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Abstract

Functional encryption is a new paradigm that allows users to finely control the amount
of information that is revealed by a ciphertext to a given receiver. Recent papers have
focused their attention on constructing schemes for general functionalities at expense of
efficiency. Our goal, in this paper, is to construct functional encryption schemes for less
general functionalities which are still expressive enough for practical scenarios. We propose
a functional encryption scheme for the inner-product functionality, meaning that decrypting
an encrypted vector x with a key for a vector y will reveal only 〈x,y〉 and nothing else,
whose security is based on the DDH assumption. Despite the simplicity of this functionality,
it is still useful in many contexts like descriptive statistics. In addition, we generalize our
approach and present a generic scheme that can be instantiated, in addition, under the LWE
assumption and offers various trade-offs in terms of expressiveness and efficiency.
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1 Introduction

Functional Encryption. Whereas, in traditional public-key encryption, decryption is an all-
or-nothing affair (i.e., a receiver is either able to recover the entire message using its key, or
nothing), in functional encryption (FE), it is possible to finely control the amount of informa-
tion that is revealed by a ciphertext to a given receiver. For example, decrypting an encrypted
data set with a key for computing the mean will reveal only the mean computed over the
data set and nothing else. Somewhat more precisely, in a functional encryption scheme for
functionality F , each secret key (generated by a master authority having a master secret key)
is associated with value k in some key space K; Anyone can encrypt via the public param-
eters; When a ciphertext Ctx that encrypts x, in some message space X, is decrypted using
a secret key Skk for value k, the result is F (k, x). A notable subclass of functional encryp-
tion is that of predicate encryption (PE) which are defined for functionalities whose message
space X consists of two subspaces I and M called respectively index space and payload space.
In this case, the functionality F is defined in terms of a predicate P : K × I → {0, 1} as
follows: F (k, (ind;m)) = m if P (k, ind) = 1, and ⊥ otherwise, where k ∈ K, ind ∈ I and
m ∈ M . Those schemes are also called predicate encryption with private-index. Examples of
those schemes are Anonymous Identity-Based Encryption (AIBE) [BF01, Gen06], Hidden Vec-
tor Encryption [BW07] and Orthogonality [KSW08,LOS+10,OT12], among the others. On the
other hand, when the index ind is easily readable from the ciphertext those schemes are called
predicate encryption with public-index (PIPE). Examples of PIPE schemes are Identity-Based
Encryption (IBE) [Sha84, BF01, Coc01], Attribute-Based Encryption (ABE) [SW05, GPSW06],
Functional Encryption for Regular Languages [Wat12].

The standard notion of security for functional encryption is that of indis-tinguishability-
based security (IND). Informally, it requires that an adversary cannot tell apart which of two
messages x0, x1 has been encrypted having oracle access to the key generation algorithm under
the constraint that, for each k for which the adversary has seen a secret key, it holds that
F (k, x0) = F (k, x1). This models the idea that an individual’s messages are still secure even
if an arbitrary number of other users of the system collude against that user. Boneh, Sahai,
and Waters [BSW11] and O’Neill [O’N10] showed that the IND definition is weak in the sense
that a trivially insecure scheme implementing a certain functionality can be proved IND-secure
anyway. The authors, then, initiate the study of simulation-based (SIM) notions of security for
FE, which asks that the “view” of the adversary can be simulated by simulator given neither
ciphertexts nor keys but only the corresponding outputs of the functionality on the underlying
plaintexts, and shows that SIM-security is not always achievable.

In a recent series of outstanding results, [GGH+13,BCP14,Wat15,GGHZ14] proposed IND-
secure FE schemes for general circuits whose security is based either on indistinguishable ob-
fuscation and its variants or polynomial hardness of simple assumptions on multilinear maps.
Those schemes are far from being practical and this led us to investigate the possibility of having
functional encryption schemes for functionalities of practical interest which are still expressive
enough for practical scenarios. In doing so, we seek for schemes that offer simplicity, in terms of
understanding of how the schemes work, and adaptability in terms of the possibility of choosing
the instantiations and the parameters that better fit the constraints and needs of a specific
scenario the user is interested in.

This Work. In this paper, we focus on the inner-product functionality, which has several
practical applications. For example, in descriptive statistics, the discipline of quantitatively
describing the main features of a collection of information, the weighted mean is a useful tool.
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Here are a few examples:

Slugging average in baseball. A batter’s slugging average, also called slugging percentage,
is computed by: SLG = (1 ∗ SI + 2 ∗DO + 3 ∗TR + 4 ∗HR)/AB, where SLG is the slugging
percentage, SI is the number of singles, DO the number of doubles, TR the number of
triples, HR the number of home runs, and AB is total number of at-bats. Here, each single
has a weight of 1, each double has a weight of 2, etc. The average counts home runs four
times as important as singles, and so on. An at-bat without a hit has a weight of zero.

Course grades. A teacher might say that the test average is 60% of the grade, quiz average is
30% of the grade, and a project is 10% of the grade. Suppose Alice got 90 and 78 on the
tests; 100, 100 and 85 on the quizzes; and an 81 on the project. Then, Alice’s test average
is (90 + 78)/2 = 84, quiz average is (100 + 100 + 85)/3 = 95, and her course grade would
then be: .60 · 84 + .30 · 95 + .10 · 81 = 87.

Our goal then is to design a simple and efficient functional encryption scheme for inner
products that can be used, for instance, to compute a weighted mean and to protect the privacy
of Alice’s grades, in the example involving course grades. In fact, we can imagine that Alice’s
grades, represented as a vector x = (x1, . . . , x`) in some finite field, says Zp for prime p, are
encrypted in a ciphertext Ctx and the teacher has a secret key Sky for the vector of weights
y = (y1, . . . , y`). Then Alice’s course grade can be computed as the inner-product of x and y,
written as 〈x,y〉 =

∑
i∈[`] xi · yi. We would like to stress here that, unlike the inner-product

predicate schemes in [KSW08,LOS+10,OT12], our goal is to output the actual value of the inner
product.

A very simple scheme can be constructed to compute the above functionality whose security
can be based on the DDH assumption. Informally, it is like this:

mpk =
(
G, (hi = gsi)i∈[`]

)
Ctx =

(
ct0 = gr, (cti = hri · gxi)i∈[`]

)
Sky = 〈s,y〉 =

∑
i∈[`]

si · yi,

where msk = s = (s1, ..., s`) is the master secret key used to generate secret keys Sky. Then,

decryption is done by computing the discrete log of (
∏
i∈[`] ct

yi
i )/ct

Sky
0 . Please refer to Section 3

for more details.
Despite its simplicity, this DDH-based scheme can be proved secure, in a selective security

model1, against any adversary that issues an unbounded, but polynomially related to the security
parameter, number of secret key queries. The adversary will not learn anything more than what
it is implied by the linear combination of their keys.

An astute reader could now ask what happens if an adversary possesses secret keys Skyi , for
i ∈ [q], such that the yi’s form a basis for Z`p. Clearly, this adversary can then recover completely
x from the ciphertext and wins the security game. But notice that this has nothing to do with
the specific implementation of the functionality, it is something inherent to the functionality
itself. This happens also for other functionalities: Consider the case of the circuit functionality,
where secret keys correspond to Boolean circuits over ` Boolean variables and one-bit output,
and ciphertexts to vectors in {0, 1}`. Then, an adversary having secret keys for circuits Ci,
where Ci extract the i-th bit of the input, can recover completely the input from a ciphertext

1In the selective model, the adversary is asked to commit to its challenge before seeing the public parameters.

2



no matter how the scheme, supporting this circuit functionality, is implemented. This subtle
aspect will appear in the security proof, if the adversary asks such a set of secret keys then the
simulator will not be able to answer all those queries. Notice that this is reasonable, because it
is like requiring security when the adversary possesses the master secret key.

