
Obfuscating Circuits via Composite-Order Graded Encoding∗

Benny Applebaum† Zvika Brakerski‡

Abstract

We present a candidate obfuscator based on composite-order Graded Encoding Schemes
(GES), which are a generalization of multilinear maps. Our obfuscator operates on circuits
directly without converting them into formulas or branching programs as was done in previous
solutions. As a result, the time and size complexity of the obfuscated program, measured by
the number of GES elements, is directly proportional to the circuit complexity of the program
being obfuscated. This improves upon previous constructions whose complexity was related
to the formula or branching program size. Known instantiations of Graded Encoding Schemes
allow us to obfuscate circuit classes of polynomial degree, which include for example families of
circuits of logarithmic depth.

We prove that our obfuscator is secure against a class of generic algebraic attacks, formulated
by a generic graded encoding model. We further consider a more robust model which provides
more power to the adversary and extend our results to this setting as well.

As a secondary contribution, we define a new simple notion of algebraic security (which was
implicit in previous works) and show that it captures standard security relative to an ideal GES
oracle.

1 Introduction

General-purpose program obfuscation allows us to transform an arbitrary computer program into an
“unintelligible” form while preserving its functionality. Syntactically, an obfuscator for a function
family C = {CK} is a randomized algorithm that maps a function CK ∈ C (represented by an
identifier K) into a “program” Ĉ ∈ {0, 1}∗. The obfuscated program should preserve the same
functionality as CK while hiding all other information about CK . The first property is formalized
via the existence of an efficient universal evaluation algorithm Eval which, given an input x and
an obfuscated program Ĉ, outputs CK(x). The second property has several different formulations,
most notably Virtual Black-Box (VBB) and Indistinguishability Obfuscation (iO) [BGI+12].

The first candidate general-purpose obfuscator has been introduced by Garg et al. [GGH+13b].
Their work and follow-ups such as [BR14b, BGK+14] relied on Graded Encoding Schemes (GES)
[GGH13a, CLT13] which generalize the more traditional notion of multilinear maps. All these
works share a similar two-step outline. First it is shown how to use the GES to obfuscate func-
tion families from a weak complexity class such as NC1 (the class of polynomial-size circuits with

∗A preliminary version of this paper appears in the proceedings of TCC 2005.
†Tel-Aviv University, bennyap@post.tau.ac.il. Supported by the European Unions Horizon 2020 Programme

(ERC-StG-2014-2020) under grant agreement no. 639813 ERC-CLC, ISF grant 1155/11, Israel Ministry of Science
and Technology (grant 3-9094), GIF grant 1152/2011, and the Check Point Institute for Information Security.
‡Weizmann Institute of Science, zvika.brakerski@weizmann.ac.il. Supported by ISF grant 468/14 and by an

Alon Young Faculty Fellowship.

1

logarithmic depth and bounded fan-in gates), and then the weak obfuscator is bootstrapped into
a general-purpose obfuscator for arbitrary polynomial-size circuits based on low-complexity fully
homomorphic encryption [GGH+13b, BR14b, BGK+14] or on low-complexity pseudorandom func-
tions [GIS+10, App14]. Following [AGIS14], we refer to the first step as the “core obfuscator”.

Somewhat mysteriously, all known core obfuscators are applied to the branching program rep-
resentation of the function. Hence, in order to obfuscate some family of circuits (say in NC1) one
has to first convert the given circuit into a branching program, and only then use the core obfus-
cator. This is both unnatural and inefficient. Indeed, the complexity of existing core obfuscators
(in terms of computation, program size, and number of multilinear levels) grow with the formula
size or branching program size of the obfuscated program, which are polynomially larger than the
circuit size. From a more principal point of view, one may wonder whether the use of branching
programs is inherent or is just a limitation of our current techniques. In this paper, we study the
existence of “direct circuit obfuscators”. Specifically, we ask:

Is it possible to obfuscate a function family C with complexity which is linear in the
circuit complexity of C?

Following [AGIS14], we assume that the family C = {CK} is represented by some universal evalua-
tor U which given an index K of a function CK ∈ C and an input x outputs the value CK(x). The
(circuit) complexity of C is measured by the (circuit) complexity of U and the size of C is measured
by the bit-length of the identifiers K. (These are natural complexity measures which lower-bound
the time/size complexity of the any obfuscator for C. See Remark 1.2.)

1.1 Our Results

We take a step towards answering the above question in the affirmative: We construct new core
obfuscators for any circuit family C, where the size of an obfuscated program, measured by the
number of GES elements, is proportional to the size of C, and its time-complexity, measured by the
number of GES operations, is proportional to the circuit complexity of C. This falls short of a full
answer to the above question since in current GES candidates, the element size depends on the total
evaluated degree, a property which is inherited by our constructions. Our constructions are based on
composite order Graded Encoding Scheme [GLW14], and are proved to achieve indistinguishability
against adversaries which are limited to algebraic attacks allowed in a generic GES model. In fact,
we study two different variants of the generic model (one is weaker than the other) and provide
corresponding constructions in each of these models. Before stating our results, a few words about
generic models are in order.

Generic Graded Encoding Schemes. A Graded Encoding Scheme is parameterized by a ring
R and a top level multiset vzt over the universe [τ]. Intuitively, the GES defines (exponentially)
many encodings of the ring where each encoding is indexed by a multiset v ⊆ vzt. (A multiset is
represented by an integer vector Nτ .) In our first (and weaker) generic model MRG (for Multiple-
encoding Random GES), the encoding of a ring element g ∈ R under an index v, denoted by [g]v, is
distributed uniformly over an exponentially large set of random strings.1 As a result, the adversary

1An alternative way to model a generic attack is to assume that the adversaries is given abstract handles to the
encodings. We prefer the current model due to its simplicity and for the sake of consistency with previous works. We
futrher note that security in the current (random string) model immediately implies security in the “handle model”.

2

can manipulate encodings only via the use of a GES oracle that supports some restricted set of
“legal” operations. In particular, the adversary is allowed to: (1) compute addition/subtraction
for encodings that share the same index [g]v ± [g′]v = [g± g′]v; (2) multiply elements with distinct
indices as long as the union of their indices is still a subset of vzt, i.e., [g]v × [g′]v′ = [g · g′]v⋃

v′ ;
and (3) zero-test a top-level encoding, i.e., isZero([g]vzt) = 1 ⇔ g = 0. In this model we prove the
following theorem:

Theorem 1.1. There exists an indistinguishability obfuscator SimpleObf with respect to MRG for
any circuit family C in NC1. Moreover, for a function family C = {CK}K∈{0,1}m which is indexed
by m-bit strings, operates on n-bit inputs, and can be universally computed by a t-size circuit of
depth d, the following hold:

• (Size) The obfuscated program contains 4n+ 2m+ 2 ring elements.

• (Evaluation complexity) The complexity of the evaluation algorithm is O(t), and it can be
represented as an O(t)-size arithmetic circuit with oracle gates to the GES oracle.

• (GES parameters) The underlying ring is a composite order ring Zp1 × Zp2 where p1 and p2

are large co-primes (whose bit length is polynomial in the security parameter) and the L1

norm of the zero-testing level vzt is upper-bounded by 2d.2

Remark 1.2. The above parameters are essentially optimal (up to the dependency in the element
size of the GES and the security parameter). Indeed, by the correctness property, any obfuscation
scheme for C with size M and evaluation complexity T naturally defines an M -bit length indexing
for C and a corresponding T -time universal evaluation algorithm. Hence, the size/time-complexity
of the obfuscated program cannot beat the size/complexity of C.

While the above scheme has a fairly low overhead, it relies on a strong generic model. Specifi-
cally, the scheme becomes insecure if the adversary manages to zero-test element whose encoding
[g]v lies in a low-level v vzt. This vulnerability puts a strong restriction on the class of poten-
tial implementations. For example, GES in which each ring element has a unique encoding (in
each level) cannot be used as it trivially permits low-level zero-testing.3 Note that known candi-
dates for bilinear maps have exactly this property. Currently, only few candidates for GES are
known [GGH13a, CLT13], and based on our current understanding, it is possible to tweak these
candidates into forbidding low-level zero-testing.4 Still, it is desirable to obtain results in a more
robust model which allows the adversary to zero-test low-level encodings. Formally, we define a

Since our model only gives more power to the adversary and not to the honest user (since correctness should hold
even for non random GES instantiations).

2The L1 norm of vzt essentially corresponds to the (maximal) total degree of polynomials that can be evaluated
on the GES elements. The upper-bound of 2d can be replaced with the more refined bound of the total degree
of the universal evaluation algorithm. All known instantiations of graded encoding schemes require that ‖vzt‖1 is
polynomial in the security parameter, hence the importance of bounding this parameter.

3To test if [g]v is an encoding of zero simply check if the string [g]v + [g]v equals to [g]v.
4It may be surprising that such tweaking could exist, since one can always increase the level from v to vzt by

multiplying with a non-zero element of level (vzt−v). However, in known instantiations, it is possible generate public
parameters that cannot be used for generating new encodings, thus restricting the adversary to only have access to
those levels provided in the obfuscated program. Those, in turn, are designed so there is no way to obtain an encoding
at level (vzt−v) for “dangerous” values of v. (This is somewhat similar to the “straddling sets” technique [BGK+14].)

3

different ideal GES oracle URG (for Unique-encoding Random GES) which, for every level v, as-
signs for every ring element g ∈ R a unique (randomly chosen) encoding. In this model, we prove
the following result.5

Theorem 1.3. There exists an indistinguishability obfuscator RobustObf with respect to URG for
any circuit family C in NC1, where the URG oracle is defined over an (n + 2)-composite order
ring R = Zp1 × · · · × Zpn+2. Furthermore, the size, evaluation complexity and the L1 norm of the
zero-testing level are exactly as in Theorem 1.1.

The use of O(n)-composite order rings introduces an indirect efficiency overhead. Indeed, the
description length of ring elements and the computational cost of oracle operations now grow with
the input length n (and the security parameter). It is important to note that this overhead is
independent of the size/complexity of C, and so, for sufficiently large/complicated circuit families,
we may still get an asymptotic advantage over alternative branching-program based approaches.

Definitional contribution. As already mentioned, we prove security relative to an ideal GES
oracle (either URG or MRG). Towards this goal, we propose a new algebraic abstraction of
canonical GES-based obfuscators and define a corresponding notion of algebraic security (which was
explicit in [BR14b, BGK+14, AGIS14]). Roughly speaking, a GES-based obfuscator is in canonical
form, if given a program identifier K, it samples a tuple a = (a1, . . . , a`) from the underlying ring
R, and then outputs a GES-encoding of these elements under the labels (v1, . . . ,v`) which depend
only on the length parameters but otherwise are independent of the program identifer. Hence, an
obfuscator is essentially a mapping from a program identifier K to distribution DK over R`.

