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Abstract. Related-Key Attacks (RKAs) allow an adversary to observe the outcomes of a cryptographic
primitive under not only its original secret key e.g., s, but also a sequence of modified keys φ(s), where φ
is specified by the adversary from a class Φ of so-called Related-Key Derivation (RKD) functions. This
paper extends the notion of non-malleable Key Derivation Functions (nm-KDFs), introduced by Faust
et al. (EUROCRYPT’14), to continuous nm-KDFs. Continuous nm-KDFs have the ability to protect
against any a-priori unbounded number of RKA queries, instead of just a single time tampering attack
as in the definition of nm-KDFs. Informally, our continuous non-malleability captures the scenario
where the adversary can tamper with the original secret key repeatedly and adaptively. We present a
novel construction of continuous nm-KDF for any polynomials of bounded degree over a finite field.
Essentially, our result can be extended to richer RKD function classes possessing properties of high
output entropy and input-output collision resistance. The technical tool employed in the construction is
the one-time lossy filter (Qin et al. ASIACRYPT’13) which can be efficiently obtained under standard
assumptions, e.g., DDH and DCR. We propose a framework for constructing Φ-RKA-secure IBE, PKE
and signature schemes, using a continuous nm-KDF for the same Φ-class of RKD functions. Applying
our construction of continuous nm-KDF to this framework, we obtain the first RKA-secure IBE, PKE
and signature schemes for a class of polynomial RKD functions of bounded degree under standard
assumptions. While previous constructions for the same class of RKD functions all rely on non-standard
assumptions, e.g., d-extended DBDH assumption.
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1 Introduction

Traditionally, cryptographic security notions assume that an adversary can only observe the input/output
behavior of the system and thus has only “black-box” access to the system. In a real life, however, it may
be far from this case. Recent research [8] has shown that an adversary may learn some information about
the secret key/internal state through physical side channels (e.g., timing [21] and power consumption [22])
and/or influence the way that the secret key/internal state is used via physical access to a hardware device
(e.g., heating it or cutting wires to inject faults [7,8]). These two types of attacks are usually distinguished
as “leakage” and “tampering” attacks respectively. In this paper, we consider how to design algorithms
enabling devices resilient to tampering attacks when the devices are “leakage-proof” but not “tamper-proof”.
Specifically, we focus on tampering attacks on the key stored in a cryptographic hardware device. The key
might be a signing key of a certificate authority or a decryption key of an encryption cryptosystem. Such
tampering attacks are firstly formalized by Bellare and Kohno [5], as Related-Key Attacks (RKAs) in the
context of pseudorandom functions/permutations.
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Model of RKA Security. Following [4], we view a system as a composition of algorithms (code), public
parameters, public keys (if any) and secret keys. Among these components, public parameters are system-
wide, meaning that they are generated beforehand and independent of users and hence their public/secret
keys. In an implementation, these parameters are part of the algorithm code and stored in a tamper-proof
hardware device. Hence, only the public and secret keys are subject to RKAs.

Suppose that CSpp(s, x) is a cryptographic system parameterized by a public parameter pp. It admits
a secret key s and a message x as input. For example, if CS has a decryption functionality, then s is a
decryption key and x is a ciphertext. The RKA security model for CS is formalized by a class Φ of admissible
key transformations (also named Related-Key Deriving (RKD) functions). An RKA adversary has the ability
to repeatedly and adaptively choose x and a (tampering) function φ ∈ Φ, and then observe the outcome of
CSpp(φ(s), x) under this modified key φ(s). If the system is still secure, we say CS is Φ-RKA secure. Unless
stated otherwise, in this paper, the RKA-security model allows an adversary to ask for a-priori unbounded
number of RKD queries.