One drawback of the above scheme is that restrictions must be put in place in order to guar-
antee that the final computed value has small magnitude and the discrete log can be computed
efficiently. To overcome this limitation, let us first describe some interesting characteristics of
the above scheme. To start, please notice that a ciphertext for a vector x consists of ElGamal
ciphertexts [ElG84] (gr, (hri · gxi)i) under public keys hi = gsi , sharing the same randomness r.
Then, a secret key for a vector y consists of a linear combination of the underlying ElGamal
secrets si. Now notice that, by the ElGamal scheme’s homomorphic properties, it holds that∏

i∈[`]

ctyii =
∏
i∈[`]

hr·yii · gxi·yi = hr · g〈x,y〉

where h is an ElGamal public key corresponding to secret key 〈s,y〉. The above observations
point out that, by possibly combining public-key encryption
schemes secure under randomness reuse [BBS03], and having specific syntactical, non-security-
related, properties, we can generalize the above construction with the aim of (1) having a scheme
whose security can be based on different assumptions and that can provide different trade-offs
in terms of efficiency and expressiveness, (2) have a generic proof of security that reduces secu-
rity to that of the underlying public-key encryption scheme. We present our generalization in
Section 4.

Related Work. One of the first example of investigation on reductions between various prim-
itives has been given by [Rot11] who shows a simple reduction between any semantically secure
private-key encryption scheme which possesses a simple homomorphic, namely that the prod-
uct of two ciphertexts Ct1 and Ct2, encrypting plaintexts m1 and m2, yields a new ciphertext
Ct = Ct1 · Ct2 which decrypts to m1 + m2 mod 2. Goldwasser et al. [GLW12] investigated
the construction of PIPE schemes for specific predicates. In particular, they show how public-
key encryption schemes which possess a linear homomorphic property over their keys as well
as hash proof system features with certain algebraic structure can be used to construct an
efficient identity-based encryption (IBE) scheme that is secure against bounded collusions (BC-
IBE). This weaker security notion restricts the adversary to issue only a bounded number of
secret keys during the security game. In more details, they rely on a public-key encryption
scheme whose secret keys and public keys are elements of respective groups (with possibly dif-
ferent operations, which we denote by + and ·), and there exists an homomorphism µ such
that µ(sk0 + sk1) = µ(sk0) · µ(sk1), where µ(sk0) and µ(sk1) are valid public keys for which
sk0 and sk1 yield correct decryption, respectively. Then, to obtain a BC-IBE, the construction
by Goldwasser et al. generates multiple public-key/secret-key pairs (pk1, sk1), . . . , (pk`, sk`), let-
ting the public-parameters and the master secret key of the scheme be params = (pk1, . . . , pk`)
and msk = (sk1, . . . , sk`), respectively. Then, an efficient map φ associates every identity ID
with a vector [id1, . . . , id `], and a message m is encrypted for an identity ID as the ciphertext
Ct = Encrypt(pkID,m), where pkID =

∏n
i=1 pk

IDi
i . Then, µ guarantees that Ct can be decrypted

using skID =
∑n

i=1 IDi · ski, since by the homomorphism it holds that pkID = µ(skID). The map φ
is subject to a combinatorial requirement that disallows computing skID given skID′ for t different
ID′ 6= ID. Later, Tessaro and Wilson [TW14] presented generic constructions of BC-IBE which
rely on encryption schemes that solely satisfy the standard security notion of semantic security
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in addition to some syntactical, non-security-related, properties. We will use Tessaro and Wilson
to present a generalization of our results.

As already mentioned, in a recent series of outstanding results, [GGH+13, BCP14, Wat15,
GGHZ14] proposed IND-secure FE scheme for general circuits whose security is based either on
indistinguishable obfuscation and its variants or polynomial hardness of simple assumptions on
multilinear maps. Clearly, those schemes can be used to implement the inner-product function-
ality, but this would defeat our main goal which is to construct somewhat efficient functional
encryption schemes for less general functionalities which are still expressive enough for practical
scenarios.

In another line of research, Katz, Sahai, and Waters [KSW08] proposed a functional en-
cryption scheme for a functionality called orthogonality (in the literature it is also know as
inner-product encryption), meaning that decrypting an encrypted vector x with a key for a
vector y will reveal only if 〈x,y〉 is equals to zero (meaning that the two vectors are orthogonal)
or not, and nothing else. This functionality is of little help in our case because what we need is
for the decryptor to be able to recover the value 〈x,y〉.

Parameter Sizes For Our Constructions. In Table 1, we present the size of the parameters
and ciphertexts for our concrete construction. Each column refers to an instantiation of our
general scheme and is indexed by its underlying assumption. Each row describes the size of
an element of the scheme. The master public key size does not include public parameters that
can be re-used such that (g,A). Message space is the number of different messages that can be
decrypted using this instantiation. The DDH instantiation can give short ciphertexts and keys
using elliptic curves, but requires the computation of a discrete logarithm in the decryption,
which makes it usable for small message space only. LWE enables short ciphertexts and keys
together with a message space that is independent of the security parameter, which allows
shorter ciphertexts for a smaller message space.

DDH LWE

mpk ` log p m` log q

msk ` log p n` log q

Ctx (`+ 1) log p (n+ `) log q

Sky log p n log q

message space bounded by computation `M2

|{〈x,y〉}| of discrete logarithms computations mod p

Table 1: Parameter Sizes. Here, ` is the length of the vectors encrypted in the ciphertexts and
encoded in the secret keys. In DDH, p is the size of a group element. In LWE, q is the size of a
group element, p is the order of B2`, and B is a bound on the message space.

2 Basic Tools

In this section, we recall some of the definitions and basic tools that will be used in the remaining
sections, such as the syntax of code-based games, functional encryption and the assumptions.
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2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of n-bit strings,
and {0, 1}∗ is the set of all bit strings. The empty string is denoted ε. More generally, if S is
a set, then Sn is the set of n-tuples of elements of S, S≤n is the set of tuples of length at most
n. If x is a string then |x| denotes its length, and if S is a set then |S| denotes its size. If S

is finite, then x
R← S denotes the assignment to x of an element chosen uniformly at random

from S. If A is an algorithm, then y ← A(x) denotes the assignment to y of the output of A on

input x, and if A is randomized, then y
R← A(x) denotes that the output of an execution of A(x)

with fresh coins is assigned to y. Unless otherwise indicated, an algorithm may be randomized.
“PT” stands for polynomial time and “PTA” for polynomial-time algorithm or adversary. We
denote by λ ∈ N the security parameter. A function ν : N → [0, 1] is said to be negligible if
for every c ∈ N there exists a λc ∈ N such that ν(λ) ≤ λ−c for all λ > λc, and it is said to be
overwhelming if the function |1− ν(λ)| is negligible.

Let ei be the vector with all 0 but one 1 in the i-th position.

Code-Based Games. We use the code-based game-playing [BR06] to define the security
notions. In such games, there exist procedures for initialization (Initialize) and finalization
(Finalize) and procedures to respond to adversary oracle queries. A game G is executed with
an adversary A as follows. First, Initialize executes and its outputs are the inputs to A. Then
A executes, its oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output of the latter,
denoted G(A), is called the output of the game, and “G(A) = y” denotes the event that the
output takes a value y. Boolean flags are assumed initialized to false. Games Gi,Gj are identical
until bad if their code differs only in statements that follow the setting of bad to true.

2.2 Public-Key Encryption

Definition 2.1 [Public-Key Encryption Scheme] A public-key encryption (PKE) scheme E is a
tuple E = (Setup,Encrypt,Decrypt) of 3 algorithms:

1. Setup(1λ) outputs public and secret keys (pk, sk) for security parameter λ;

2. Encrypt(pk,m), on input public key pk and message m in the allowed message space,
outputs ciphertext Ct;

3. Decrypt(sk,Ct) on input secret key sk and ciphertext Ct, outputs messages m′.

In addition we make the following correctness requirement: for all (pk, sk) ← Setup(1λ), all
messages m and ciphertexts Ct← Encrypt(pk,m), we have that Decrypt(sk,Ct) = m except with
negligible probability.

We often also allow public-key encryption schemes to additionally depend on explicit public
parameters params (randomly generated in an initial phase and shared across multiple instances
of the PKE scheme) on which all of Setup,Encrypt, and Decrypt are allowed to depend. Examples
include the description of a group G with its generator g. We will often omit them in the
descriptions of generic constructions from PKE schemes.