For algebraic security, an adversary A is a polynomial over ` variables (described by an arith-
metic circuit) which is evaluated over the tuple a = (a1, . . . , a`) sampled from DK . The outcome
of the attack is the bit isZero(A(a)). Security requires the existence of a simulator S that given an
oracle access to CK can predict isZero(A(DK)) with all but negligible probability.

Abstracting previous works, we show that algebraic security implies (standard) security relative
to an ideal GES oracles.6 Note that algebraic security considers only a static attack (a single query
to DK) whereas standard security (VBB or iO) corresponds to an adaptive game with possibly many
queries. Correspondingly, algebraic security is much easier to work with. (Indeed, a notable part
of the proofs of [BR14b, BGK+14] is devoted to essentially reducing standard security to algebraic
security.) More importantly, algebraic security does not depend on the GES oracle at all. As such,
it crystalizes the information-theoretic properties that are required in order to achieve security in
an ideal GES model. We hope that this abstraction will be valuable for future constructions, and
that our general lemma (algebraic security ⇒ standard security) will allow to work directly with
algebraic security.

5It is important to emphasize that the honest parties (the obfuscator and evaluator) do not exploit the fact
that elements have unique encodings, as they are required to work with respect to any GES implementation. (See
Section 3). Therefore, the URG model is strictly better than theMRG model in the sense that an obfuscation which
is secure relatively to URG is also secure relatively to MRG. The reverse direction does not necessarily hold as
demonstrated by SimpleObf from Theorem 1.1.

6The difference between URG and MRG will arise by putting different syntactic restrictions on the class of
“legal” polynomials A. Furthermore, an efficient simulator corresponds to VBB security while inefficient simulator
corresponds to indistinguishability obfuscation.

4

1.2 Our Techniques

To illustrate our techniques let us consider the following simplified physical model. The obfuscator
is allowed to put ring elements in locked boxes (marked by multisets) and everyone can add/multiply
boxes at most T times. After performing T operations the box is opened only if its content is equal
to zero.

A naive way to obfuscate a function CK in this model is to put the identifier’s bits K1, . . . ,Km

in m separate boxes (labeled by v1, . . . ,vm), and prepare for each input xi a pair of boxes (labeled
by vi,0,vi,1) with the values 0 and 1. Given these boxes and an input x, the evaluator can choose
the boxes vi,xi , propagate the values according to the (arithmetization of the) universal circuit
Û(·, ·) and obtain a box which holds the value Û(x,K). Assuming that the circuit’s size is T , the
resulting box will be opened if and only if CK(x) = 0.

This construction is insecure for several reasons. First and foremost, one can ignore the structure
of the universal circuit Û and compute any other T -size circuit F (x,K). As a result one can easily
extract the identifier K and completely learn the function. We resolve this problem via a novel use
of authenticators. Assume that the each box has two slots. We keep the second slot untouched as
in the previous obfuscator, and fill the first slot with n + m random authenticators y1, . . . , yn+m

where the zero-box and the one-box that correspond to the same input variable xi share the same
authenticator yi. In addition, let us add another box (labeled by v0) that contains the pair (0, y0)
where y0 = Û(y1, . . . , yn+m), and let us increase the bound on the number of operations to T + 1.
Given an input x, we can apply Û to the boxes vi,xi , obtain a box with the pair (Û(x,K), Û(y)),
subtract the result from the last v0 box and check for zero.

In terms of security, we are now protected from attacks that respect the input x. Specifically,
if the adversary apply some (n + m + 1)-variate polynomial F (V0, (V1, . . . , Vm), (V ′1 , . . . , V

′
n)) 6=(

Û((V ′1 , . . . , V
′
n), (V1, . . . , Vm)) − V0

)
to the boxes v0, (v1, . . . ,vm), (v1,x1 , . . . ,vn,xn) for some x ∈

{0, 1}n, then the result is almost surely non-zero. To see this, let us focus on the first slot of
F (v0, (v1, . . . ,vm), (v1,x1 , . . . ,vn,xn)) and substitute y0 = Û(y1, . . . , yn+m). Then the polynomial F
simplifies to a non-trivial low-degree polynomial over the random values y1, . . . , yn+m and therefore
(by Schwartz-Zippel) vanishes with negligible probability.7

We adopt the above outline to the GES setting where the two-slot boxes are emulated via the
use of a composite-order ring R = Zp1 × Zp2 where p1, p2 are two (large) co-prime integers. Note
that there are still several technicalities. First, unlike the simplified boxes model, in the GES
setting, addition can be applied only over encodings from the same level. We solve this problem

by representing each value w ∈ R by a pair ([r]v, [r · w]v) where r
R← R is a (unique) randomizer.

This “El-Gamal” encoding (which was also used in prior works, cf. [BR13]) naturally supports
addition and multiplication. Namely, if two ring elements w,w′ are in El-Gamal form ([r]v, [rw]v)
and ([r′]v′ , [r

′w′]v′) then their sum can be computed by “cross-multiplication” and their product
can be computed by computing component-wise product.

In addition, the resulting construction is vulnerable to “input-mixing” attacks in which the
adversary uses two boxes vi,0,vi,1 which correspond to the same input variable. We solve this
issue via the use of straddling sets similarly to [BGK+14]. Roughly speaking, straddling sets force
consistency by making sure that input-mixing attacks cannot reach to the top (zero-testing) level.
These modifications eventually lead to our basic obfuscator SimpleObf.

7The above argument is somewhat inaccurate as one has to take into account the case where F is a multiple of
(Û(· · ·)− V0). A formal proof appears in Section 5.

5

Interestingly, SimpleObf is completely broken if low-level zero-testing is allowed. Recall that yi
is shared among the zero and one encoding of the i-th input. Therefore, one can zero-out yi in a
low-level encoding by subtracting their El-Gamal encodings, thus obtaining an element that has
zero in one of the slot. At this point one can zero-out all authenticators as well, and fully recover
the string K using low-level zero-testing.

Solving this issue is the main technical challenge addressed by our more robust obfuscator
RobustObf. As a first step, we add more slots to the encoding (using (n + 2) subrings R =
Zp1 × . . . · · ·Zpn+2) and make sure that the pair of encodings which share the same yi, hold distinct
(random) values on all other slots. In order to preserve the functionality we must allow the honest
evaluator to zero-out the additional slots (while preventing the adversary from doing so in a low-
level). To this end, we publish some auxiliary elements ŵi whose i-th slot is zero. We publish two
copies of each ŵi, each in a different level v̂i,0, v̂i,1, and an appropriate straddling set structure that
guarantees that the v̂i,0 copy can only interact with vi,0 and vice versa. Now, if the previous attack
is sought, the attacker will attempt to subtract vi,0 from vi,1, but then it will need to multiply by
one of v̂i,0 or v̂i,1. Since both operations are forbidden by the straddling sets, the attack seems to
be prevented.

Alas, we recall that functionality needs to hold as well. The element w0, which generalizes the
y0 that we had before, now must have 0 in all of the new slots, since after the honest evaluator
finishes multiplying with the ŵ values, it needs to compare against w0. This leaves us vulnerable to
an attacker that will use w0 instead of the ŵ to zero out coordinates ahead of time. To solve this last
problem, we present our final trick, the shifted El-Gamal encoding. Instead of encoding ([r]v, [rw]v),
we will now use ([r]v, [rw]v+v∗), where v∗ is a special vector used by all of the encodings. The result
of this change is that now, if addition/subtraction is performed, the v∗ part of the result is the
same as of the operands, but if multiplication is performed, the v∗ part is the sum of the v∗’s of the
operands. Therefore the v∗ part keeps track of the multiplicative degree of the evaluation process.
Finally, the element w0 will be encoded as ([r]v0 , [rw0]v0+Dv∗), where D is the total multiplicative
degree of our evaluation process. This means that one can only add/subtract with w0, and never
multiply (otherwise the v∗ multiple goes beyond D and we set the zero-test level to not allow this).
This prevents misuse of w0 and completes the description of RobustObf.

See Section 4 for the construction and Section 5 for the proof of security.

Remark 1.4 (The degree restriction). Due to noise issues, current instantiations of GES only
support poly(λ)-multiplicative degree. In particular, the representation length of each element is
proportional to the degree. In our context, this restriction translates to a degree restriction on the
universal circuit U .8 For the (typical) case of balanced circuits, this results in a logarithmic-depth
restriction.

1.3 Related Works

Ananth et al. [AGIS14] explored the efficiency of obfuscating formulae. They considered two set-
tings. One where the formula is represented as a sequence of variables and gates, and another more
similar to our formulation where there is a universal evaluator (in the form of a formula in their
case), and the specific function is specified as a key to this evaluator. In the latter case, which
is more relevant for the sake of comparison, they show how to obfuscate classes with formula size
s with obfuscated program size and complexity almost as low as O(s). This is in comparison to

8For our purposes, the degree of a boolean circuit is its formula size.

6

previous methods that used Barrington’s theorem and achieved O(s2) for balanced formulae or
O(s3.64) for unbalanced. Still, their complexity measure remained the formula size of the function
family, whereas in this work we show that one can obfuscate relative to the circuit size of the family
which may be smaller. On the flip side, we use composite order graded encoding schemes that are
even newer and less substantiated (and possibly less efficient) than standard prime-order graded
encoding schemes.

Composite order graded encoding schemes have been used by Gentry, Lewko and Waters [GLW14]
and by Gentry, Lewko, Sahai and Waters [GLSW14] to introduce improved security reductions for
witness encryption and for obfuscation (respectively). In particular they showed that in this setting
one can construct a witness encryption scheme or an obfuscator, and prove security in the standard
model based on exponential hardness assumptions.

Concurrent and Independent Work. In a very recent concurrent and independent work,
Zimmerman [Zim14] presented an obfuscator which is almost identical to our simpler obfuscator
SimpleObf. Zimmerman also presents applications for this new obfuscation method for circuits.
Security is proven in a generic model where zero testing below the last level is impossible, similar
to ourMRG oracle. Both the obfuscator from [Zim14] and our SimpleObf are completely broken in
a more challenging model where it is possible to test for zero at low levels. Our second obfuscator
RobustObf addresses this issue and provides security in the more challenging setting represented by
the GES oracle URG, at the expense of being less efficient. On the other hand, we only prove that
our obfuscators are secure indistinguishability obfuscator in the generic model, whereas [Zim14]
proves the more stringent notion of virtual black box security.

Road map. Section 2 defines Graded Encoding over Composite Order Groups and ideal GES
oracles. Section 3 defines GES-based obfuscation, suggests two alternative security definitions
(standard oracle-based definition and algebraic security) and shows that one implies the other.
Section 4 describes our new constructions and Section 5 is devoted to the proof of their security.

