IS : Exts (gw mod N) ⊕ b = ci}. Thus αb denotes the number of indices that are
encryptions of b (that the simulator cannot change).

In an honest execution, the number of encryptions of 0 that an adversary sees in [n] \ IS is binomially
distributed with parameters n− |IS | = (1− cs)n and 1

2 .
The simulator will sample a random variable, X, whose distribution is a binomial, shifted by α1.

Pr[X = j] =

(
(1− cs)n
j + α1

)(
1

2

)(1−cs)n

for j = −α1, . . . , (1− csn)− α1

If X > cbn or X < 0 then the simulator will return ⊥.7

Otherwise, the simulator will choose a random subset of Ibad of size X, and set those X elements 1, and
the remaining cb −X elements to 0.

7Chernoff says that this happens with negligible probability. In particular, by Chernoff

Pr[X < 0] < e
−2

(
(1−cs)n

2
−α1

)2
(1−cs)n

and

Pr[X < cbn] < e
−2

(
cb−

(1−cs)n
2

)2
(1−cs)n

(see for example [5] Claim 4.6)

10

If we denote Ibad = {i1, . . . , icbn}, then the simulator has chosen {tij}
cbn
j=1 so that exactly X of the tij are

1, and cbn−X of the tij are 0.
Now, consider the distribution of encryptions of 1 in the set [n] \ IS . There are exactly α1 + X ones

in that set, and assuming the simulator does not output ⊥, the probability of this occurring is exactly(
(1−cs)n
α1+X

) (
1
2

)(1−cs)n
which is exactly the binomial distribution.

5.2.3 Calculating w∗

Denote Ibad = {i1, . . . , icbn}. For i ∈ Ibad the simulator has set hi =
(
g
∏
j 6=i qj

)ai
=

((
r
∏
j∈Ibad

qj
)∏

j 6=i qj
)ai

mod N . For the bad set Ibad the ciphertexts are “lossy”, so the smoothness of the hash proof system makes
the ciphertexts non-binding. Suppose the simulator has chosen target values {ti}i∈cbn ⊂ {0, 1}cbn (using the
methods in the previous section). The simulator’s goal is for cij to be an encryption of tj for j = 1, . . . , cbn.
We will show how the simulator can choose a w∗ so that cij looks like an encryption of tj for j = 1, . . . , cbn.
In particular, this means

Exts

(
hw
∗

ij mod N
)

= cij ⊕ tj for j = 1, . . . , cbn

Now, w∗ = w mod ϕ(N)/
(∏

j∈Ibad
qj

)
. The simulator then runs the following iterative algorithm

(Algorithm 1) to find w∗. (Recall: Ibad = {i1, . . . , icbn}.)

Algorithm 1 Calculating w∗

w∗ = w
for j = 1, . . . , cbn do

while Exts
(
gw
∗

mod N
)
6= cij ⊕ tj do

w∗ = w∗ + ϕ(N)/qij mod ϕ(N)
end while

end for

First, notice that at every step w∗ = w mod ϕ(N)/
∏
j∈Ibad qj . Second, notice that when processing

target index ij ∈ Ibad, the value of w∗ does change modulo qij , but not for any other primes qk ∈ Ibad \ {ij}.
Since g is not a qij th power, the value gw

∗
changes as w∗ changes modulo qij . Thus the expected running

time of the while loop is only 2.

6 Efficiency and Parameters

A codeword in our cryptosystem is given by

C = (x, s, c1, . . . , cn) ∈ ZN × {0, 1}d × {0, 1}n

Since x ∈ ZN , s ∈ {0, 1}d, and ci ∈ {0, 1}, the length of the codeword is logN + d + n. Using the explicit
extractors of [15], we can set the seed length d to be O(log logN+log 1/ε), so setting ε = 2−λ, we can choose
d = O(λ), and extract bits that are negligibly close to uniform.

Now, the element x ∈ ZN , so |x| = logN . Since the modulus, N , generated by the simulator must
be able to Φ-hide all qj for j ∈ Ibad ⊂ [n]. Thus 5

√
N ≥

∏
j∈Ibad qj to avoid Coppersmith’s attack. Since

|Ibad| = O(n), and the pi ≈ i log i by the Prime Number Theorem so N ≈ (n log n)O(n), which means that
logN = O(n log n). This means the codewords are of length O(n log n+λ+n) = O(n log n). In our scheme,
the plaintext messages are of length `, and n = |ECC(m)| = O(`), so O(n log n) = O(` log `). Thus our
scheme achieves a logarithmic ciphertext expansion. By contrast, the best previously known schemes have
a ciphertext expansion of λ [8]. By assumption, super-polynomial-time calculations in λ are infeasible while
polynomial-time calculations in ` (and hence exponential-time calculations in log(`)) are efficient. Thus
λ� log `, so our scheme achieves an improved ciphertext expansion.