Indistinguishability-Based Security. We define security against chosen-plaintext attacks
(IND-CPA security, for short) for a PKE scheme E = (Setup,Encrypt,Decrypt) via the security
game depicted on Figure 1. Then, we say that E is secure against chosen-plaintext attacks
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Game Expind-cpa-b
E,λ (A)

proc Initialize(λ)

(pk, sk)
R← Setup(1λ)

Return pk

proc Finalize(b′)

Return (b′ = b)

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

Game Exps-ind-cpa-b
E,λ (A)

proc Initialize(λ,m∗0,m
∗
1)

(pk, sk)
R← Setup(1λ)

Return pk

proc LR()

Ct∗
R← Encrypt(pk,m∗b)

Return Ct∗

Figure 1: Games Expind-cpa-b
E,λ (A) and Exps-ind-cpa-b

E,λ (A) define IND-CPA and s-IND-CPA security
(respectively) of E . The procedure Finalize is common to both games, which differ in their Ini-
tialize and LR procedures.

(IND-CPA secure, for short) if∣∣∣Pr[Expind-cpa-0
E,λ (A) = 1]− Pr[Expind-cpa-1

E,λ (A) = 1]
∣∣∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA security, for short)
when the challenge messages m∗0 and m∗1 have to be chosen before hand. Actually, in this case,
the procedures Initialize and LR can be merged into an Initialize procedure that outputs
both the public key pk and the challenge ciphertext Ct∗.

2.3 Functional Encryption

Following Boneh et al. [BSW11], we start by defining the notion of functionality and then that
of functional encryption scheme FE for functionality F .

Definition 2.2 [Functionality] A functionality F defined over (K,X) is a function F : K×X →
Σ∪ {⊥} where K is the key space, X is the message space and Σ is the output space and ⊥ is a
special string not contained in Σ. Notice that the functionality is undefined for when either the
key is not in the key space or the message is not in the message space.

Definition 2.3 [Functional Encryption Scheme] A functional encryption (FE) scheme FE for
functionality F is a tuple FE = (Setup,KeyDer,Encrypt,Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (mpk ,msk) for security parameter λ;

2. KeyDer(msk , k), on input a master secret key msk and key k ∈ K outputs secret key skk;

3. Encrypt(mpk , x), on input public key mpk and message x ∈ X outputs ciphertext Ct;

4. Decrypt(mpk ,Ct, skk) outputs y ∈ Σ ∪ {⊥}.
We make the following correctness requirement: for all (mpk ,msk)← Setup(1λ), all k ∈ K and
m ∈ M , for skk ← KeyDer(msk , k) and Ct ← Encrypt(mpk ,m), we have that Decrypt(mpk ,Ct,
skk) = F (k,m) whenever F (k,m) 6= ⊥2, except with negligible probability.

2See [BO13,ABN10] for a discussion about this condition.
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Indistinguishability-Based Security. For a functional encryption scheme FE = (Setup,
KeyDer,Encrypt,Decrypt) for functionality F , defined over (K,X), we define security against
chosen-plaintext attacks (IND-FE-CPA security, for short) via the security game depicted on Fig-
ure 2. Then, we say that FE is secure against chosen-plaintext attacks (IND-FE-CPA secure,
for short) if ∣∣∣Pr[Expind-fe-cpa-0

FE,λ (A) = 1]− Pr[Expind-fe-cpa-1
FE,λ (A) = 1]

∣∣∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-FE-CPA security, for
short) when the challenge messages m∗0 and m∗1 have to be chosen before hand.

Game Expind-fe-cpa-b
FE,λ (A)

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(k)

V ← V ∪ {k}
skk

R← KeyDer(msk , k)
Return skk

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

proc Finalize(b′)

if ∃k ∈ V such that
F (k,m∗0) 6= F (k,m∗1)
then return false

Return (b′ = b)

Game Exps-ind-fe-cpa-b
FE,λ (A)

proc Initialize(λ,m∗0,m
∗
1)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc LR()

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

Figure 2: Games Expind-fe-cpa-b
FE,λ (A) and Exps-ind-fe-cpa-b

FE,λ (A) define IND-FE-CPA and
s-IND-FE-CPA security (respectively) of FE . The procedures KeyDer and Finalize are com-
mon to both games, which differ in their Initialize and LR procedures.

Inner-Product Functionality. In this paper we are mainly interested in the inner-product
functionality over the integers (IP, for short) defined in the following way. It is a family of
functionalities with key space K` and message space X` both consisting of vectors in Zp of norm
bounded by p of length `: for any k ∈ K`, x ∈ X` the functionality IP`(k, x) = 〈k, x〉. When it
is clear from the context we remove the reference to the length `.

3 Inner-Product from DDH

In this section, we present our first functional encryption scheme for the inner-product function-
ality whose security can be based on the plain DDH assumption.

The Decisional Diffie-Hellman assumption. Let GroupGen be a probabilistic polynomial-
time algorithm that takes as input a security parameter 1λ, and outputs a triplet (G, p, g)
where G is a group of order p that is generated by g ∈ G, and p is an λ-bit prime number.
Then, the Decisional Diffie-Hellman (DDH) assumption states that the tuples (g, ga, gb, gab)
and (g, ga, gb, gc) are computationally indistinguishable, where (G, p, g) ← GroupGen(1λ), and
a, b, c ∈ Zp are chosen independently and uniformly at random.

Construction 3.1 [DDH-IP Scheme] We define our functional encryption scheme for the inner-
product functionality IP = (Setup,KeyDer,Encrypt,Decrypt) as follows:
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• Setup(1λ, 1`) samples (G, p, g)← GroupGen(1λ) and s = (s1, . . . , s`)← Z`p, and sets mpk =
(hi = gsi)i∈[`] and msk = s. The algorithm returns the pair (mpk ,msk);

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . , x`) ∈ Z`p,
chooses a random r ← Zp and computes ct0 = gr and, for each i ∈ [`], cti = hri · gxi . Then
the algorithm returns the ciphertext Ct = (ct0, (cti)i∈[`]);

• KeyDer(msk ,y) on input master secret key msk and vector y = (y1, . . . , y`) ∈ Z`p, computes
and outputs secret key sky = 〈y, s〉;

• Decrypt(mpk ,Ct, sky) on input master public key mpk , ciphertext Ct = (ct0, (cti)i∈[`]) and
secret key Sky for vector y, returns the discrete logarithm in basis g of∏

i∈[`]

ctyii /ct
sky
0 .

Correctness. For all (mpk ,msk) ← Setup(1λ, 1`), all y ∈ Z`p and x ∈ Z`p, for sky ←
KeyDer(msk ,y) and Ct← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sk) =

∏
i∈[`] ct

yi
i

ct
sky
0

=

∏
i∈[`](g

sir+xi)yi

gr(
∑
i∈[`] yisi)

= g
∑
i∈[`] yisir+

∑
i∈[`] yixi−r(

∑
i∈[`] yisi)

= g
∑
i∈[`] yixi = g〈x,y〉.

The above scheme limits the expressiveness of the functionality that can be computed because
in order to recover the final inner-product value a discrete logarithm computation must take
place. In the next section, in order to overcome this limitation and to generalize to other
settings we will present a generic scheme whose security can be based on the semantic security
of the underlying public-key encryption scheme under randomness reuse. Before moving to the
generic scheme and its proof of security, we sketch below the proof of security for the above IP
scheme to offer to the reader useful intuitions that will be reused in the proof of security of our
generic functional encryption scheme for the inner-product functionality.

Theorem 3.2 Under the DDH assumption, the above IP scheme is s-IND-FE-CPA.

Proof Sketch. For the sake of contradiction, suppose that there exists an adversary A that
breaks s-IND-FE-CPA security of our IP scheme with non-negligible advantage. Then, we con-
struct a simulator B that given in input an instance of the DDH assumption, (g, ga, gb, gc) where
c is either ab or uniformly random, breaks it by using A.

If the challenge messages x0 and x1 are different, there exists a vector in the message space
for which the key shouldn’t be known by the adversary (x1 − x0 is one of them).

To generate the master public key, B first generates secret keys for a basis (zi) of (x1−x0)⊥.
Setting implicitly a as secret key for x1 − x0, B generates the master public key using ga.
Actually, once group elements are generated for the basis (yi) completed with (x1 − x0), one
can find the public key, for the canonical basis.