2 Graded Encoding over Composite Order Groups

2.1 General Notation

Partial Order of Natural Valued Vectors. For an integer τ ∈ N, we view vectors in Nτ as
multisets over the universe [τ]. Correspondingly, we define a partial ordering on vectors Nτ which
corresponds to inclusion. In particular, we say that v ≤ w if for all i ∈ [τ] it holds that v[i] ≤ w[i].
If there exists a coordinate i for which the above does not hold, we say that v 6≤ w. We note that
since our vectors are defined over the naturals, this relation is monotonous: If v ≤ w then for all
w′ ∈ Nτ it also holds that v ≤ (w + w′), and dually if v 6≤ w then for all v′ ∈ Nτ it holds that
(v + v′) 6≤ w.

CRT representation. Let σ ∈ N, let p1, . . . , pσ be distinct coprime numbers and let P =∏σ
i=1 pi. Considering the ring ZP , the Chinese Remainder Theorem (CRT) asserts that there is

an isomorphism ZP ∼= Zp1 × · · · × Zpσ such that if a ∼= (a1, . . . , aσ) and b ∼= (b1, . . . , bσ), then
a + b ∼= (a1 + b1, . . . , aσ + bσ) and a · b ∼= (a1 · b1, . . . , aσ · bσ). For a given isomorphism, we will
denote by aJiK the component ai = a (mod pi).

7

2.2 Syntax

We begin with the definition of a graded encoding scheme in composite order groups. The definition
is adapted from [GGH13a] and follow-up works, but our notation deviates somewhat from that of
some previous work.

Definition 2.1 (Graded Encoding Scheme). Let R be a ring, and let vzt ∈ Nτ be an integer vector
of dimension τ ∈ N. A graded encoding scheme for R,vzt is a collection of sets {[α]v ⊂ {0, 1}∗ :
v ∈ Nτ ,v ≤ vzt, α ∈ R} with the following properties:

1. For every index v ≤ vzt, the sets {[α]v : α ∈ R} are disjoint, and so they are a partition
of the indexed set [R]v =

⋃
α∈R[α]v. We slightly abuse notation and often denote a = [α]v

instead of a ∈ [α]v.

2. There are binary operations “+” and “−” such that for all v ∈ {0, 1}τ , α1, α2 ∈ R and for
all u1 = [α1]v, u2 = [α2]v:

u1 + u2 = [α1 + α2]v and u1 − u2 = [α1 − α2]v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation “×” such that for all v1,v2 ∈ Nτ such that v1 +v2 ≤
vzt, for all α1, α2 ∈ R and for all u1 = [α1]v1, u2 = [α2]v2, it holds that

u1 × u2 = [α1 · α2]v1+v2 ,

where α1 · α2 is multiplication in R.

The above definition does not touch upon the computational aspects of graded encoding schemes,
which are described below. We note that there is a difference between the definition below and the
definitions for the prime order definitions.

Definition 2.2 (Efficient Procedures for Graded Encoding Scheme). We consider a graded encoding
schemes (see above) where the following procedures are efficiently computable.

• Composite-Order Instance Generation: InstGen(1λ, 1σ,vzt, 1
‖vzt‖1) outputs the set of parame-

ters params, a description of a Graded Encoding Scheme relative to vzt and relative to a ring
R such that R ∼= Zp1 × · · · × Zpσ , where all pi are pairwise coprime numbers, i.e. R ∼= ZN
for N =

∏
pi.

9

In addition, the procedure outputs a subset evparams ⊂ params that is sufficient for comput-
ing addition, multiplication and zero testing, but may be insufficient for sampling, encoding
or for randomization.

We note that for known GES candidates, the running time of the setup procedure (and all
other procedures) scales with ‖vzt‖1, and hence we require that this value is provided in unary
representation in addition to vzt itself. It is conceivable that more efficient instantiations that
do not require this additional input will be discovered in the future.

9In our security model, we will require that each prime factor of N is chosen from a distribution with roughly
(‖vzt‖1 + ω(log λ)) bits of entropy. See Section 5.

8

• Ring Sampler: samp(params) outputs a “level zero encoding” A ∈ [a]0 for a nearly uniform

a
R← R.

• Sub-Ring Sampler: subsamp(params, i∗), where i∗ ∈ [σ] outputs a “level zero encoding” in a
CRT sub-ring of R. Namely, it outputs A ∈ [a]0 for an element a ∼= (a1, . . . , aσ), such that ai∗

is nearly uniform in pi∗, and for all i 6= i∗ it holds that ai = 0. We stress it is very important
for the security of our constructions that evparams does not enable such functionality.

• Encode and Re-Randomize: encRand(params, i, a) takes as input an index v ≤ vzt and A =
[a]0, and outputs an encoding B = [a]v, where the distribution of B is (statistically close to
being) only dependent on a and not otherwise dependent on A.

• Addition and Negation: add(evparams,A1, A2) takes A1 = [a1]v, A2 = [a2]v, and outputs
B = [a1 + a2]v. (If the two operands are not in the same indexed set, then add returns ⊥).
We often use the notation u1 + u2 to denote this operation when evparams is clear from the
context. Similarly, negate(evparams,A1) = [−a1]v.

• Multiplication: mult(evparams,A1, A2) takes A1 = [a1]v1 , A2 = [a2]v2. If v1 + v2 ≤ vzt,
then mult outputs B = [a1 · a2]v1+v2. Otherwise, mult outputs ⊥. We often use the notation
A1 ×A2 to denote this operation when evparams is clear from the context.

• Zero Test: isZero(evparams,A) outputs 1 if A = [0]vzt, and 0 otherwise.

Noisy encodings. In known candidate constructions, encodings are noisy and the noise level
increases with addition and multiplication operations, so one has to be careful not to go over a
specified noise bound. However, the parameters can be set so as to support O(‖vzt‖1) operations, so
long as InstGen is allowed to run in poly(‖vzt‖1) time, as our function interface compels. This will be
sufficient for our purposes and we therefore ignore noise management throughout this manuscript.

Remark 2.3. Given params, we can use subsamp to efficiently generate level-0 encodings of related
elements, so long as each of their CRT components can be expressed as a polynomial size arithmetic
circuit applied to a set of uniformly distributed variables. These variables may not be shared across
CRT components, but they can be shared between elements. E.g. in a 2-composite GES, one can
generate [((a1 + a2) · a3, b1)]0, [(a3 + a4, b2)]0, [(a1 · a2, b1 + b2)]0 (but cannot generate in addition
[(b1, a1)]0. (Note that the product of level zero-encoding results in a level zero encoding.) Combining
the above with access to encRand allows, given params to encode the aforementioned elements to
arbitrary indices v ≤ vzt.

Remark 2.4. For our application we require that it is intractable to execute subsamp using only
evparams and without access to params. Our application involves an adversary that is given a set
of encodings and evparams. If the adversary is able to perform sub-ring sampling or to modify the
level of an encoded element, then our obfuscator will be insecure.

Further, in our first construction, the adversary should not be able to apply zero-testing to
encodings in level v < vzt, and these encodings need to appear the same as encodings of non-zero
elements. This in turn means that we must forbid the adversary to run samp, encRand as well, since
these will allow to “lift” an encoding from level v to level vzt and run isZero. While this may seem
like a severe limitation, known candidates appear to have this property.

9

Concrete instantiations. The candidate constructions of [GGH13a, CLT13] do not support the
above functionality out of the box. Specifically, [GGH13a] only allows R of prime order, whereas
[CLT13] does natively support composite order groups, but its security features are unclear if sub-
ring sampling is allowed. This issue has been extensively addressed in [GLW14, Appendix B of full
version]. In particular the authors there present a variant of [CLT13] that appears to overcome
the aforementioned security issues. This variant supports a σ-product ring R ∼= (Zp1 × · · · × Zpσ)
where the pi’s are composite numbers with large prime divisors. Note that this is compatible with
our requirements which allow the pi’s to be non-primes. Furthermore, this variant adheres to the
constraints we need to impose as per Remark 2.4. Overall, to the best of our knowledge, this
candidate is consistent with the requirements of our obfuscator (although we prove security only
in a generic model and not under explicit assumptions).

2.3 Ideal GES oracles

We would like to prove the security of our construction against generic adversaries. To this end, we
will use the generic graded encoding scheme model, adapted from [BR13, BR14a, BR14b, BGK+14],
which is analogous to the generic group model (see Shoup [Sho97] and Maurer [Mau05]). Intuitively,
we would like to guarantee that the encoding of a ring element is independent of the element itself,
and so the adversary can manipulate elements only via the GES oracle. One way to formulate this
restriction is to prove security relative to an oracle that implements a truly random GES. We focus
on two particular (inefficient) GES oracles: the unique random generic encoding scheme oracle
URG and the multiple-encoding random GES oracle MRG. Both variants will be defined with
respect to some probability distribution ensemble {Rλ,σ,vzt} over rings.

The URG Oracle. Upon initialization of InstGen(1λ, 1σ,vzt, 1
‖vzt‖1), the oracle URG samples a

ring R R← Rλ,σ,vzt and encodes each element a ∈ R in level v ≤ vzt by a string (v, ρ) where ρ is
random string of length t = (log |R| ·λ). The oracle also releases random private/public parameters
evparams, secparams ∈ {0, 1}λ which are associated with this encoding. From now on, the oracle
supports all the GES-operations with resect to the above encoding. It is not hard to see that the
only way that A can obtain valid encodings is by calls to the oracle URG (except with negligible
probability).

The oracle URG is practically identical to the random GES oracle of [BR14b], and similarly to
that work we will also consider an online variant of URG, or rather a variant that approximates
URG to within negligible statistical distance. This is done by an online polynomial time process,
which samples the representations on-the-fly. Specifically, the oracle will maintain a table of entries
of the form (v, a, labelv,a), where labelv,a ∈ {0, 1}t is the representation of [a]v in URG. The table is
initially empty. Every time URG is called for some functionality, it checks that its operands indeed
correspond to an entry in the table, in which case it can retrieve the appropriate (v, a) to perform
the operation. If the operands are not in the table, URG returns ⊥. Whenever URG needs to
return a value [a]v, it checks whether (v, a) is already in the table, and if so returns the appropriate
labelv,a. Otherwise it samples a new uniform label, and inserts a new entry into the table.

When interacting with an adversary that only makes a polynomial number of calls, the online
version of URG is within negligible statistical distance of the offline version (in fact, the statistical
distance is exponentially small in λ). This is because the only case when the online oracle imple-
mentation differs from the offline one is when when the adversary guesses a valid label that it has

10

not seen (in the offline setting). This can only occur with exponentially small probability due to
the sparsity of the labels. The running time of the online oracle is polynomial in the number of
oracle calls.