1.1 Motivation

It is not an easy task to design a provably secure scheme under RKAs for an especially large non-trivial
class of RKD functions. To date, there are few constructions of RKA-secure primitives. The state-of-the-art
RKA-security protects against a-priori unbounded number of queries for polynomials of bounded degree.
However, all of them rely on non-standard assumptions, e.g., the d-extended DBDH (decisional bilinear
Diffie-Hellman) assumption in the RKA-secure IBE [6] (and the degree of RKD polynomials is limited to
d). There are generic approaches that use non-malleable codes [15,17] and non-malleable key derivation
functions [17] to protect against tampering attacks even for function class richer than the polynomial one.
However, both of them only consider single time tampering attack, not capturing the scenario of related-key
attacks in which the adversary can continuously tamper with the original secret key. Indeed, as far as we
know, no formal result shows how to achieve RKA security using these two primitives. Recently, Faust et
al. [16] proposed an extension of the standard non-malleable codes, namely continuous non-malleable codes
which cover the case that allows multiple tampering queries. However, this model relies on self-destruct
mechanism, in which tampering queries must be terminated if an invalid code is detected (i.e., the decoding
returns ⊥). Moreover, their continuous non-malleable codes are realized in the split-state model [14] where
an encoding is divided into two parts and the tampering must be applied to the two parts independently.

A natural question is whether we can define a stronger security model (than that of [16]) for continuous
non-malleable codes or KDFs that can be used to achieve RKA security? Furthermore, can we achieve such
continuous non-malleability for larger class of RKD functions under standard assumptions? In this paper,
we provide affirmative answers to the two questions in the setting of key derivation functions.

1.2 Continuous Non-Malleable KDFs

Usually, a key derivation function KDF is equipped with another two probabilistic polynomial-time (PPT)
algorithms: KDF.Sys and KDF.Sample. The former takes as input a security parameter 1κ and outputs a
system parameter pp; the later takes as input pp, and outputs a derivation key s and a public key π. The
key derivation function KDF is implicitly indexed by the system parameter pp and takes as input (s, π)
to derive a key r = KDFπ(s) in polynomial-time. At a high level, we can always view (s, π) together as
a derivation key. Since π is publicly accessible, any efficient adversary can tamper with π at its will. For
this reason, we only explicitly specify the class Φ of tampering functions over the secret key space in this
paper. We omit π if the derivation function does not take the public key as input, for example in [17]. The
standard security notion for KDFs requires that the derived key r is indistinguishable from a random key
if the adversary only knows the system parameter and the public key. Recently, Faust et al. [17] introduced
the notion of non-malleable KDFs which, roughly speaking, guarantees that r is still random even if the
adversary obtains another value KDF(s′) as long as s′ 6= s.

As shown previously, the standard non-malleability cannot protect against tampering attacks in some
stateless settings where the adversary can continue to tamper with the original keys. To overcome this
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drawback, we introduce a new notion, namely continuous non-malleable KDFs, as a natural extension of the
standard non-malleability. The continuous non-malleability for function class Φ is defined by the following
two experiments: RealKDF(Φ, κ) and SimKDF(Φ, κ), in which the derivation key function involves the public
key π as an auxiliary input.

1. The challenger generates pp and samples (s, π). In experiment RealKDF, the challenger computes r∗ =
KDFπ(s), while in experiment SimKDF, the challenger samples r∗ uniformly at random from its range.

2. The adversary A is given (pp, π) and the challenge key r∗.
3. A can repeatedly and adaptively query the following oracle with (φ, π′) for any polynomially many times:

If (φ(s), π′) = (s, π), return same?; else, return KDFπ′(φ(s)),

where φ ∈ Φ, and π′ is chosen by A at its will.

The continuous non-malleability requires that any PPT adversary has negligible advantage in distinguishing
the above two experiments.