To generate the challenge ciphertext, B chooses a random bit µ and using gb and gc, generates
a ciphertext for message xµ.

Finally, notice that by the constraints of the s-IND-FE-CPA security game, A is allowed to
ask only secret keys for vectors in the vector sub-space generated by the zi’s, and thus orthogonal
to x1 − x0. For those vectors, B will be able to generate the corresponding secret keys.
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Now, if c = ab, then the challenge ciphertext is a well-distributed ciphertext of the message
xµ. On the other hand, if c is random, the challenge ciphertext encrypts message ux0 +(1−u)x1

where u is uniformly distributed and in this case µ is information theoretically hidden: for all
sky asked, since y is orthogonal to x1 − x0, and thus 〈x0,y〉 = 〈x1,y〉, while the ciphertexts
decrypt to the inner products

〈ux0 + (1− u)x1,y〉 = u〈x0,y〉+ (1− u)〈x1,y〉
= u〈xµ,y〉+ (1− u)〈xµ,y〉
= 〈xµ,y〉 .

4 A Generic Inner-Product Encryption Scheme

In this section, we present a generic functional encryption scheme for the inner-product func-
tionality IP = (Setup,KeyDer,Encrypt,Decrypt) based on any public-key encryption scheme
E = (Setup,Encrypt,Decrypt) that has the following structural and homomorphic properties.

Structure. E ’s secret keys are elements of a group (G,+, 0G), public keys are elements of group
(H, ·, 1H), and the message space is Zq for some prime q. In addition, we require the
ciphertexts to consist of two parts ct0 and ct1. The first part ct0 corresponds to some
commitment C(r) of the randomness r used for the encryption. The second part ct1 is
the encryption E(pk, x; r) in a group (I, ·, 1I) of the message x under public key pk and
randomness r.

Linear Key Homomorphism. We say that a PKE has linear key homomorphism (LKH, for
short) if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈ Zq, the component-wise G-
linear combination formed by y1sk1 + y2sk2 can be computed efficiently only using public
parameters, the secret keys sk1 and sk2 and the coefficients y1 and y2. And this combination
y1sk1+y2sk2 also functions as a secret key to a public key that can be computed as pky11 ·pk

y2
2 ,

where pk1 (resp. pk2) is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism Under Shared Randomness. We say that a PKE
has linear ciphertext homomorphism under shared randomness (LCH, for short) if it holds
that E(pk1pk2, x1 + x2; r) = E(pk1, x1; r) · E(pk2, x2; r).

4.1 Construction

Construction 4.1 [PKE-IP Scheme] Let E = (Setup,Encrypt,Decrypt) be a PKE scheme with
the properties defined above, we define our functional encryption scheme for the inner-product
functionality IP = (Setup,KeyDer,Encrypt,Decrypt) as follows.

• Setup(1λ, `, B) calls E ’s key generation algorithm to generate ` independent (sk1, pk1), . . . ,
(sk`, pk`) pairs, sharing the same public parameters params. Then, the algorithm sets the
functionality’s key space K` and message space X` to M = {0, . . . , B − 1}` ⊆ Zq and
returns mpk = (params, pk1, . . . , pk`) and msk = (sk1, . . . , sk`).

• KeyDer(msk ,y) on input master secret key msk and a vector y = (y1, . . . , y`) ∈ M , com-
putes sky as an G-linear combination of (sk1, . . . , skn) with coefficients (y1, . . . , y`), namely
sky =

∑
i∈[`] yi · ski.
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• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . , x`) ∈ M ,
chooses shared randomness r in the randomness space of E , and computes ct0 = E .C(r)
and cti = E .E(pki, xi; r). Then the algorithm returns the ciphertext Ct = (ct0, (cti)i∈[`]).

• Decrypt(mpk ,Ct, sky) on input master public key mpk , ciphertext Ct = (ct0, (cti)i∈[`]),
and secret key Sky for vector y = (y1, . . . , y`), returns the output of E .Decrypt(Sky, (ct0,∏
i∈[`] ct

yi
i )).

Correctness. For all (mpk ,msk) ← Setup(1λ, 1`), all y ∈ M ` and x ∈ M , for sky ←
KeyDer(msk ,y) and Ct← Encrypt(mpk ,x), we have that

Decrypt(mpk ,Ct, sky) = E .Decrypt(Sky, (ct0,
∏
i∈[`]

ctyii ))

= E .Decrypt(Sky, (ct0,
∏
i∈[`]

E .E(pki, xi; r)
yi))

= E .Decrypt(Sky, (ct0, E .Encrypt(
∏
i∈[`]

pkyii ,
∑
i∈[`]

yixi; r)))

=
∑
i∈[`]

yixi .

by the LCH property. Finally, note that the decryption is allowed because (Sky,
∏
i∈[`] pk

yi
i ) is a

valid key pair, due to the LKH property.

4.2 Security: Simplified Case

If the underlying PKE scheme is semantically secure and remains secure under randomness-reuse
then there is a very simple way to prove security of Construction 4.1.

Specifically, we define randomness-reuse as follows:

Randomness Reuse. We say that a PKE has randomness reuse (RR, for short) if E(pk, x; r) is
efficiently computed given the triple (x, pk, r), or the triple (x, sk,C(r)) where sk is a secret
key corresponding to pk. In [BBS03], this property is also called reproducibility and guar-
antees that it is secure to reuse randomness when encrypting under several independent
public keys. The idea of randomness reuse was first considered by [Kur02].

Then, we are able to prove the following theorem:

Theorem 4.2 Let E be a public-key encryption scheme with message space Zq for some prime
q, and let IP be the functional encryption scheme for the inner-product functionality obtained
by applying Construction 4.1 to E with parameters ` and B. If q > ` ·B2 and E is s-IND-CPA,
linear-key homomorphic, linear-ciphertext homomorphic under shared randomness, and remains
secure under randomness-reuse then IP is s-IND-FE-CPA.

Remark 4.3 For our security proof to work, it must hold that ‖x1 − x0‖2 6= 0 mod q, where
x0,x1 are the challenge messages. The lower bound on q ensures exactly this.

Proof: This proof follows the intuition provided in the proof sketch of Theorem 3.2. To prove
the security of our scheme we will show that the s-IND-FE-CPA game is indistinguishable from
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a game where the challenge ciphertext encrypts a random combination of the challenge messages
whose coefficients sum up to one. Thus, the challenge ciphertext decrypts to the expected values
and information theoretically hides the challenge bit.

Given an adversary A that breaks the s-IND-FE-CPA security of our IP scheme with non-
negligible probability ε, we construct an adversary B that breaks the s-IND-CPA security of the
underlying PKE scheme E with comparable probability.

B starts by picking a random element a in the full message space of the underlying PKE E ,
and sends challenge messages 0 and a to the challenger C of PKE security game. C answers by
sending an encryption Ct = (ct0, ct1) of either 0 or a and public key pk.

B then invokes A on input the security parameter and gets two different challenge messages in
output, namely (xi = (xi,1, . . . , xi,`))i∈{0,1} both in M .

Recall that, by the constraints of security game, the adversary can only issue secret key queries
for vectors y such that 〈x0,y〉 = 〈x1,y〉. Thus, we have that 〈y,x1 − x0〉 = 0 meaning that y
is in the vector space defined by (x1 − x0)⊥.

Then, B generates the view for A in the following way:

Public Key. To generate master public key mpk , B does the following. First, B finds a basis
(z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then we can write the canonical vectors in the basis
((x1 − x0), z1, z2, . . . , z`−1): for i ∈ [`], j ∈ [` − 1], there exist λi,j ∈ Zq and αi ∈ Zq such
that:

ei = αi(x1 − x0) +
∑

j∈[`−1]

λi,jzj . (1)

Then, for j ∈ [`− 1], B sets (pkzj , skzj ) = E .Setup(1λ), and for i ∈ [`],

γi =
∏

j∈[`−1]

pk
λi,j
zj and pki = pkαiγi.

Eventually, B invokes A on input mpk = (pki)i∈[`].

Notice that, B is implicitly setting ski = αisk +
∑

j∈[`−1] λi,jskzj because of the LKH
property, where sk is the secret key corresponding to pk, which is unknown to B.