Defining Multiple-encoding random GES. We would like to define a similar random oracle
which assigns exponentially many possible encodings for each element in each level. The interface
to this oracle has to be defined carefully. Consider, for example, the case where we have three labels
A,B,C where A = [a]v,B = [b]v, C = [c]v and we compute the term (A + B) × C and the term
A×C +B×C. We have to specify whether the resulting label will be identical or not. We choose
the more conservative approach and assume that in such a case the label will be indeed identical.
In contrast, the labels of A+B and A′+B should disagree when A,A′ are two independent labels of
a (e.g., both A and A′ were generated using two different calls to encRand on some label A0 = [a]0).
To formalize these requirements we define an online version of the Multiple-encoding Random GES
(MRG) oracle.

The (online) MRG Oracle. The oracleMRG is initialized similarly to the URG oracle, except
that each ring element a ∈ R in level v ≤ vzt is encoded by 2λ strings of the form (v, ρi) where ρi
is random string of length t = (log |R| · λ2). Whenever a sampling query is made, MRG generates
an element a from R or the appropriate sub-ring, a uniform length t label, but it also generates
a new formal variable Xi, it then stores the tuple (0, a,Xi, label0,a,Xi) in its table. Whenever an
encRand query is made, again a random label and a new formal variable Xi′ are chosen, and the
tuple (v, a,Xi′ , labelv,a,Xi′) is stored. Whenever an “arithmetic” query is made, MRG looks up
the input labels and finds the appropriate labels in its table, and adds or multiplies the respective
formal variables (which will now become formal polynomial). Thus, the table will now contain
tuples of the form (v, a, poly(~X), labelv,a,poly(~X)), and labels will be unique if the respective formal
polynomials are distinct. Finally, for zero-test queries, MRG will test whether the actual value is
the zero value in R and respond accordingly.

Both oracles support the standard GES operations with respect to the resulting encodings. We
note that URG (which essentially corresponds to the traditional notion of multilinear maps) is more
robust than MRG as it gives more power to the adversary (for example it can easily detect if it
has two encodings of the same element). Specifically, it is not hard to show that if a construction
is secure with respect to URG then it is also secure with respect to MRG. (Formally, the MRG
oracle can be efficiently emulated using a URG oracle.)

3 GES-based Obfuscators

In this section we define the notion of GES-based obfuscators. Our definitions somewhat deviate
from the more traditional definitions formulated in [BGI+12]. Specifically, to allow a more fine-
grained notions of efficiency, we distinguish between the description-length and the time complexity
of the obfuscated program. Furthermore, we adopt the definition to the GES setting and distin-
guish between correctness, which should hold for any syntactically valid (possibly trivial) GES, and
security, which should hold with respect to some “ideal” GES oracle. Finally, we show (Section 3.2)
that for natural GES-based obfuscators, security with respect to ideal oracles boils down to certain
algebraic properties of the obfuscator’s output (referred to as algebraic security). This abstrac-
tion (which was implicit in previous works) allows us to decouple the computational properties of

11

the GES from the information-theoretic properties of the obfuscator. Indeed, the security of our
obfuscator will be established using the algebraic definition.

3.1 Main Definitions

We begin by recalling the notion of efficient function families.

Function family. Let C = {CK}K∈{0,1}∗ be a family of efficiently computable functions, where

for every K ∈ {0, 1}m(n) the function CK operates on inputs of length n. We will assume that C
is represented by a uniform family of polynomial-size universal evaluation circuits U = {Un}n∈N,

where Un maps an identifier K ∈ {0, 1}m(n) and input x ∈ {0, 1}n to the output CK(x). The
computational complexity of C (with respect to the representation U) is the circuit size of U and
the representation size of C is m(n). We say that C is in NC1 if U is computed by polynomial-size
circuits of logarithmic depth.10

GES-based Obfuscators: Syntax. A GES-based obfuscation scheme for a family of efficiently
computable functions C consists of a pair of PPT algorithms: an obfuscator Obf and an evaluator
Eval, which have oracle access to a GES. The input to the obfuscator is an identifier K ∈ {0, 1}m(n)

of a function CK ∈ C, an unary representation of the security parameter 1λ, and an unary represen-
tation 1n of the input length of CK . The obfuscator outputs an obfuscated program Ĉ ∈ {0, 1}∗.
The evaluation algorithm Eval maps an obfuscated program Ĉ, an input x ∈ {0, 1}n, and an unary
representations of the security parameter 1λ to a string y. We note that the efficiency requirement
on the obfuscator Obf implicitly puts a polynomial restriction on the size of the obfuscated program
Ĉ.

Correctness should hold with respect to an arbitrary GES implementation.

Definition 3.1 (Preserving Functionality). A GES-based obfuscation scheme (Obf,Eval) for C is
functionality preserving if for every instantiation of GES G, every n ∈ N, every CK ∈ C where
K ∈ {0, 1}m(n), and every x ∈ {0, 1}n, with all but negl(λ) probability over the coins of Obf,Eval
and the GES oracle G it holds that:

EvalG(1n, 1λ, Ĉ, x) = CK(x), where Ĉ
R← ObfG(1n, 1λ,K).

We define Indistinguishability Obfuscator with respect to some (possibly inefficient) GES in-
stantiation. Our definition is formulated in terms of unbounded simulation which is equivalent to
the more standard indistinguishability-based definition (cf. [BR14b]).

Definition 3.2 (Indistinguishability Security [BGI+12]). A GES-based obfuscation scheme (Obf,Eval)
for C is called an Indistinguishability Obfuscator (iO) with respect to some GES instantiation G if
for every (non-uniform) polynomial size adversary A, there exists a (computationally unbounded)
simulator S, such that for every n ∈ N and for every CK ∈ C where K ∈ {0, 1}m(n):∣∣Pr[AG(1λ, Ĉ) = 1]− Pr[SCK (1|K|, 1n, 1λ) = 1]

∣∣ = negl(λ),

where Ĉ
R← ObfG(1n, 1λ,K). If the simulator can be implemented by (non-uniform) polynomial size

circuits than the obfuscator is Virtually Black-Box (VBB) secure.

10We note that the family of all depth-d size-s circuits for some s(n) ∈ poly(n) and d(n) ∈ O(logn) admit a
universal evaluation circuit in NC1 of size s(n) · 2d(n).

12

We will instantiate the above definition with the ideal oracles URG and MRG defined in
Section 2.3.

3.2 Algebraic Security

In this section we present a notion of security that will be easier to work with, and prove its
equivalence to the random GES model above. This model and the equivalence are implicit in
previous works. As before, we let Rλ,σ,vzt be some ensemble of probability distributions over rings.

Definition 3.3 (Obfuscator in Canonical form). An obfuscator is in canonical form if it can be
presented as follows. (Recall that the obfuscator is given a security parameter 1λ, an input length
1n, and a program identifier K ∈ {0, 1}m(n).)

1. Based on n, the obfuscator deterministically generates ` = `(n) integer-valued vectors v1, . . . ,v`,
a zero-testing vector vzt and a ring arity σ ∈ N.

2. Based on λ,K, n, the obfuscator defines a joint distribution Dλ(n,K) over ` (generic) ring
elements (a1, . . . , a`).

11

3. Then, the obfuscator initializes the GES which samples R R← Rλ,σ,vzt the obfuscator samples
the tuple (a1, . . . , a`) from R according to the distribution Dλ(n,K), and outputs the vector
of encodings ([a1]v1 , . . . , [a`]v`) together with the evaluation parameters evparams.

Overall, such a canonical obfuscator can be defined by the length function ` = `(n), the ring arity
σ(n), the vectors Vn = (v1, . . . ,v`,vzt), the distribution Dλ(n,K), and the ring distribution Rλ,σ,vzt.

Intuitively, an adversary who gets an obfuscated program ([a1]v1 , . . . , [a`]v`) can choose some
polynomial and check if it is evaluated to zero on the ring elements (a1, . . . , a`). Security should
guarantee that such an attack gives no information on the program K beyond what follows from
an oracle access to CK . That is, we would like to have a simulator that given an oracle access to
CK can tell whether a given an adversary A (i.e., some arithmetic circuits) evaluates to zero on
Dλ(n,K).

We will formalize this notion of security in Definition 3.6, but before that we define a family
of ring-independent adversaries. We will focus on the class of purely arithmetic circuits with
arbitrary fan-out. These circuits will not have any constants and will contain only input, addition
and multiplication gates. Since it contains no constants, it is not ring-specific and one can consider
the evaluation of the same circuit over various rings. Formally, each such circuit naturally defines
a polynomial with integer coefficients.

Definition 3.4. A purely arithmetic circuit A is a circuit which contains input gates (no fan-in,
fan out > 0), an output gate (fan-in 1, fan out 0) and operator gates for addition (+), subtraction
(−) and multiplication (×) with fan-in 2 and fanout > 0. The size of A is the number of gates in A.
Given a purely arithmetic circuit A with ` input gates and a ring R, we let PA,R ∈ R[X1, . . . , X`]
denote the `-variate polynomial defined by the circuit A by associating a formal variable Xi with
each input gate. When the subscript R is omitted we view PA as a polynomial over the integers.

11More precisely, the distribution is defined by randomized arithmetic circuits with GES oracle-gates to the under-
lying ring, as explained in Remark 2.3.

13

We will consider adversaries A that respect the GES-indexing, namely, addition and multipli-
cation can be applied only according to the algebra induced by the GES indexing.

Definition 3.5 (V -compatible circuits). A purely arithmetic circuit A is evaluated over the integer-
valued vectors (v1, . . . ,v`) via the following recursive process. The i-th input gate takes the value
vi, a multiplication gate with inputs v,v′ takes the value v + v′, and an addition (or subtraction)
gate with identical inputs v = v′ takes the value v. If there exists an addition (subtraction) gate
with non-identical inputs v 6= v′ then the circuit is defined to be syntactically-illegal. We say that
A is compatible with V = ((v1, . . . ,v`),vzt) if the computation A(v1, . . . ,v`) is syntactically legal
and the level v of the output gate is lower or equal to the zero-test level vzt, i.e., v ≤ vzt. When
v = vzt we say that A is strongly compatible with V .

We can now define a simulation-based definition of security which is parameterized by some
family of arithmetic circuits Aλ.

Definition 3.6 (Algebraic Security). Let A = {Aλ,n} be some class of purely arithmetic circuits
where every circuit A ∈ Aλ,n has `(n) inputs. We say that a canonical obfuscator (`, σ, V,D,Rλ,σ,vzt)
is secure against A if there exists a (possibly unbounded) randomized algorithm S (simulator) such
that for every input length n, function identifier K ∈ {0, 1}m(n), and adversary A ∈ Aλ,n we have∣∣∣∣∣∣ Pr

RR←Rλ,σ,vzt

[PA,R(Dλ(n,K)) = 0]− Pr[SCK (1λ, 1n, A) = 0]

∣∣∣∣∣∣ ≤ negl(λ).