Though the adversary may tamper with s and π in a different (not necessarily independent) way, we
stress that this is not a tampering attack as defined in the split-state model [14,17]. The reason is that π is
a public key, any tampered result of π is provided by the adversary at its will, instead of being computed by
the challenger. As shown in [18], it is impossible to prevent against continuous tampering attacks without
any further assumption. Indeed, the continuous non-malleability achieved in the work of Faust et al. [16]
limits to self-destruct and split-state model. Our new model above removes these two restrictions, hence is
stronger. We will show in Section 4.1 that key derivation functions are still achievable in our new stronger
security model, as long as we give a proper restriction (see Definition 1) on the tampering function classes.

Note that in our security model, we consider not only a continuously tampering adversary, but also an
adaptive adversary which is allowed to access the tampering oracle after seeing the challenge derived key r∗.
It might be of independent interest to consider a non-adaptive tampering adversary, which is only allowed
to access the tampering oracle before receiving r∗.

1.3 Our Contributions

We summarize our contributions in the following and then detail the techniques that are used in our con-
struction of continuous non-malleable KDF.

– Introduce the notion of continuous non-malleable Key Derivation Function (cnm-KDF) for an a-priori
class of RKD functions Φ. Informally, we say a key derivation function KDF is continuously non-malleable
with respect to Φ, namely Φ-cnm-KDF, if the output of KDF is still pseudo-random even if a PPT
adversary tampers with its original key repeatedly and adaptively with function φ ∈ Φ.

– Provide a simple construction of continuous non-malleable KDF for the Φ
poly(d)
F -class of polynomial

functions of bounded degree d over finite field F. The construction exploits the functionality of one-time
lossy filter (introduced by Qin et al. [24]) and some basic properties of polynomial functions over finite
field.

• We also generalize the polynomial function class Φ
poly(d)
F to a larger function class, namely High

Output Entropy and Input-Output Collision Resistance (HOE&IOCR), which we denote by Φhoe
iocr.

Function class Φhoe
iocr possesses similar properties as polynomial functions. We show that our result

works well even in such a richer RKD function class Φhoe
iocr (Φhoe

iocr ⊇ Φ
poly(d)
F ).

• The state-of-the-art One-Time Lossy Filters (OT-LFs) [24,25] suggest that OT-LFs can be instanti-
ated from standard assumptions including the Decisional Diffie-Hellman (DDH) assumption and the

Decisional Composite Residuosity (DCR) assumption. This leads to instantiations of Φ
poly(d)
F -cnm-

KDF (w.r.t. Φhoe
iocr-cnm-KDF ) based on standard assumptions.

– Propose a simple framework which transforms a traditional (non-RKA secure) IBE to a Φ-RKA-secure
IBE with the help of Φ-cnm-KDF.
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• The available standard-assumption-based IBEs and Φ
poly(d)
F -cnm-KDF suggests the first instantiations

of Φ
poly(d)
F -RKA-secure IBE from standard assumption.

• Applying the transformation from Φ-RKA-secure IBE to PKE and signature schemes [4,6], we imme-

diately obtain Φ
poly(d)
F -RKA-secure CCA-PKE and signature schemes under standard assumptions.