Challenge Ciphertext. B computes the challenge ciphertext Ct∗ as follows. B randomly picks
b

R← {0, 1}, computes E .E(γi, 0; r) from ct0 and
∑

j∈[`−1] λi,jskzj and E .E(1H , xb,i; r) from
secret key 0G and ct0, by randomness reuse. B then sets

ct∗0 = ct0 and (ct∗i = ctαi1 · E .E(γi, 0; r) · E .E(1H , xb,i; r))i∈[`] ,

Then the algorithm returns the challenge ciphertext Ct∗ = (ct∗0, (ct
∗
i )i∈[`]).

Secret Keys. To generate a secret key for vector y, B computes sky as

sky =
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj
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At the end of the simulation, if A correctly guesses b, then B returns 0 (B guesses that C
encrypted 0), else B returns 1 (B guesses that C encrypted a). This concludes the description
of adversary B.

It remains to verify that B correctly simulates A’s environment.

First see that the master public key is well distributed, because we are just applying a change
of basis to a well distributed master public key. Now it holds that αi =

x1,i−x0,i
‖x1−x0‖2 because

x1,i − x0,i = 〈x1 − x0, ei〉

= αi‖x1 − x0‖2 +
∑

j∈[`−1]

λi,j〈x1 − x0, zj〉

= αi‖x1 − x0‖2 .

To ensure that ‖x1−x0‖2 is different from 0 modulo q, fixed the message space M = {0, . . . , B−
1} ⊆ Zq, q needs to be set to be a prime larger then ` ·B2.

Now recall that a vector y satisfying the security game constraints is such that 〈y,x0〉 = 〈y,x1〉,
so ∑

i∈[`]

yiαi =
∑
i∈[`]

yi
x1,i − x0,i

‖x1 − x0‖2
= 0

which in turn implies that a secret key sky for the vector y is distributed as

sky =
∑
i∈[`]

yiski =
∑
i∈[`]

yiαisk +
∑
i∈[`]

∑
j∈[`−1]

yiλi,jskzj

=
∑

j∈[`−1]

∑
i∈[`]

yiλi,j

 skzj

On the other hand, if A asks for a secret key for some vector y /∈ (x1 − x0)⊥, B would need to
know sk in order to generate a correct secret key for y.

Now, we have to analyze the following two cases, depending on which message was encrypted
by C in the challenge ciphertext:

1. C encrypted 0. Then, the challenge ciphertext Ct∗ for message xb is distributed as

ct∗0 = ct0

and

ct∗i = E .E(pk, 0; r)αi · E .E(γi, xb,i; r)

= E .E(pki, xb,i; r) ,

thanks to the LCH property, and then as in the real game.

Thus, in this case, B generates a view identical to thatA would see in the real game. Hence,
the advantage of B in this game is ε, the same advantage as A against s-IND-FE-CPA of
IP when 0 has been encrypted.
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2. C encrypted a. First, in Equation 1, we have αi = (x1,i−x0,i)/‖x1 − x0‖2. Let us analyze
the distribution of the challenge ciphertext in this case. We have ct∗0 = ct0 and

ct∗i = E .E(pk, a; r)αi · E .E(γi, xb,i; r)

= E .E(pki, xb,i + αia; r)

= E .E(pki, x̂i; r),

thanks to the LCH property, where x̂i is defined as follows:

x̂i = xb,i + αia =
a

‖x1 − x0‖2
(x1,i − x0,i) + xb,i

=
a

‖x1 − x0‖2
(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a/‖x1 − x0‖2 + b, which is a random value in the full message space of
E , given that a is random in the same space, then x̂i = ux1,i + (1 − u)x0,i. Then, the
challenge ciphertext is a valid ciphertext for the message x̂ = ux1 + (1− u)x0, which is a
random linear combination of the vectors x0 and x1 whose coefficients sum up to one, as
expected. Notice that b is information theoretically hidden because the distribution of u is
independent from b. Hence, the advantage of B in this game is 0, when a random non-zero
a has been encrypted.

Eventually, this shows that ε is bounded by the best advantage one can get against s-IND-FE-CPA
of E . Hence, taking the maximal values, the best advantage one can get against s-IND-FE-CPA
of IP is bounded by the best advantage one can get against s-IND-FE-CPA of E .

4.3 Security: General Case

If the underlying PKE scheme does not support randomness-reuse defined in the previous section
then it is still possible to prove the security of Construction 4.1 but we need the following
generalized security properties.

Before stating them, for convenience we split the Setup algorithm in the following two algo-
rithms to sample secret keys and generate the corresponding public keys.

• SKGen(1λ) takes in input the security parameter and sample a secret key sk from the secret
key space according to the same distribution induced by Setup.

• PKGen(sk, τ) takes in input a secret key sk and parameters τ , and generates a public key
pk corresponding to sk according to the distribution induced by τ . We will omit τ when
it is clear from the context.

We are ready to state the security properties that we require.

`-Public-Key-Reproducibility. For a public-key encryption scheme E we define `-public-key-
reproducibility via the following security game:
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Game Exp`-pk-rep-b
E,λ (A)

proc Initialize(λ,M)

(sk, (αi, ski)i∈[`])
R←M(1λ)

if b = 0 then
(pki = E .PKGen(αisk + ski, τ))i∈[`]

else
pk← E .PKGen(sk, τ ′)
(pki = pkαi · E .PKGen(ski, τi))i∈[`]

Return (pki, ski)i∈[`]

proc Finalize(b′)

Return (b′ = b)

with M samples tuples of the form (sk, (αi, ski)i∈[`]) where sk and the ski’s are in G, and
the αi’s are in Zq.

Then, we say that E has `-public-key-reproducibility if there exists τ, τ ′, (τi)i∈[`] such that∣∣∣Pr[Exp`-pk-rep-0
FE,λ (A) = 1]− Pr[Exp`-pk-rep-1

FE,λ (A) = 1]
∣∣∣ = negl(λ).

`-Ciphertext-Reproducibility. For a public-key encryption scheme E we define `-ciphertext-
reproducibility via the following security game:

Game Exp`-ct-rep-b
E,λ (A)

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

sk← E .SKGen(1λ), pk← E .PKGen(sk, τ ′)
(pki ← E .PKGen(ski, τi))i∈[`]

ct0 = E .C(r), ct = E .E(pk, a; r)
if b = 0 then

cti = ctαi · E .E(pki, xi; r)
else

cti = ctαi · E .E′(ski, xi, ct0)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

where

• M samples tuples of the form (a, (αi, xi, , ski)i∈[`]), where ski’s are in G, and a and
the αi’s, xi’s are in Zq.

• E′ is an algorithm that takes in input a secret key in H, a message in Zq, a first
part ciphertext C(r) for some r in the randomness space, and output a second part
ciphertext.
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Then, we say that E has `-ciphertext-reproducibility if there exists τ ′, τi’s and algorithm
E′ such that ∣∣∣Pr[Exp`-ct-rep-0

FE,λ (A) = 1]− Pr[Exp`-ct-rep-1
FE,λ (A) = 1]

∣∣∣ = negl(λ).

Then, we are able to prove the following theorem:

Theorem 4.4 Let E be a public-key encryption scheme with message space Zq for some prime
q, and let IP be the functional encryption scheme for the inner-product functionality obtained
by applying Construction 4.1 to E with parameters ` and B. If q > ` ·B2 and E is s-IND-CPA,
linear-key homomorphic, linear-ciphertext homomorphic under shared randomness, `-public-
key-reproducible and `-ciphertext-reproducible then IP is s-IND-FE-CPA.

Proof: The proof strategy is essential that of Theorem 4.2. We prove security via a sequence
of hybrid experiments.

Hybrid H1: This is the s-IND-FE-CPA game.

proc Initialize(λ,x0,x1)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR()

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

Hybrid H2: This is like H1 except that the master public key is generated by invoking the
algorithm H2.Setup defined as follows:

H2.Setup(1λ,x0,x1): The algorithm finds a basis (z1, z2, . . . , z`−1) of (x1−x0)⊥. Then,
the canonical vectors can be rewritten in this basis as follows: for i ∈ [`], j ∈ [`−1],
there exist λi,j ∈ Zq and αi ∈ Zq such that:

ei = αi
(x1 − x0)

||x1 − x0||2
+

∑
j∈[`−1]

λi,jzj .