By default, we consider security against the class of all poly(λ, n)-size purely arithmetic circuits
A = {Aλ,n} which are Vn-compatible (resp., strongly Vn-compatible) and refer to this notion as
algebraic security (resp., strong algebraic security).

We note that the case of efficient simulator S corresponds to VBB security and the inefficient
case to the notion of iO. Also, different choices of adversaries A may be considered in order to
capture the operations accessible for the adversary in other generic models. A larger class provides
stronger security. Note that the class of Vn-compatible adversaries is strictly larger than the class
of strongly Vn-compatible, and so security against the former strictly implies security against the
latter.

The following lemma, which is implicit in previous works (cf. [BR14b]), shows that security in
the algebraic model implies security in the generic model.

Lemma 3.7. If a canonical GES-based obfuscator (`, σ, V,D,R) is algebraically secure (resp., strong
algebraically secure) then it is a secure indistinguishably obfuscator relative to the GES oracle URG
(resp.,MRG) over the ring distribution R. Furthermore, if the above holds with efficient simulation
then the conclusion is strengthened to VBB security in the corresponding model.

Since the proof of the lemma is implicit in previous works, we only sketch it here for the sake
of completeness.

Proof Sketch. Our goal is to simulate the view of an adversary BURG(1λ, Ĉ), where Ĉ is pro-
duced by running ObfURG(1n, 1λ,K), using only oracle access to the function CK . Recall that Ĉ
consists of the public parameters evparams together with the labels ([a1]v1 , . . . , [a`]v`) where

~a = (a1, . . . , a`)
R← Dλ(n,K). Since the simulator does not have an access to K, it cannot

14

sample a state ~a from Dλ(n,K) by himself. Instead, we pretend that such a hidden state ~a
was already sampled and show how to “program” the (online-version of the) URG oracle con-
sistently with ~a, without knowing ~a itself. This emulation (which follows the methodologies of
[BR13, BR14a, BR14b, BGK+14]) will employ the algebraic simulator SCKalg promised by Defini-
tion 3.6. Details follow.

On an input (1K , 1n, 1λ) (and oracle access to CK), our simulator S will maintain a list of
triples (A,v, ρ) where A is a purely arithmetic circuit (compatible with Vn) over ` = `(n) formal
variables (α1, . . . , α`), v ∈ Nτ is an integer vector and ρ is a string of length t = (log |Rλ,σ,vzt | · λ).
Throughout the simulation we will view (v, ρ) as the level v encoding that URG assigns to the ring
element obtained by applying A to the hidden state ~a.

At the beginning we initialize the list with ` triples (Ai,vi, ρi) where Ai is the formal polynomial
which outputs αi, vi is the i-th entry of Vn (the index set used by the obfuscator) and ρi is a random
string. We initialize the adversary B with the values Ĉ = ((vi, ρi)i∈[`], evparams). Next, if B issues
an addition query of the form “(v, ρ) + (v′, ρ′)”, we first verify that the labels (v, ρ) and (v′, ρ′)
both appear in the table and that the operation respects V (i.e., v = v′ ≤ vzt). If the verification
fails we return ⊥. Otherwise, traverse the list and find the circuits A and A′ which correspond
to (v, ρ) and (v′, ρ′). For every tuple in the list of the form (v, ρ0, A0), check if the polynomials
(PA +PA′) and PA0 agree on the hidden state (a1, . . . , a`(n)). This check is implemented by calling

the algebraic simulator SCKalg on the circuit (A+A′)−A0. If the answer is positive return the value
(v, ρ0); otherwise, if the answer is negative for all tuples on the list, return (v, ρ) where ρ is a new
random string, and add to the list a new triple (v, ρ, A+A′).

Multiplication and negation queries are performed similarly with the natural modifications (e.g.,
in the case of multiplication one has to verify that (v +v′) ≤ vzt, compare against all (v +v′)-level
triples, and output/store an encoding at level v + v′). The case of a zero-test query (vzt, ρ) is
handled directly by querying the the algebraic simulator SCKalg on the circuit A which appears in
the tuple (vzt, ρ, A) (again, if such a tuple does not appear in the list we may answer ⊥).

It is not hard to verify that, in each call of the adversary, the statistical distance between the
simulator and the real view of B grows by a negligible amount, and so if the number of queries is
polynomially bounded the overall statistical distance is negligible. Furthermore, notice that if the
algebraic simulator is efficient then so is the simulator S.

Let us (briefly) move to the case of algebraic security with respect to strongly Vn-compatible
adversaries. Recall that in this case the algebraic simulator cannot be applied to adversaries whose
output is strictly lower than vzt. This seems problematic as in the course of the simulation we had
to check the equivalence of a pair of purely arithmetic circuits A and B whose output level is below
vzt. More precisely, to emulate the URG oracle we had to check whether A and B are likely to
agree on the hidden state (a1, . . . , a`). This problem vanishes if we only attempt to emulate the
MRG oracle (and so achieve weaker form of security), as in this case it suffices to check whether
A and B are formally-equivalent. Such a check can be done by standard techniques with negligible
error. (E.g., choose a sufficiently large prime p of bit length poly(λ) and check whether A and B

agree on a random vector z
R← Z`p). In fact, such a formal-equivalence check should replace all the

calls to the algebraic simulator (even if the output of A and B is in the vzt level), except for the
ones which correspond to zero-test calls of the adversary B.

15

vi,0 =

 0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0

 , vi,1 =

 0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

 , vi =

 0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0



v̂i,0 =

 0 · · · M [i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

 , v̂i,1 =

 0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M [i] · · · 0 0



v0 =

 0 · · · 0 1
0 · · · 0 1
0 · · · 0 1

 , vzt =

 M [1] · · · M [n+m] 1
M [1] · · · M [n+m] 1
M [1] · · · M [n+m] 1


Figure 1: The level vectors for obfuscator SimpleObf.

4 Description of the Obfuscator and Correctness

4.1 Setting and Definitions

Let C = {CK}K∈{0,1}∗ be a family of efficiently computable functions with n-bit inputs, representa-

tion size m = m(n) and universal evaluator U . Let Û be the arithmetized version of U . Namely an
arithmetic circuit with {+,−,×} gates such that for any ring R, if (x,K) ∈ {0, 1}n+m ⊆ Rn+m,
then Û(x,K) = CK(x). We let DÛ denote the degree of the polynomial computed by Û .

Consider an enumeration of the wires of Û in topological order, such that the first n+m wires
refer to the wires of the x,K inputs. For each wire i, we define a vector si ∈ Zn+m+1 as follows. If
i ≤ n+m, then si = ei (the ith indicator vector). For a wire i which is the output wire of a gate
whose input wires are j1, j2, we define si = sj1 + sj2 . We define the multiplicity of input wire i to
be Mi = sout[i], where “out” is the output wire of Û . (Note that we only used the first (n + m)
coordinates of the vectors. The last coordinate will be utilized in the actual construction for the
purpose of checking the consistency of the computation.)

4.2 The Obfuscator SimpleObf

For all i ∈ [n], b ∈ {0, 1}, we define vi,b ∈ Z(n+m+1)×3 as vi,b = ei ⊗ [b, 1, 1− b]. We further define
v̂i,b = ei ⊗ [(1− b) ·M [i], 0, b ·M [i]].

For all i ∈ {n+ 1, . . . , n+m} we define vi = ei ⊗ [1, 1, 1] and similarly v0 = en+m+1 ⊗ [1, 1, 1].
Lastly, we define vzt = (sout + en+m+1)⊗ [1, 1, 1] ∈ Z(n+m+1)×3. We note that for all x ∈ {0, 1}n it
holds that vzt = v0 +

∑n
i=1(M [i] · vi,xi + v̂i,xi) +

∑n+m
i=n+1M [i] · vi.

We illustrate the various level vectors in Figure 1.

Obfuscator SimpleObf:

• Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C.

• Output: Obfuscated program with the same functionality as CK .

• Algorithm:

16

1. Instantiate a 2-composite graded encoding scheme

(params, evparams) = InstGen(1λ, 12,vzt, 1
‖vzt‖1) .

2. For all i ∈ [n], b ∈ {0, 1}, compute random encodings Ri,b = [ri,b]vi,b as well as encodings of
Zi,b = [ri,b · wi,b]vi,b , where wi,b = (yi, b) and yi is uniform.

3. For all i ∈ [n], b ∈ {0, 1}, compute random encodings R̂i,b = [r̂i,b]v̂i,b as well as encodings of

Ẑi,b = [r̂i,b · ŵi]v̂i,b , where ŵi = (ŷi, β̂i) are uniform.

4. For all i ∈ {n+ 1, . . . , n+m}, compute random encodings Ri = [ri]vi as well as encodings of
Zi = [ri · wi]vi , where wi = (yi,Ki−n), where Ki is the ith bit of the circuit description and
yi is uniform.

5. Compute random encoding R0 = [r0]v0 and Z0 = [r0w0]v0 , where w0 =
(∏

i∈[n] ŵi

)
· (y0, 1)

and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:

• The evaluation parameters evparams.

• For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.

• For all i ∈ {n+ 1, . . . , n+m} the elements Ri, Zi.

• The elements R0, Z0.

We note that all of the required encodings can be efficiently generated using params, as ex-
plained in Remark 2.3.

An important feature of our obfuscator that will be used in the proof is that all of the information
that depends on the circuit CK resides in the second element of the CRT representation, and the
distribution of the first element is completely independent of CK .

4.3 The Obfuscator RobustObf

For simplicity of presentation, we assume w.l.o.g that Û is such that the inputs to every multipli-
cation gate have the same degree (as polynomials in the input variables and program description).
This is straightforward to achieve by adding the constant 1 as one of the elements of the program
description, and multiplying by this variable (raised to the proper degree) to balance the input
degrees.

For all i ∈ [n], b ∈ {0, 1}, we define vi,b ∈ Z(n+m+1)×4 as vi,b = ei ⊗ [b, 1, 1 − b, 0]. We further
define v̂i,b = ei ⊗ [(1− b) ·M [i], 0, b ·M [i], 1].

For all i ∈ {n+ 1, . . . , n+m} we define vi = ei⊗ [1, 1, 1, 1]. We define v0 = en+m+1⊗ [1, 1, 1, 0]
and v∗ = en+m+1 ⊗ [0, 0, 0, 1]. Lastly, we define vzt = (sout + en+m+1)⊗ [1, 1, 1, 0] + (

∑n+m
i=1 ei)⊗

[0, 0, 0, 1] +D ·v∗ ∈ Z(n+m+1)×4, where D = DÛ +n (and DÛ , as defined above, is the degree of the

polynomial computed by Û). We note that for all x ∈ {0, 1}n it holds that vzt = v0 +
∑n

i=1(M [i] ·
vi,xi + v̂i,xi) +

∑n+m
i=n+1M [i] · vi +D · v∗.