A Closer Look at Our Techniques. Our construction of continuous non-malleable KDF employs three
cryptographic primitives: one-time lossy filter [24], pairwise independent hash function and one-time signa-
ture. A one-time lossy filter LFt(·) is a family of (one-way) functions parameterized by a tag t. The tag t can
be either injective corresponding to an injective function, or lossy corresponding to a lossy function. One-time
lossy filter has the following properties: (1) Injective and lossy tags are computationally indistinguishable;
(2) There is a trapdoor to efficiently sample a lossy tag. However, without this trapdoor, it is hard to find
a non-injective 1 tag even given one lossy tag. Recall that a family of pairwise independent hash functions
H is an average-case strong extractor as long as its input has sufficiently large average min-entropy [13]. In
our construction, we simply use h to derive the key r = h(s), where h ←R H and s is a random derivation
key. Associated with the derivation key s is a public key computed by π = t||LFt(s), where t is a random LF
(injective) 2 tag. At a high level, π provides a knowledge proof of s so that an adversary who can compute
a correct proof π′ that corresponds to φ(s) must already know φ(s). To guarantee such property, in the
proof, the tag t is moving from injective to lossy making π reveal only constant amount of information of
s. Suppose that s is modified to φ(s) and π to any value π′ = t′||y′. If t′ 6= t, t′ will be an injective tag
with overwhelming probability and hence LFt′(·) is injective. So, if φ(s) has high residual min-entropy, the
adversary should have negligible probability to correctly guess the value LFt′(φ(s)). A challenging problem
is that the adversary may reuse the lossy tag t, i.e., t′ = t. To solve this problem, we apply a one-time signa-
ture scheme to π, guaranteeing that if t is reused, then π′ = π with overwhelming probability. Recall that a
lossy tag is indistinguishable from an injective tag, and hence with overwhelming probability if π′ = π, then
φ(s) = s. So, such case occurs unless (φ(s), π′) = (s, π). Now, it only leaves us to discuss the entropy of φ(s)
and the probability of φ(s) = s. A simple property (for detail, see Lemma 3) is that for any non-constant
polynomial, φ(s) has nearly the same entropy as s and if φ is not the identity function, then φ(s) equals
s with negligible probability, as long as s has sufficiently large entropy. This concludes that except trivial
queries (including the case (φ, π′) = (id, π) and the case φ is constant), it is hard to generate a valid proof
π′ for φ(s).

1.4 Related Work and Remarks

So far, there are not many RKA-secure primitives available and the main constructions are limited to
PRFs [3,1], symmetric encryption [2,19,6], IBE [6], signature [6], and public-key encryption [28,6,23]. In
particular, Bellare et al. [4] presented an almost complete understanding of the relations among these RKA-
primitives. For example, RKA-secure PRFs can make any non-RKA secure primitive constructed from PRFs
to be secure against RKAs. However, almost all of the realizations are secure only against simple and
claw-free3 RKD functions e.g., linear functions [2,28,23]. It may become more challenging to immunize a
cryptographic primitive against non-linear and non-claw-free functions, e.g., affine and polynomial functions.
One inherent reason is that a simulator, without the secret key s, is hard to detect dangerous queries such
that φ(s) = s if φ is non-claw-free. To overcome this issue, all these methods [19,6,1] rely on non-standard
assumptions, e.g., the d-extended DBDH (decisional bilinear Diffie-Hellman) assumption used in [6], from
which the simulator is able to compute φ(s) (in the exponent) for any polynomial φ of bounded degree d.

Another approach that may be used to achieve RKA-security in a general way is the tamper-resilient
codes, including algebraic manipulation detection codes [11] and (continuous) non-malleable codes [15,17,16].
The secret key stored on the device is now the encoded version of the original key using such a code. These
codes considered very practical tampering functions. However, as we mentioned before, their security models

1 In some case, a tag may be neither injective nor lossy.
2 With overwhelming probability, a random tag is injective.
3 A class of RKD functions is called claw-free, if for any distinct RKD functions φ 6= φ′ and all s ∈ S, φ(s) 6= φ′(s)
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have some limitations, e.g., one-time tampering query or split-state model, which are inherent obstacles for
capturing the scenario of RKAs security. Recently, Damg̊ard et al.[12] showed that tamper-resilience (even
combined with leakage-resilience) can be achieved for arbitrary key relations by restricting the number of
adversary’s tampering queries.