Then, the algorithms samples sk← E .SKGen(1λ) and, for j ∈ [`], PKE secret key
skzj ← E .SKGen(1λ). Finally, the algorithm sets:

ski = αi · sk +
∑

λi,jskzj , pki = E .PKGen(ski, τ) ,

where τ is the same used in the Setup algorithm. The algorithm returns mpk =
(pki)i∈[`] and msk = (ski).
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proc Initialize(λ,x0,x1)

(mpk ,msk)
R← H2.Setup(1λ,x0,x1)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR()

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

Hybrid H3: This is like H2 except that the master public key is generated by invoking the
algorithm H3.Setup and the secret keys are generated by invoking the algorithm H3.KeyDer
which are defined as follows.

H3.Setup(1λ,x0,x1): The algorithm finds a basis (z1, z2, . . . , z`−1) of (x1−x0)⊥. Then,
the canonical vectors can be rewritten in this basis as follows: for i ∈ [`], j ∈ [`−1],
there exist λi,j ∈ Zq and αi ∈ Zq such that:

ei = αi
(x1 − x0)

||x1 − x0||2
+

∑
j∈[`−1]

λi,jzj .

Then, the algorithms first samples sk
R← E .SKGen(1λ) and pk

R← E .PKGen(sk, τ ′).
Then, for j ∈ [`− 1], a PKE secret keys skzj ← E .SKGen(1λ), sets ti =

∑
λi,jskzj ,

pkti ← E .PKGen(ti, τi) and computes

pki = pkαi · pkti .

The algorithm returns mpk = (pki)i∈[`] and msk ′ = (pk, skzj ).

H3.KeyDer(msk ′,y): The algorithm computes secret key for vector y in the following
way: Sky =

∑
i∈[`] yi · ti.

proc Initialize(λ,x0,x1)

(mpk ,msk ′)
R← H3.Setup(1λ,x0,x1)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}

sky
R← H3.KeyDer(msk ′, k)

Return sky

proc LR()

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

Hybrid H4: This is like H3 except that the challenge ciphertext is generated by invoking the
algorithm H4.Encrypt defined as follows:
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H4.Encrypt(msk ′,x): The algorithm computes the ciphertext for x in the following
way:

ct0 = E .C(r) and
(
cti = E .E(pk, 0; r)αi · E .E(pkti , xi; r)

)
i∈[`]

,

where r is some randomness in the random space of E .

proc Initialize(λ,x0,x1)

(mpk ,msk ′)
R← H3.Setup(1λ,x0,x1)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← H3.KeyDer(msk ′, k)
Return sky

proc LR()

Ct∗
R← H4.Encrypt(msk ′,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

Hybrid H5: This is like H4 except that the challenge ciphertext is generated by invoking the
algorithm H5.Encrypt defined as follows:

H5.Encrypt(msk ′,Ct,x): Let Ct = (ct0, ct1), then, the algorithm computes the cipher-
text for x in the following way:

ct′0 = ct0 and
(
ct′i = ctαi1 · E .E

′(ti, xi, ct0; r̃)
)
i∈[`]

,

where r̃ is some randomness shared among all the invocation of E .E.

proc Initialize(λ,x0,x1)

(mpk ,msk ′)
R← H3.Setup(1λ,x0,x1)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← H3.KeyDer(msk ′, k)
Return sky

proc LR()

Ct = E .Encrypt(pk, 0)

Ct∗
R← H5.Encrypt(msk ′,Ct,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

H5 is indistinguishable from H4 due to the `-ciphertext-reproducability.

Hybrid H6: This is like H5 except that Ct encrypts a random value a ∈ Zp.
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proc Initialize(λ,x0,x1)

(mpk ,msk ′)
R← H3.Setup(1λ,x0,x1)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← H3.KeyDer(msk ′, k)
Return sky

proc LR()

Ct = E .Encrypt(pk, a), a← Zp
Ct∗

R← H5.Encrypt(msk ′,Ct,xb)
Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that
F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

We now show that the relevant distinguishing probabilities between adjacent hybrids are negli-
gible, which completes the proof.

Indistinguishability of H1 and H2: The distribution of the master public key in both the
games is identically. This is because in H2 a simple change of basis is applied to a well distributed
master secret key and this change of basis can be computed due to the linear key-homomorphism
of E , that tells us that the ski’s as computed in H2 are valid secret keys of E .

Moreover, notice that, by our change of basis it holds that αi = x1,i − x0,i because

x1,i − x0,i = 〈x1 − x0, ei〉

= αi +
∑

j∈[`−1]

λi,j〈x1 − x0, zj〉

= αi .

Then, the change of basis implies that for all the vectors y = (y1, . . . , y`) satisfying the security
game constraints, meaning that y ∈ (x1−x0)⊥, it holds that

∑
i∈[`] yi ·αi = 0. Thus, to generate

a well-distributed secret key for a y satisfying the security game constraints, sk is not required.

Indistinguishability of H2 and H3: This holds under the `-public-key-reproducibility of E
for the distribution M, induced by the challenge messages, defined as follows:

Mx0,x1(1λ): M finds a basis (z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then, the canonical vectors can
be rewritten in this basis as follows: for i ∈ [`], j ∈ [`−1], there exist λi,j ∈ Zq and αi ∈ Zq
such that:

ei = αi
(x1 − x0)

||x1 − x0||2
+

∑
j∈[`−1]

λi,jzj .

Then,M first samples sk
R← E .SKGen(1λ), then, for j ∈ [`−1], samples skzj ← E .SKGen(1λ),

sets ti =
∑
λi,jskzj and gives in output (sk, (αi, ti)i∈[`]).

For the sake of completeness, suppose that there exists and adversary A that distinguishes with
non-negligible advantage H2 from H3. Then, we can construct an adversary B that uses A as a
subroutine and breaks the `-public-key-reproducibility of E .
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B does the following. B invokes A to gets the challenge messages x0,x1. Then, B receives
from the challenger of the `-public-key-reproducibility values (pki, ti)i∈[`] on input the security
parameter and distribution Mx0,x1 . B sets master public key as mpk = (pki)i∈[`] and gives it
to A. Then B answers secret key queries by using the ti’s which are enough to generate secret
keys for vectors satisfying the security game constraints. B generates the challenge ciphertext
by using mpk and uses A’s guess as its guess for the `-public-key-reproducibility game.

Finally, notice that if B plays Exp`-pk-rep-0
E,λ (B) (resp. Exp`-pk-rep-1

E,λ (B)), then B perfectly simulates
H2 (resp. H3).

Indistinguishability of H3 and H4: By linear ciphertext-homomorphism of E , H3 = H4. In
fact, notice that in both the games pki = pkα · pkti , then it holds that

E .E(pkαi · pkti , xi; r) = E .E(pk, 0; r)αi · E .E(pkti , xi; r) .

Indistinguishability of H4 and H5: This holds under the `-ciphertext-reproducibility of E
for the distribution M, induced by the challenge messages, defined as follows:

Mx0,x1(1λ): M finds a basis (z1, z2, . . . , z`−1) of (x1 − x0)⊥. Then, the canonical vectors can
be rewritten in this basis as follows: for i ∈ [`], j ∈ [`−1], there exist λi,j ∈ Zq and αi ∈ Zq
such that:

ei = αi
(x1 − x0)

||x1 − x0||2
+

∑
j∈[`−1]

λi,jzj .

Then, M samples, for j ∈ [`− 1], secret keys skzj ← E .SKGen(1λ).

Finally, M, for i ∈ [`], sets ti =
∑
λi,jskzj and returns (0, (αi, xβ,i, skti)i∈[`]), where β is

random bit.

For the sake of completeness, suppose that there exists and adversary A that distinguishes with
non-negligible advantage H4 from H5. Then, we can construct an adversary B that uses A as a
subroutine and breaks the `-ciphertext-reproducibility of E .