We illustrate the various level vectors in Figure 2.

17

vi,0 =


0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0

 , vi,1 =


0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0

 , vi =


0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 1 · · · 0 0
0 · · · 0 · · · 0 0



v̂i,0 =


0 · · · M [i] · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · 1 · · · 0 0

 , v̂i,1 =


0 · · · 0 · · · 0 0
0 · · · 0 · · · 0 0
0 · · · M [i] · · · 0 0
0 · · · 1 · · · 0 0



v0 =


0 · · · 0 1
0 · · · 0 1
0 · · · 0 1
0 · · · 0 0

 , v∗ =


0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
0 · · · 0 1



vzt =


M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1
M [1] · · · M [n] M [n+ 1] · · · M [n+m] 1

1 · · · 1 0 · · · 0 D


Figure 2: The level vectors for obfuscator RobustObf.

Obfuscator RobustObf:

• Input: Circuit identifier K ∈ {0, 1}m where CK ∈ C.

• Output: Obfuscated program with the same functionality as CK .

• Algorithm:

1. Instantiate a (n+ 2)-composite graded encoding scheme

(params, evparams) = InstGen(1λ, 1n+2,vzt, 1
‖vzt‖1) .

2. For all i ∈ [n], b ∈ {0, 1}, compute random encodings Ri,b = [ri,b]vi,b as well as encodings of
Zi,b = [ri,b · wi,b]vi,b+v∗ , where wi,b = (yi, b, ρi,b,1, . . . , ρi,b,n) and yi, ρi,b,j are uniform.

3. For all i ∈ [n], b ∈ {0, 1}, compute random encodings R̂i,b = [r̂i,b]v̂i,b as well as encodings of

Ẑi,b = [r̂i,b · ŵi]v̂i,b+v∗ , where ŵi = (ŷi, β̂i, ρ̂i,1, . . . , ρ̂i,n), where ŷi, β̂i, {ρ̂i,j}j 6=i are all uniform,
but ρ̂i,i = 0.

4. For all i ∈ {n+ 1, . . . , n+m}, compute random encodings Ri = [ri]vi as well as encodings of
Zi = [ri · wi]vi+v∗ , where wi = (yi,Ki−n, ρi,1, . . . , ρi,n), where Ki is the ith bit of the circuit
description and yi, ρi,j are uniform.

18

5. Compute random encoding R0 = [r0]v0 and Z0 = [r0w0]v0+Dv∗ , where w0 =
(∏

i∈[n] ŵi

)
·

(y0, 1, 0, . . . , 0) and y0 = Û(y1, . . . , yn+m).

6. The obfuscated program will contain the following:

• The evaluation parameters evparams.

• For all i ∈ [n], b ∈ {0, 1} the elements Ri,b, Zi,b, R̂i,b, Ẑi,b.

• For all i ∈ {n+ 1, . . . , n+m} the elements Ri, Zi.

• The elements R0, Z0.

As in our previous obfuscator, all of the required encodings can be efficiently generated using
params, as explained in Remark 2.3.

Note that again all of the information that depends on CK appears in the second component
of R, and the distributions in all other components are independent of K.

4.4 Evaluating an Obfuscated Program

We will now describe the evaluator for our obfuscators SimpleObf and RobustObf. Due to their
very similar structure, we are able to present a single evaluator that works for both obfuscators.
In the context of SimpleObf we will define v∗ = 0 and ignore the last n sub-rings of the ring R.

As can be seen in the description of our obfuscator above, the obfuscated circuit is encoded in
the w variables, and each w variable in turn is encoded relative to an r variable. We first show that
these pairs of encodings of r and r ·w can be manipulated algebraically while keeping the invariant
that each value is encoded relative to an r. This is demonstrated by the following procedure.

Procedure PairOp:

• Input: GES evaluation parameters evparams, pairs of encodings
(
R1 = [r1]v1 , Z1 = [r1w1]v1+kv∗

)
,(

R2 = [r2]v2 , Z1 = [r2w2]v2+kv∗
)
, operation op ∈ {×,+,−}.

• Output: Pair of encodings
(
R∗ = [r1r2]v1+v2 , Z = [r1r2 · (w1 op w2)]v1+v2+tk·v∗

)
, where

t = 1 for op ∈ {+,−} and t = 2 for op ∈ {×}. If (v1 + v2 + tk · v∗) > vzt, the procedure
outputs ⊥.

• Algorithm:

1. Compute R∗ = R1 ×R2.

2. If op = × compute Z∗ = Z1 × Z2.

3. If op = + compute Z∗ = Z1 ×R2 +R1 × Z2.

4. If op = − compute Z∗ = Z1 ×R2 −R1 × Z2.

19

We note that PairOp can be applied iteratively to evaluate any arithmetic circuit on pairs of
encodings. The multiplicity of v∗ will be exactly the multiplicative degree of the evaluated circuit.
We can now describe our evaluator for obfuscated programs.

Procedure Eval:

• Input: Obfuscated program as produced by SimpleObf(K) for some identifier K:

O =

(
evparams, {Ri,b, Zi,b, R̂i,b, Ẑi,b} i∈[n],

b∈{0,1}
, {Ri, Zi}n+m

i=n+1, {R0, Z0}

)
,

input x ∈ {0, 1}n.

• Output: Value O(x) ∈ {0, 1}.

• Algorithm:

1. We consider the pairs of elements (Ri,xi , Zi,xi) for i ∈ [n], and Ri, Zi for i = n+ 1, . . . , n+m.
We apply the circuit Û on these pairs of encodings as described above, to obtain a pair:

RU = [rU]vU , ZU = [rU · wU]vU+DÛ
,

where vU =
∑n

i=1M [i] · vi,xi +
∑n+m

i=n+1M [i] · vi and

wU = Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

= (Û(y1, . . . , yn, yn+1, . . . , yn+m), Û(x,K),—)

= (Û(~y), CK(x),—)

where the values denoted by “—” will not matter for correctness so we will not explicitly
mention them to avoid cluttering (recall that the simpler obfuscator SimpleObf does not need
these values at all).

2. We take the product of the pair of elements (RU , ZU) with the pairs (R̂i,xi , Ẑi,xi) to obtain

R̂U = [r̂U]v̂U , ẐU = [r̂U · ŵU]v̂U+Dv∗ ,

where ŵU =
∏n
i=1 ŵi · wU , and

v̂U =

n∑
i=1

M [i] · vi,xi +

n+m∑
i=n+1

M [i] · vi +

n∑
i=1

v̂i,xi = vzt − v0 .

3. We subtract the pair (R̂U , ẐU) from the pair (R0, Z0), to obtain

R′′ = [r′′]v̂U+v0
, Z ′′ = [r′′ · w′′]v̂U+Dv∗+v0

,

20

and we notice that indeed (v̂U +Dv∗ + v0) = vzt and

w′′ = w0 −
n∏
i=1

ŵi · (Û(~y), CK(x),—) =
n∏
i=1

ŵi · (Û(~y)− Û(~y), 1− CK(x),—) .

Recalling that
∏n
i=1 ŵi = (α, β, 0, . . . , 0), for some values α, β, we have that

w′′ = (0, β(1− CK(x)), 0, . . . , 0) .

4. Finally, zero testing is applied to Z ′′. If isZero(Z ′′) = 1 then output 1, otherwise output 0.

5 Generic Security of Our Construction

5.1 Useful Algebraic Tools

We will use the following corollary of the Schwartz-Zippel lemma [Sch80, Zip79].

Fact 5.1. Let σ ∈ N, let p1, . . . , pσ be distinct primes and let P =
∏σ
i=1 pi. Then a multivariate

polynomial of total degree d has at most dσ roots over ZP .

Proof. Consider the CRT representation of root over ZP . Each of its component must be a root
modulo the respective Zpi . By Schwartz-Zippel the polynomial has at most d roots modulo each pi
and therefore there are at most dσ distinct tuples where all components are roots.

For a univariate polynomial P , defined over a field, it holds that (x − a)|P (x) if and only if
P (a) = 0. The following lemma generalizes this fact to the case of multivariate polynomials over
the integers.

Fact 5.2. Let P (x1, . . . , xn) ∈ Z[x1, . . . , xn] and let A(x2, . . . , xn) ∈ Z[x1, . . . , xn] (however x1 does
not appear in A). Then(

(x1 −A(x2, . . . , xn))|P (x1, . . . , xn)
)
↔ P (A(x2, . . . , xn), x2, . . . , xn) ≡ 0 .

Proof. It is a well known fact that the above holds for polynomials over fields, however we wish
to prove that it holds for polynomials over Z as well. Let P,A ∈ Z[x1, . . . , xn] ⊆ Q[x1, . . . , xn]
be as in the lemma statement. We note that composition of integer polynomials is a special case
of composition over the rationals, so the polynomial P (A(x2, . . . , xn), x2, . . . , xn) is defined in the
same way over Z[x1, . . . , xn] and over Q[x1, . . . , xn].

Since Q is a field, it holds that P (A(x2, . . . , xn), x2, . . . , xn) ≡ 0 if and only if

(x1 −A(x2, . . . , xn))|QP (x1, . . . , xn) ,

in other words there exists B(x1, . . . , xn) ∈ Q[x1, . . . , xn] such that

P (x1, . . . , xn) = (x1 −A(x2, . . . , xn)) ·B(x1, . . . , xn) . (1)

21

We will prove next that in fact all of the coefficients of B are integers, namely B(x1, . . . , xn) ∈
Z[x1, . . . , xn], which will prove that

(x1 −A(x2, . . . , xn))|ZP (x1, . . . , xn) ,

and finish the proof of the lemma.
To see this, let d be the individual degree of x1 in P , and define Bi(x2, . . . , xn) ∈ Z[x1, . . . , xn]

such that B(x1, . . . , xn) =
∑d−1

i=0 Bi(x2, . . . , xn) · xi1. We define Pi(x2, . . . , xn) to be such that

P (x1, . . . , xn) =
∑d

i=0 Pi(x2, . . . , xn) · xi1. Using this decomposition, Eq. 1 implies that Pd = Bd−1

and, for every i < d − 1, we have that Pi+1 = Bi − A · Bi+1. Note that all Pi have integer
coefficients by definition. Therefore Bd−1 is an integer polynomials (as it is equal to Pd). Since Bi
can be written as Pi+1 + A · Bi+1, it follows (using induction on i from d− 1 to 0) that Bi is also
an integer polynomial.

Next we present a bound on the size of the coefficients of a polynomial computed by a purely
arithmetic circuit of bounded size and bounded degree.