Concurrent Work. Jafargholi and Wichs [20] considered the same security level of continuous non-
malleability and showed that continuous non-malleable codes are achievable if the tampering functions are
polynomials or have few fixed points and high entropy (like the properties of HOE&IOCR functions). In
contrast to ours, their results are constructed in the information-theoretic setting. However, the parameter in
their construction [16, Corollary 5.6] depends on the number of tampering queries and the size of tampering
function class. For efficient codes, the degree of polynomials must be set to some polynomial d = d(κ).
Additionally, they initiated a general study of continuous non-malleable codes and defined four variants of
continuous non-malleability depending on (1) whether a tampering is persistent or non-persistent, meaning
that any successive tampering function is applied to the former modified codeword or always applied to
the original codeword, (2) whether we can self-destruct or not, meaning that we can stop the experiment
if a codeword is invalid or the adversary can continue to tamper. Clearly, non-persistent tampering and no
self-destruct require stronger model and is just the model considered in this paper.

Organization. We present our RKD function class in Section 3. We present the notion of continuous non-
malleable KDF and its construction in Section 4. An application of continuous non-malleable KDF to the
RKA-secure IBE is given in Section 5.

2 Preliminary

Notations. Throughout the paper, N is the set of natural numbers and κ ∈ N is the security parameter. If
S is a finite set, then s ←R S denotes the operation of picking an element s from S uniformly at random.
If X is a random variable over S, then we write x ← X to denote the process of sampling a value x ∈ S
according to the distribution X. We call a function negl negligible in κ, if for every positive polynomial
poly(·) there exists an N such that for all κ > N , negl(κ) < 1/poly(κ). We say that an event E happens
with overwhelming probability, if it happens with probability 1 − negl(κ). “PPT” stands for probabilistic
polynomial-time. An algorithm A is PPT if it, on input x, computes A(x) using randomness and its running
time is bounded by poly(κ).

Average Min-entropy. The statistical distance between two random variables X and Y over a finite set
Ω is ∆(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω] − Pr[Y = ω]|. We say that two variables are ε-close if their statistical

distance is at most ε. The min-entropy of a random variable X is H∞(X) = − log(maxx Pr[X = x]). Dodis
et al. [13] formalized the notion of average min-entropy that captures the unpredictability of X conditioned

on a random variable Y . Formally, it is defined as H̃∞(X|Y ) = − log(Ey←Y [2−H∞(X|Y=y]).
We recall the following useful properties of average min-entropy from [13].

Lemma 1 ([13]). Let X, Y and Z be random variables. Then

1. If Y has at most 2r possible values and Z is any random variable, then H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z)− r.
2. For any δ > 0, the conditional entropy H∞(X|Y = y) is at least H̃∞(X|Y ) − log(1/δ) with probability

at least 1− δ over the choice of y.

Average-Case Extractors [13]. A function Ext : {0, 1}n × H → {0, 1}m is an efficient average-case

(n, ν,m, ε)-strong extractor, if for all pairs of random variables (X,Z) such that X ∈ {0, 1}n and H̃∞(X|Z) ≥
ν, we have ∆((Z, h,Ext(X,h)), (Z, h, Um)) ≤ ε, where h is uniform over H and Um is uniform over {0, 1}m.

Lemma 2 ([13]). Let H be a family of pairwise independent hash functions from {0, 1}n to {0, 1}m. If

X ∈ {0, 1}n, H̃∞(X|Z) ≥ ν and m ≤ ν − 2 log 1/ε, then ∆((Z, h, h(X)), (Z, h, Um)) ≤ ε, where h←R H and
Um is uniform over {0, 1}m. In other words, the above family of pairwise independent hash functions can be
used as an efficient average-case (n, ν,m, ε)-strong extractor.
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One-Time Lossy Filter. We adopt the notion of one-time lossy filter from [24]. An (X , `LF)-OT-LF LF
consists of three PPT algorithms: (1) LF.Gen(1κ), on input 1κ, outputs an evaluation key ekLF and a trapdoor
tdLF. The evaluation key defines a tag space T = {0, 1}∗×Tc that contains two disjoint subsets, the subset of
lossy tags Tloss ⊆ T and that of injective tags Tinj ⊆ T . A tag t ∈ T consists of an auxiliary tag ta ∈ {0, 1}∗
and a core tag tc ∈ Tc. The trapdoor tdLF allows to efficiently sample a lossy tag. (2) LF.Eval(ekLF, t,X), on
input a tag t and a preimage X ∈ X , computes LFekLF,t(X) ∈ Y. (3) LF.LTag(tdLF, ta), on input an auxiliary
tag ta, computes a core tag tc such that t = (ta, tc) is lossy.