B does the following. B invokes A to gets the challenge messages x0,x1. Then, B receives
from the challenger of the `-ciphertext-reproducibility values (pk, (αi, pkti , ti)i∈[`], ct0, (cti)i∈[`])
on input the security parameter and distribution Mx0,x1 . B sets master public key as mpk =
(pki = pkαi · pkti)i∈[`] and gives it to A. Then B answers secret key queries by using the ti’s
which are enough to generate secret keys for vectors satisfying the security game constraints. B
uses as challenge ciphertext (ct0, (cti)i∈[`]) and uses A’s guess as its guess for the `-ciphertext-
reproducibility game.

Finally, notice that if B plays Exp`-ct-rep-0
E,λ (B) (resp. Exp`-ct-rep-1

E,λ (B)), then B perfectly simulates
H4 (resp. H5).

Indistinguishability of H5 and H6: The only difference between H5 and H6 is in the message
that Ct encrypts. In H5, Ct is an encryption of 0 and H5, it is an encryption of a for a random
a ∈ Zq. Moreover, notice that sk is never used. Therefore under the the IND-CPA security of
E , H5 is computational indistinguishable from H6.
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Advantage of any adversary in H6. In this game, the challenge ciphertext is for message
x̂ = (x̂1, . . . , x̂`) defined as follows:

x̂i = xb,i + αia = a(x1,i − x0,i) + xb,i

= a(x1,i − x0,i) + x0,i + b(x1,i − x0,i).

Let us set u = a + b, which is a random value in Zp, then x̂i = ux1,i + (1 − u)x0,i. Then, the
challenge ciphertext is a valid ciphertext for the message x̂ = ux1 +(1−u)x0, which is a random
linear combination of the vectors x0 and x1 whose coefficients sum up to one. Notice that b is
information theoretically hidden because the distribution of u is independent from b. Hence, the
advantage of any adversary in this game is 0.

5 Instantiation from DDH

In this section, we show that the ElGamal encryption scheme [ElG85] can be used to instantiate
Construction 4.1. In fact, we have:

Structure. Let q be a prime and G a group of order q where the DDH assumption is supposed
to be hard, and g a generator of G. Then, ElGamal’s secret key space is the group
(Zq,+, 0), public key space is the group (G,×, 1), and the message space is Zq. An
ElGamal ciphertext is of the form Ct = (ct0 = gr, ct1 = pkr · gx) as required. Thus,
C(r) = gr and E(pk, x; r) = pkr · gx.

Linear Key Homomorphism. It is easy to see that for any two secret keys sk1, sk2 ∈ Zq and
any y1, y2 ∈ Zq, the component-wise linear combination formed by y1sk1 + y2sk2 can be
computed efficiently only using public parameters, the secret keys sk1 and sk2 and the
coefficients y1 and y2. And this combination y1sk1 + y2sk2 also functions as a secret key
to a public key that can be computed as pky11 · pk

y2
2 = gy1sk1+y2sk2 , where pk1 (resp. pk2)

is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism Under Shared Randomness. It holds that

E(pk1, x1; r) · E(pk2, x2; r) = gr·sk1gx1 · gr·sk2gx2

= gr·(sk1+sk2) · gx1+x2

= E(pk1pk2, x1 + x2; r) .

IP’s Key and Message spaces. The key and message spaces for the IP scheme are M =
{0, . . . , B−1}` ⊆ Zq, where B can be any value satisfying ` ·B2 < q. However, B cannot be very
large since it should allow for an efficient computation of the final discrete log during decryption.

Security. The ElGamal encryption scheme remains secure under randomness reuse. In fact,
it holds that

E(pk, x; r) = (gsk)r · gx = (gr)sk · gx .

Thus, the simplified proof of security applies.
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6 Instantiation from LWE

In this section, we show that Regev’s public-key encryption scheme [Reg05] can also be used to
instantiate Construction 4.1.

6.1 Tools and Assumptions

Gaussians and Lattices. The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x) = exp(−π · ||x||2) = exp(−π · 〈x,x〉) .

Applying a linear transformation given by a (not necessarily square) matrix B with linearly
independent columns yields the (possibly degenerate) Gaussian function

ρB(x) =

{
ρ(B+x) = exp(−π · x>Σ+x) If x ∈ span(B) = span(Σ)

0 otherwise

where Σ = BB> ≤ 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.

Lemma 6.1 Let ρ√Σ(x) be the probability that a gaussian random variables of covariance
matrix Σ is equal to x. Then, for any invertible matrix β,

ρ√Σ(β−1x) = ρβ
√

Σ(x) .

Lemma 6.2 Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn, we have ρ√Σ(Λ+c) ≤ ρ√Σ(Λ).

Moreover, if
√

Σ ≥ ηε(Λ) for some ε > 0 and c ∈ span(Λ), then ρ√Σ(Λ + c) ≥ 1−ε
1+ε · ρ√Σ(Λ).

The LWE Assumption. The learning with errors (LWE) problem was introduced by Regev
[Reg05]. Let n, q be integer parameters. For any noise distribution χ on Zq, and vector s ∈ Znq ,
the oracle LWEq,n,χ(s) samples a fresh random n-dimensional vector a ← Znq , as well as noise
e← χ, and returns (a, 〈a, s〉+ e). The LWE assumption with noise χ states that for every PPT
distinguisher D,

Pr[s← Znq : DLWEq,n,χ(s) = 1]− Pr[s← Znq : DLWEq,n,U (s) = 1] = negl(n),

where U is the uniform distribution on Zq.

Generalized Leftover Hash Lemma. The following text and lemma are taken verbatim
from [DRS04]. The predictability of a random variable A is maxa Pr[A = a], and its min-entropy
H∞(A) is − log(maxa Pr[A = a]). The min-entropy of a distribution tells us how many nearly
uniform random bits can be extracted from it. The notion of nearly is defined as follows. The
statistical distance between two probability distributions A and B is SD(A,B) = 1

2

∑
v |Pr[A =

v]− Pr[B = v]|.
Consider now a pair of (possibly correlated) random variables A,B. If the adversary finds

out the value b of B, then predictability of A becomes maxa Pr[A = a|B = b]. On average, the
adversary’s chance of success in predicting A is then Eb←B[maxa Pr[A = a|B = b]]. Note that
we are taking the average over B (which is not under adversarial control), but the worst case
over A (because prediction of A is adversarial once b is known). Again, it is convenient to talk

21



about security in log-scale, which is why we define the average min-entropy of A given B as
simply the logarithm of the above:

H̃∞(A|B) = − log
(
Eb←B[max

a
Pr[A = a|B = b]]

)
= − log

(
Eb←B

[
2H∞(A|B=b)

])
.

Lemma 6.3 Let A,B,C be random variables. Then If B has at most 2λ possible values, then

H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C)− λ ≥ H̃∞(A|C)− λ ,

In particular, H̃∞(A|B) ≥ H∞((A,B))− λ ≥ H∞(A)− λ.

Lemma 6.4 [Generalized Leftover Hash Lemma [DRS04]] Assume {Hx : {0, 1}n → {0, 1}`}x∈X
is a family of universal hash functions. Then, for any random variables W and I,

SD((HX(W ), X, I), (U`, X, I)) ≤ 1

2

√
2−H̃∞(W |I)2` .

6.2 Regev PKE Scheme

The message space is M = {0, . . . , B − 1} ⊆ Zp for some integer B and prime p > ` · B2. Let
q = poly(n) > p be another prime modulus that satisfies the constraints of the security proof of
Section 4.3. Our public keys and ciphertexts consist of matrices and vectors over Zq. For every

v ∈ Zp (i.e., one entry of a message vector), define the “center” for v as t(v) =
⌊
v · qp

⌋
∈ Zq. Let

χσ denote an integer gaussian distribution over Zq with standard deviation σ: χσ(x) = ρσ(x)
ρσ(Z) .

Let m = m(n), and σ = σ(n) and σ′ = σ′(n) be positive real Gaussian parameters. The
following relations between parameters are required for correctness and security:

• m ≥ (1 + ε)(`+ n+ 1) log q

• q is a prime number of the size of pn2B
√
`

• σ ≥ (`B + 1)σ the standard deviation of the errors in the scheme

• σ′ = o( 1
pB2`

√
m log λ

) the standard deviation of the errors in the proof of security

All operations are performed over Zq.

Construction 6.5 We define our public-key encryption scheme E = (Gen, SKGen,PKGen,Encrypt,
Decrypt) as follows.