Fact 5.3. Let C be a purely arithmetic circuit (as per Definition 3.4) of size s and degree d. Then
the polynomial ‖PC‖1 ≤ 2sd (where the norm refers to the `1 norm of the coefficient vector of PC).

Proof. We prove by induction. If the output gate of C is a multiplication gate, then consider the
two circuits representing the input wires to this gate. These circuit have size ≤ (s− 1) and degrees
d1, d2 such that d1 + d2 ≤ d. Therefore by induction we get that ‖PC‖ ≤ 2(s−1)d1 · 2(s−1)d1 ≤ 2sd. If
the output gate is an addition or subtraction gate, then the input wires have size s− 1 and degree
at most d, in which case we get ‖PC‖ ≤ 2(s−1)d + 2(s−1)d ≤ 2sd.

A polynomial is free of some variable or monomial if this variable/monomial does not appear
in its expansion. A formal definition follows.

Definition 5.4. Let P (X1, . . . , Xn) be a polynomial. We say that P is Xi-free if all monomials
that contain Xi take zero value in P ’s coefficient vector. We extend this notation to monomials
and say that P is (

∏
Xdi
i)-free if all monomials that are divisible by (

∏
Xdi
i) take zero value in P ’s

coefficient vector. For a set of monomials {M1, . . . ,Mk} we say that P is {M1, . . . ,Mk}-free if it
is Mj-free for all j = 1, . . . , k.

Obfuscators in El-Gamal form. Recall that a canonical obfuscator is defined by length function
` = `(n), ring arity σ(n), integer-valued vectors (v1, . . . ,v`,vzt), and a distribution Dλ(n,K) over
`(n) ring elements (a1, . . . , a`). A canonical form obfuscator is in El-Gamal form (EG in short) if
the ring elements (ai)i∈[`] can be partitioned to pairs (ri, zi)`/2 where the vector (r1, . . . , r`/2) is a
vector of uniformly and independently chosen ring elements, and zi = ri ·wi for some wi ∈ R. (The
same wi may appear twice and may not be uniformly distributed, and furthermore ri, zi may not
be encoded in the same level.)

Note that both of our obfuscators are in El-Gamal form.

5.2 Admissible Distributions on Composites and Rings

We define the notion of admissible distributions over composite numbers (and by extension over
rings). Intuitively, a probability distribution Nk is k-admissible if it samples a poly(k)-bit integer

22

with the property that the min-entropy of every prime factor of Nk is at least Ω(k). A formal
definition follows.

Definition 5.5. An ensemble of probability distributions {Nk} is k-admissible if Nk samples a
poly(k)-bit integer with the property that the min-entropy of every prime factor of Nk is at least
Ω(k). An ensemble of probability distributions over rings {Rk} is k-admissible if Rk ∼= ZN and the
random variable N is k-admissible.

It is not hard to see that every small fixed integer x is likely to be co-prime to y
R← Nk.

Lemma 5.6. Let Nk be some k-admissible distribution. Then for all x ∈ Z \ {0}, it holds that

Pr
y
R←Nt,k

[gcd(|x|, y) > 1] ≤ log |x| · poly(k) · 2−Ω(k) ≤ log |x| · 2−Ω(k) .

Proof. It holds that x has at most log |x| prime factors and y has at most poly(k) prime factors.
For every fixed i, j, the probability that the i-th prime factor of x equals to the j-th prime factor
of y is at most 2−Ω(k). Applying the union bound, the lemma follows.

It follows for an admissible ring distribution, any fixed (short) list of (small) integers is unlikely
to hit non-invertible ring element.

Corollary 5.7. Let L ∈ N and let L ⊆ Z \ {0} be a list of L integers such that all x ∈ L,
|x| ≤ 2poly(λ). Let R ∼= ZN be a ring where N is chosen from some (logL + ω(log λ))-admissible
distribution. Then, the probability that there exists x ∈ L which is not a unit in R is negl(λ).

5.3 Proof Outline

In this section we describe the common general outline of the proof that will be applied both to
SimpleObf (Section 5.4) and to RobustObf (Section 5.5).

Since our constructions are in canonical form (in fact, in El-Gamal form) it suffices, by Lemma 3.7,
to prove algebraic security according to Definition 3.6.

Fix some function identifier K and polynomial P . We note that P is associated with a purely
arithmetic circuit of polynomial size and polynomial degree. The latter is since the degree cannot
go above ‖vzt‖1. Since our obfuscator is in EG form, we can re-write P as a sum of terms of the
form

M(r) ·Q(w) ,

where M is a monomial and Q is a polynomial. It suffices to show that given an oracle access to
CK , we can determine if the above product equals to zero with more than negligible probability
(where the probability is taken over Dλ(K)).

In the simulation we use the min-entropy of the orders pi of the sub-rings of R as follows. We
present a simulator that needs not know any information about the order of R or its sub-rings.
However, this simulator succeeds only as long as a list of non-zero integers L generated during
the simulation does not contain any element that is not a unit in R. The length of the list will
be bounded by 2‖vzt‖1 · poly(λ), and the absolute value of each of these numbers will be at most
2poly(λ). Fact 5.3 and Corollary 5.7 thus guarantee that the simulation fails only with negligible
probability.

Formally, our simulator (which is oblivious to the order of the ring) is going to have the following
properties:

23

1. The simulator will generate, as a by product, a list L of L = 2‖vzt‖1 · poly(λ) integers of
absolute value at most 2poly(λ). In particular, the list is a subset of the coefficients of the
polynomial P . Since P is computable by a purely arithmetic circuit of size poly(λ) and
degree at most ‖vzt‖1, the bounds will follow from Fact 5.3.

2. We will prove that as long as all of the elements of L (cast into R) are units in R, the
simulation is successful.

3. The distribution of R as described in our model will guarantee, by Corollary 5.7, that the
event of simulation failure due to L containing a non-unit is negligible.

The specifics of applying this outline will vary between the specific obfuscators.

5.4 Algebraic Security Proof for SimpleObf

Theorem 5.8. The obfuscator SimpleObf is secure relative to the GES oracle MRG defined over
any (‖vzt‖1 + ω(log(λ)))-admissible ring distribution.

We follow the outline from Section 5.3. We start with structural claims on Q, viewed as a
polynomial over the integers.

Lemma 5.9. There exists x = (x1, . . . , xn) ∈ {0, 1}n such that Q is {wi,1−xi}i∈[n]-free.

Proof. Assume towards contradiction that there exists an i such that Q is neither wi,0-free nor wi,1-
free. This implies that ri,0 ·ri,1|M(r), and therefore that M(r)/(ri,0 ·ri,1) has level vzt−(vi,0 +vi,1).
However, this level is not reachable by any combination of elements provided by the obfuscator (see
Figure 1). Contradiction follows.

Lemma 5.10. The polynomial Q is
{
w

(M [i]+1)
i,b , w

(M [i]+1)
i , ŵ2

i , w
2
0

}
i∈[n],b∈{0,1}

-free.

Proof. This follows immediately by considering the levels associated with the monomial mentioned
in the proof. All of these elements can only exist at levels v 6≤vzt and therefore their respective r
values cannot divide M . The lemma follows.

Lemma 5.11. The polynomial P (r, w) can be written as a sum of at most T = 2‖vzt‖1 terms of the
form M(r)Q(w), where M is a monomial.

Proof. We count how many possible monomials of the form M(r) can exist in P . The previous
lemmas assert that M(r) is “associated” with a string (x1, . . . , xn), such that ri,1−xi 6 |M(r), and
the multiplicity of ri,xi is at most M [i]. Similarly, for i = n+1, . . . , n+m, it holds that ri has degree
at most M [i]. Lastly, r̂i,b has degree at most 1, and likewise r0. A straightforward combinatorial
argument shows that

T ≤ 2n · (
∏

i∈[n+m]

(M [i] + 1)) · 22n+1 ≤ 23n+1+
∑
i∈[n+m]M [i] ≤ 2‖vzt‖1 .

We can now distinguish between two cases.

24

1. It holds that w0 −
(∏
i∈[n]

ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 6 |Q
for any x = (x1, . . . , xn) ∈ {0, 1}n.

2. There exists x = (x1, . . . , xn) ∈ {0, 1}n such thatw0 −
(∏
i∈[n]

ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 |Q .

Lemma 5.12 (Case 1). Let x = (x1, . . . , xn) ∈ {0, 1}n be the value guaranteed to exist in Lemma 5.9.
If it holds that w0 −

(∏
i∈[n]

ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 6 |Q , (2)

then
Pr
Dλ(K)

[Q = 0] = negl(λ) .

Proof. We recall that Q is {wi,1−xi}i∈[n]-free by Lemma 5.9, and therefore there exists a polynomial
Q′ such that

Q(w) = Q′(w0, ŵ1, . . . , ŵn, w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) .

We further define the polynomial Q′′(ŵ1, . . . , ŵn, w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) as the polyno-
mial obtained from Q′ by assigning w0 =

(∏
i∈[n] ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m). Since

w0−
(∏

i∈[n] ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) does not divide Q (Eq. (2)), the polynomial

Q′′(w) is not identically zero.12 Therefore, Q′′ contains at least one non-zero monomial. Let a be
the coefficient of this monomial, and inset a into the list L.

Now consider Q′′(w)J1K = Q′′J1K(wJ1K). Since wJ1K is the set of y variables which are uniform
and independent, and since Q′′J1K contains at least one non-zero monomial (by the assumption that
a is a unit in R and therefore also in the first sub-ring), it follows that

Pr
Dλ(K)

[Q(w) = 0] = Pr
Dλ(K)

[Q′′(w) = 0]

≤ Pr
Dλ(K)

[Q′′(w)J1K = 0]

= Pr
Dλ(K)

[Q′′J1K(wJ1K) = 0] = negl(λ) .

Lemma 5.13. Let x = (x1, . . . , xn) ∈ {0, 1}n be the value guaranteed to exist in Lemma 5.9. If it
holds that w0 −

(∏
i∈[n]

ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 |Q(w) ,

12This implication is standard when the polynomials are defined over a field, but it also holds for integer polynomials.
See Fact 5.2.

25

then there exists a constant a′ such that

Q(w) = a′ ·

w0 −
(∏
i∈[n]

ŵi
)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 .

Proof. By Lemma 5.10 and Lemma 5.9, the degrees of all variables in Q(w) cannot be higher than
their degrees in (w0 −

(∏
i∈[n] ŵi

)
· Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)). The lemma follows.

Lemma 5.14 (Case 2). If there exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q(w) = a ·

w0 −

∏
i∈[n]

ŵi

 · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 ,

Then if CK(x) = 0 then PrDλ(K)[Q = 0] = negl(λ), and if CK(x) = 1 then PrDλ(K)[Q = 0] = 1.