11

λ Security Parameter
` Message length
n Codeword length (n = |ECC(m)| = O(`))
N Φ-hiding modulus (O(n log n) bits)
δ fraction of errors tolerated by ECC (δ > 1

2 −
crcs

2 , so δ = O(1))
cr fraction of indices where receiver can decrypt (cr = O(1))
cs fraction of indices correctly encoded by sender (cs = O(1))
cg fraction of “good” indices known by the simulator (max(cr, cs) <

cg
8)

d Length of extractor seed (d = O(λ))
logN + d+ n Codeword length

n logN Public-key length
crn logN Private-key length

Table 1: Summary of the parameters in our scheme

7 Conclusion

In this work, we constructed the first non-committing encryption scheme with messages of length |m| and
ciphertexts of length O(|m| log |m|). This improves on the best prior constructions which had ciphertexts of
length O(|m|λ) [8]. Like most previous protocols, a public key in our system consists of n public-keys for
which the receiver has decryption keys for only a small subset. The sender then encodes the message using
an error-correcting code, and encrypts each bit of the encoded message using a different key. Since each bit of
the encoded message is encrypted as a separate ciphertext, a blowup of O(λ) seems unavoidable. The main
technical contribution of our work is to show that by using the Φ-hiding assumption, we can encode each
bit of the encoded message using a different key, but the same randomness, thus eliminating the factor O(λ)
ciphertext blowup. Many cryptosystems allow randomness re-use across different keys, (indeed El-Gamal
has this property, and this is the basis of most Lossy-trapdoor function constructions [20, 16]). The difficulty
arises in generating a system where false randomness can be efficiently generated when the randomness is
re-used across multiple keys. To achieve this, we turn to the Φ-hiding assumption [4].

It remains an interesting open question whether this protocol can be generalized, e.g. implemented with
any smooth projective hash proof system, or whether the ciphertext blowup can be reduced to O(1). It
is also open to construct a non-committing encryption scheme with n-bit messages and public-keys of size
O(n+ λ).

References

[1] Donald Beaver. Plug and Play Encryption. In Crypto ’97, pages 75–89, London, UK, 1997. Springer-
Verlag.

[2] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon. Multirecipient Encryption
Schemes: How to Save on Bandwidth and Computation Without Sacrificing Security. IEEE Transac-
tions on Information Theory, 53(11):3927–3943, November 2007.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC, STOC ’88, pages 1–10, New York, NY, USA, 1988.
ACM.

[4] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally Private Information Retrieval
with Polylogarithmic Communication. In Advances in Cryptology: EUROCRYPT ‘99, volume 1592 of
Lecture Notes in Computer Science, pages 402–414. Springer Verlag, 1999.

12

[5] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
639–648, New York, NY, USA, 1996. ACM.

[6] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Composable Two-Party
and Multi-Party Secure Computation. In STOC ’02, 2002.

[7] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty Unconditionally Secure Protocols. In
STOC, pages 11–19, 1988.

[8] Seung G. Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Improved Non-committing En-
cryption with Applications to Adaptively Secure Protocols. In ASIACRYPT ’09, 2009.

[9] Don Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities.
Journal of Cryptology, 10(4):233–260, 1997.

[10] Ronald Cramer and Victor Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Cipher-
text Secure Public-Key Encryption. In - Eurocrypt 2002, volume 2332 of Lecture Notes in Computer
Science, pages 45–64, 2002.

[11] Ivan Damg̊ard and Jesper B. Nielsen. Improved Non-committing Encryption Schemes Based on a Gen-
eral Complexity Assumption. In Crypto ’00: Proceedings of the 20th Annual International Cryptology
Conference on Advances in Cryptology, pages 432–450, London, UK, 2000. Springer-Verlag.

[12] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, March 2012.

[13] Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval with Constant Com-
munication Rate. In Automata, Languages and Programming, volume 3580 of Lecture Notes in Computer
Science, pages 803–815. Springer Berlin / Heidelberg, 2005.

[14] Oded Goldreich, Sylvio Micali, and Avi Wigderson. How to Play any Mental Game. In STOC ’87,
pages 218–229, 1987.

[15] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced Expanders and Randomness
Extractors from Parvaresh–Vardy Codes. J. ACM, 56(4), July 2009.

[16] Brett Hemenway and Rafail Ostrovsky. Extended-DDH and Lossy Trapdoor Functions. In PKC 2012,
2012.

[17] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under chosen-plaintext
attack. In Proceedings of the 30th annual conference on Advances in cryptology, CRYPTO’10, pages
295–313, Berlin, Heidelberg, 2010. Springer-Verlag.

[18] Mark Lewko, Adam O’Neill, and Adam Smith. Regularity of Lossy RSA on Subdomains and Its Appli-
cations. In Thomas Johansson and PhongQ Nguyen, editors, Advances in Cryptology EUROCRYPT
2013, volume 7881 of Lecture Notes in Computer Science, pages 55–75. Springer Berlin Heidelberg,
2013.

[19] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal Error Correction Against
Computationally Bounded Noise. In TCC ’05, pages 1–16, 2005.

[20] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC ’08:
Proceedings of the 40th annual ACM symposium on Theory of computing, pages 187–196, New York,
NY, USA, 2008. ACM.

13