• Gen(1λ) generates common parameters. Specifically, the algorithm samples A ← Zm×nq ,
and returns params = (A, χσ). We always assume that all the other algorithms take in
input params, thus we avoid to include explicitly.

• SKGen(1λ) takes in input the security parameter and samples s from Znq and returns sk = s.

• PKGen(sk, τ) takes in input secret key s, parameters τ , and samples e from χmσ and com-
putes pk = As + e ∈ Zmq . Then the algorithm returns pk.

Notice that, if τ describes an error distribution then e is sampled from this latter distri-
bution.
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• Encrypt(pk, x) on input public key pk, and message x ∈ M , chooses random r ← {0, 1}m
and computes

ct0 = A>r ∈ Znq
and

ct1 = 〈pk, r〉+ t(x) ∈ Zq .

Then the algorithm returns the ciphertext Ct = (ct0, ct1).

• Decrypt(pk,Ct, sk) on input public key pk, ciphertext Ct = (ct0, ct1) and secret key sk,
Compute d = ct1 − 〈ct0, s〉 and output the plaintext x ∈ M , where each x is such that
d− t(x) ∈ Zq is closest to 0 mod q.

We now show that the above scheme possesses the properties required to instantiate Con-
struction 4.1.

Linear Key Homomorphism. The first property comes from the fact that secret keys are
elements uniformly sampled from the group Znq , so the secret key space is stable under
addition. Moreover,

∑
αisi is a correct secret key for

∑
αi(Asi + ei) as long as

∑
αiei

remains small, which is true for small values of αi.

Ciphertext Homomorphism Under Shared Randomness. It is easy to verify that:

〈pk1, r〉+ t(x1) + 〈pk2, r〉+ t(x2) = 〈pk1 + pk2, r〉+ t(x1 + x2) .

By definition of t.

Finally, in order to prove security, we resort to the our generalized proof of security. It is
enough to show that the above scheme satisfies `-Public-Key Reproducibility and `-Ciphertext
Reproducibility. Namely:

`-Public-Key Reproducibility. To show that Construction 6.5 has `-public-key-reproducibility,
for any fixed constant `, it is sufficient to show that there are error distributions with standard
deviations σ, σ′, (σi)i∈[`] such that Exp`-pk-rep-0

E,λ (A) is indistinguishable from Exp`-pk-rep-1
E,λ (A).

Theorem 6.6 Construction 6.5 has `-public-key-reproducibility in a statistical sense.

Proof: Let τ be the description of an error distribution with standard deviation σ, and τ ′ an
error distribution with standard deviation σ′.

Let {τi}i∈[`] describe sampling ` errors with covariance matrix
√

Σ, where Σ = σ2I` − σ′2~α~α>,

where ~α = (α1, . . . , α`). Notice that Σ is positive semi-definite if σ > σ′(1 +B
√
`) because αi is

smaller than B for any i.

Finally, let β =
(
I` ~α

)
and Σ′ =

(
Σ 0

0 σ′2

)
, where I` is the identity matrix.

Then, If b = 0, the errors appearing in pki come from the distribution χσI` . If b = 1, the errors
appearing in pki come from the distribution βχ√Σ′ .

We show that these two distribution are statistically close if σ > σ′(1 + B
√
`). Let us set β′ =(

I` ~α
~µ> 1 + ~µ>~α

)
for some ~µ. Let Σ0 = β′

√
Σ′(β′

√
Σ′)> be of the target form

(
σ2I` 0

0 γ0
2

)
.
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If Σ0 has this form, it means that β′
√

Σ′ gives us ` uncorrelated errors distributed as χσ and
another error distributed as χγ0 which we can drop because it is not correlated to the other.
Then ∀z, ε← χ√Σ′

Pr(βε = z) =
∑
s

Pr

(
β′ε =

(
z

~µ>z + s

))
=
∑
s

Pr

(
ε = β′

−1
(

z
~µ>z + s

))
∝
∑
s

ρ√Σ′

(
β′
−1
(

z
~µ>z + s

))
∝
∑
s

ρβ′
√

Σ′

((
z

~µ>z + s

))
by Lemma 6.1

∝
∑
s

ρ√Σ0
(z)ργ0(~µ>z + s)

∝ ρ√Σ0
(z)ργ0(~µ>z + Z)

∝ νρ√Σ0
(z) where ν ∈

[
1− ε
1 + ε

, 1

]
as long as γ0 > 2 by Lemma 6.2

`-Ciphertext Reproducibility. We show that Construction 6.5 has `-ciphertext-reproducibility,
for any fixed constant `, by taking error distributions with standard deviations σ′, (σi)i∈[`] as
chosen for the `-public-key-reproducibility, and by the following alternative encryption algorithm

E′((si, ei), xi, ct0; r′) = 〈si, ct0〉+ 〈ei, r′〉+ t(xi) .

as required. This is enough to show that Exp`-ct-rep-0
E,λ (A) is indistinguishable from Exp`-ct-rep-1

E,λ (A).

Theorem 6.7 Under the LWE assumption, Construction 6.5 has `-ciphertext-reproducibility.

Proof: We prove the theorem via a sequence of hybrid experiments.

Hybrid H1: This is the Exp`-ct-rep-0
E,M,λ (A), with the algorithms unfold.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

sk
R← Znq , e← χmσ′ , pk = Ask + e

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)
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Hybrid H2: This is like H1 except that pk is taken uniformly random in Zmq .

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

Hybrid H3: This is like H2 except that ct0 and 〈pk, r〉 are replaced with uniformly random
values.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq , u

R← Zq
pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m

ct0
R← Zmq , ct = u+ t(a)

cti = αict+ E′((ski, ei), xi, ct0; r)

Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

Notice that E′((ski, ei), xi, ct0; r) = E(pki, xi; r) if ct0 = A>r.

Hybrid H4: This is like H3 except that r is replaced by another random value r′.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq , u

R← Zq
pki = Aski + ei, for ei ← χmσi

r′
R← {0, 1}m

ct0
R← Zmq , ct = u+ t(a)

cti = αict+ E′((ski, ei), xi, ct0; r′)

Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)
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Hybrid H5: This is like H4 except that ct0 is generated as A>r and u is replaced by 〈pk, r〉.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq

pki = Aski + ei, for ei ← χmσi

r
R← {0, 1}m, r′ R← {0, 1}m

ct0 = A>r, ct = E(pk, a; r)

cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

Hybrid H6: This is the Exp`-ct-rep-1
E,M,λ (A).

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

sk
R← Znq , e← χmσ′ , pk = Ask + e

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m, r′ R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

We now show that the relevant distinguishing probabilities between adjacent hybrids are negli-
gible, which completes the proof.

Indistinguishability of H1 and H2: The hardness of LWE guarantees that pk looks pseudo-
random to the adversary. Moreover notice that sk is never used.

Indistinguishability of H2 and H3: Let us define the following random variables:

• X is the random variable that takes uniform values of the form (A ∈ Zm×nq ,b ∈ Znq ).

• W is the random variable that takes uniform values of the form r ∈ {0, 1}m.

• I is the random variable that takes values of the form (〈e1, r〉, . . . , 〈e`, r〉), where ei ← χm,
r ∈ {0, 1}m.
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Then, by Lemma 6.3, we have that H̃∞(W |I) ≥ H∞(W )− (`−1) log q = m− (`−1) log q. Now,
notice that HX(W ) = H(A,b)(r) = (A>r, 〈b, r〉) is a universal hash function and by applying
the generalized leftover hash lemma (Lemma 6.4), we have that:

SD((HX(W ), X, I), (U,X, I)) ≤ 1

2

√
2−H̃∞(W |I)qn+1 .

Then, if m ≥ (n+ `+ 1) log q + 2 log 1
ε + Ω(1), the statistical distance between the two views is

at most ε.

Indistinguishability of H3 and H4: These are exactly the same distribution as r is used
nowhere else.

Indistinguishability of H4 and H5: The change from H5 to H4 is the same as the change
from H2 to H3, except that no information about r is leaked. So Lemma 6.3 gives us that the
statistical distance between the two views is at most ε.

Indistinguishability of H5 and H6: Once again, the hardness of LWE guarantees that pk
looks pseudo-random to the adversary.
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