Proof. Let x,Q be as in the lemma statement, and insert a into the list L (we therefore assume
from this point and on that it is a unit in R). We first note that for all i 6= 2, it holds that
PrDλ(K)[QJiK = 0] = 1. Namely, Q is the zero polynomial over all sub-rings except the second.
This follows immediately by definition.

Let us thus examine QJ2K(w) = Q(wJ2K). We have that

Pr
Dλ(K)

[Q = 0] = Pr
Dλ(K)

[QJ2K = 0]

= Pr
Dλ(K)

[aJ2K ·
∏
i∈[n]

β̂i · (1− Û(x1, . . . , xn,K1, . . . ,Km)) = 0]

= Pr
Dλ(K)

[aJ2K ·
∏
i∈[n]

β̂i · (1− CK(x)) = 0] .

Since aJ2K 6= 0, it follows that if CK(x) = 0 then this equals to PrDλ(K)[a ·
∏
i∈[n] β̂i = 0] = negl(λ),

whereas if CK(x) = 1 then this is PrDλ(K)[0 = 0] = 1.

Overall, the simulator can determine whether Q evaluates to zero. In the first case, it will
simply say that Q does not evaluates to zero, and in the second case it will test if CK(x) = 1 and,
only if this test passes, it will output Yes (meaning that Q evaluates to zero). By lemmas 5.12
and 5.14 the simulator errs with no more than negligible probability.

5.5 Algebraic Security Proof for RobustObf

We will prove the following theorem.

Theorem 5.15. The obfuscator RobustObf is secure relative to the GES oracle URG defined over
any (‖vzt‖1 + ω(log(λ)))-admissible ring distribution.

Since we aim for security relative toMRG (using Lemma 3.7), we should take into account the
possibility that the adversary P is of level smaller than vzt. We follow the outline from Section 5.3
by viewing P as a sum of terms of the form M(r) · Q(w). We will analyze the probability that
Q(Dλ(K)) evaluates to zero, starting with a few structural claims on Q.

26

Lemma 5.16. There exists a constant a and a w0-free polynomial Q′(w) such that

Q(w) = a · w0 −Q′(w) .

Proof. First of all, we note that the structure of our sets prevents w0 from being multiplied by
any of the other w variable. This is because w0 is encoded at level ≥ (D + n)v∗, and the other w
variables are encoded at level ≥ v∗. It follows that any product of w0 and another w variable will
be at level ≥ (D + n+ 1)v∗. However, since (D + n+ 1) 6≤ vzt, contradiction follows.

Lemma 5.17. For all i ∈ [n], the polynomial Q (and therefore also Q′ from Lemma 5.16) is
ŵ2
i -free.

Proof. Assume towards contradiction that this is not the case. Then it means that r̂i,b1 · r̂i,b2 |M
for some b1, b2 ∈ {0, 1} (because the w variables cannot separate from their companion r values).
This means that the level of P is at least v̂i,b1 + v̂i,b2 . However, for any values of b1, b2 it holds that
v̂i,b1 + v̂i,b2 6≤ vzt and contradiction follows.

We can now distinguish between three main cases.

1. It holds that
(∏

i∈[n] ŵi
)
6 |Q′(w).

2. It holds that
(∏

i∈[n] ŵi
)
|Q′(w), namely there exists a polynomialQ′′(w) which is {w0, ŵ1, . . . , ŵn}-

free and
Q(w) = aw0 −

(∏
i∈[n]

ŵi
)
·Q′′(w) .

However,
Q′′(w) 6= a · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

for any x = (x1, . . . , xn) ∈ {0, 1}n.

3. There exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q(w) = a ·

w0 −

∏
i∈[n]

ŵi

 · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 . (3)

Lemma 5.18 (Case 1). If ∃i. ŵi 6 |Q′(w), then

Pr
w
R←Dλ(K)

[Q(w) = 0] = negl(λ) .

Proof. Assume towards contradiction that there exists such i. Consider the evaluation of Q over the
ith sub-ring, Q(w)JiK. Since w0JiK|Dλ(K) = 0 for all i, it holds that Q(w)JiK|Dλ(K) = Q′(w)JiK|Dλ(K).
Recall that Q′(w)JiK = Q′JiK(wJiK), which is exactly the evaluation of Q′JiK on the respective ρ∗,i
(= the variables ρj,b,i, ρj,i, ρ̂j,i) values which are all uniform and independent in the ith sub-ring.
Since Q′ is not identically zero, letting a be one of its non-zero coefficients, and inserting a into the
list L, guarantees that Q′JiK is also not identically zero.

Fact 5.1 now guarantees that Pr
w
R←Dλ(K)

[Q′JiK(ρ∗,i) = 0] = negl(λ) and therefore that Pr
w
R←Dλ(K)

[Q(w) =

0] = negl(λ).

27

Lemma 5.19. If Q′(w) =
(∏

i∈[n] ŵi
)
·Q′′ for some Q′′, then there exists x = (x1, . . . , xn) ∈ {0, 1}n

such that Q′′ is {wi,1−xi}i∈[n]-free.

We recall that by Lemma 5.17, Q′′(w) is also {ŵi}i∈[n]-free.

Proof. Assume towards contradiction that this is not the case. Namely that there exists i ∈ [n]
such that Q′′(w) is neither wi,0-free nor wi,1-free. This means that ri,0 · ri,1|M(r). However it
also holds that r̂i,b|M(r) for some b ∈ {0, 1}. The latter is since ŵi|Q′ and thus Q is not ŵi-free.
However, for all b ∈ {0, 1}, vi,0 + vi,1 + v̂i,b 6≤vzt and contradiction follows.

Lemma 5.20 (Case 2). If Q′ =
(∏

i∈[n] ŵi
)
· Q′′ and for the x from Lemma 5.19 it holds that

Q′′ 6= a · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m), then PrDλ(K)[Q = 0] = negl(λ).

Proof. Consider a non-zero monomial of the polynomial a·Û(w)−Q′′(w), and let a′ be its coefficient.
Add a′ to the list L so we can assume from now on that it is a unit in R. This implies that(
a · Û(·)−Q′′(·)

)
J1K 6≡ 0.

We will consider the evaluation of Q on the first sub-ring, QJ1K. It holds that w0J1K =
∏
i∈[n] ŷi ·

y0, and that Q′J1K =
∏
i∈[n] ŷi ·Q′′J1K. Therefore, recalling that ŷi are uniform and independent,

Pr
Dλ(K)

[Q(w) = 0] ≤ Pr
Dλ(K)

[QJ1K(wJ1K) = 0]

≤ Pr
Dλ(K)

[
∏
i∈[n]

ŷi = 0] + Pr
Dλ(K)

[aJ1Ky0 −Q′′(y)J1K = 0]

≤ Pr
Dλ(K)

[aJ1Ky0 −Q′′(y)J1K = 0] + negl(λ) .

By Lemma 5.19, it holds that there exists a polynomial Q̂ such that

Q′′(w) = Q̂(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m) .

It follows that

Pr
Dλ(K)

[ay0 −Q′′(y)J1K = 0] = Pr
Dλ(K)

[ay0 − Q̂(y1, . . . , yn, yn+1, . . . , yn+m) = 0]

= Pr
Dλ(K)

[a · Û(y1, . . . , yn, yn+1, . . . , yn+m)− Q̂(y1, . . . , yn, yn+1, . . . , yn+m) = 0] .

However, as we showed above,
(
a · Û(·) − Q′′(·)

)
J1K 6≡ 0, and therefore the probability of zero is

negligible here.

Lemma 5.21 (Case 3). If there exists x = (x1, . . . , xn) ∈ {0, 1}n such that

Q = a ·

w0 −

∏
i∈[n]

ŵi

 · Û(w1,x1 , . . . , wn,xn , wn+1, . . . , wn+m)

 ,

Then if CK(x) = 0 then PrDλ(K)[Q = 0] = negl(λ), and if CK(x) = 1 then PrDλ(K)[Q = 0] = 1.

28

Proof. Let x,Q be as in the lemma statement. We first note that for all i 6= 2, it holds that
PrDλ(K)[QJiK = 0] = 1. Namely, Q is the zero polynomial over all sub-rings except the second.
This follows immediately by definition.

Let us thus examine Q(w)J2K = QJ2K(wJ2K). We have that

Pr
Dλ(K)

[Q(w) = 0] = Pr
Dλ(K)

[Q(w)J2K = 0]

= Pr
Dλ(K)

[aJ2K ·
∏
i∈[n]

β̂i · (1− Û(x1, . . . , xn,K1, . . . ,Km)) = 0]

= Pr
Dλ(K)

[aJ2K ·
∏
i∈[n]

β̂i · (1− CK(x)) = 0] .

We will place a in the list L, which will allow us to assume that aJ2K is a unit in the second sub-ring.
It follows that if CK(x) = 0 then this equals to PrDλ(K)[aJ2K ·

∏
i∈[n] β̂i = 0] = negl(λ), whereas if

CK(x) = 1 then this is PrDλ(K)[0 = 0] = 1.

Overall, the simulator can determine whether Q evaluates to zero. In the first and second
cases, it will simply say that Q does not evaluates to zero, and in the third case it will test if
CK(x) = 1 and, only if this test passes, it will output Yes (meaning that Q evaluates to zero). By
lemmas 5.18, 5.20 and 5.21 the simulator errs with no more than negligible probability.

Acknowledgments. We thank the reviewers of TCC 2015 for their insightful comments. We
also thank Mark Zhandry for highlighting a point in our analysis that required further clarification.

References

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding barrington’s theorem. Cryptology ePrint Archive, Report 2014/222,
2014. http://eprint.iacr.org/.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Advances in Cryptology - ASIACRYPT 2014, pages 162–172, 2014.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6, 2012. Preliminary version in CRYPTO 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture
Notes in Computer Science, pages 221–238. Springer, 2014.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 416–434. Springer,
2013.

29

[BR14a] Zvika Brakerski and Guy N. Rothblum. Black-box obfuscation for d-cnfs. In Moni
Naor, editor, Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ,
USA, January 12-14, 2014, pages 235–250. ACM, 2014.

[BR14b] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-
26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 1–25.
Springer, 2014.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 476–493. Springer, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio,
editor, Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010,
Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978 of Lecture Notes
in Computer Science, pages 308–326. Springer, 2010.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[GLW14] Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 426–443. Springer, 2014.

[Mau05] Ueli . Maurer. Abstract models of computation in cryptography. In Nigel P. Smart,
editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer Science, pages
1–12. Springer, 2005.

30

[Sch80] Jack Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(2):701–717, 1980.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer Science,
pages 256–266. Springer, 1997.

[Zim14] Joe Zimmerman. How to obfuscate programs directly. Cryptology ePrint Archive,
Report 2014/776, 2014. http://eprint.iacr.org/.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International
Symposiumon on Symbolic and Algebraic Computation, pages 216–226, 1979.

31