Besides the above functionalities, LF should satisfy the following properties:

Lossiness. If t is injective, so is the function LFekLF,t(·). If t is lossy, then LFekLF,t(X) has at most 2`LF possible
values.

Indistinguishability. For any PPT adversary A, it is hard to distinguish a lossy tag from a random tag,
i.e., the following advantage is negligible in κ,

AdvindLF,A(κ) := |Pr [A(ekLF, (ta, tc)) = 1]− Pr [A(ekLF, (ta, t
′
c)) = 1]| ,

where (ekLF, tdLF)← LF.Gen(1κ), ta ← A(ekLF), tc ← LF.LTag(tdLF, ta) and t′c ←R Tc.
Evasiveness. For any PPT adversary A, it is hard to generate a non-injective tag even given a lossy tag,

i.e., the following advantage is negligible in κ,

AdvevaLF,A(κ) := Pr

 (t′a, t
′
c) 6= (ta, tc)∧

(t′a, t
′
c) ∈ T \ Tinj

:

(ekLF, tdLF)← LF.Gen(1κ)
ta ← A(ekLF)
tc ← LF.LTag(tdLF, ta)
(t′a, t

′
c)← A(ekLF, (ta, tc))

 .

One-Time Signature. A one-time signature scheme OTS consists of four (probabilistic) polynomial-time
algorithms: (1) OTS.Sys(1κ), on input 1κ, outputs a public parameter pp; (2) OTS.Gen(pp), on input pp,
outputs a verification/signing key pair (vk, sigk); (3) OTS.Sig(sigk,m), on input a message m, outputs a
signature σ; (4) OTS.Vrf(vk,m, σ), on input a message/signature pair (m,σ), outputs 1 if σ is indeed a
signature of m or 0 otherwise. We say that OTS is strongly secure against chosen-message attacks, if for any
stateful PPT adversary A, the following advantage is negligible in κ,

Advcma
OTS,A(κ) := Pr

 (m′, σ′) 6= (m,σ)∧
OTS.Vrf(vk,m′, σ′) = 1

:

pp← OTS.Sys(1κ)
(vk, sigk)← OTS.Gen(pp)
m← A(pp, vk)
σ ← OTS.Sig(sigk,m)
(m′, σ′)← A(σ)

 .

3 Properties of RKD Functions over Finite Fields

A class Φ of Related-Key Derivation (RKD) functions over S is a set of functions, all with the same domain
and range S. Suppose that F is a finite field such that |F| ≥ 2n for some positive integer n. Let d ≥ 0 be

any fixed integer. Define Φ
poly(d)
F to be the set of all polynomial functions over F with degree bounded by d.

Clearly, Φ
poly(d)
F includes the identity function f = id (i.e., f(x) = x) and all the constant functions (denoted

by cf = {fc : F→ c}c∈F). We introduce the following simple lemma.

Lemma 3. Let F and Φ
poly(d)
F be defined as above. Let X be any random variable over F such that H∞(X) ≥

n. For any f ∈ Φpoly(d)
F \cf, then H∞(f(X)) ≥ n−log d and for any f ∈ Φpoly(d)

F \{id} then Pr[f(X) = X] ≤ d
2n .

Proof. For any polynomial f ∈ Φpoly(d)
F , let Bf denote the set of all solutions x over F such that f(x) = 0.

Clearly, if f is not identically zero, then |Bf | is bounded by d. For any fixed value a ∈ F, if f is not a constant
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function, then f ′(x) = f(x)− a is not identically zero. This shows that f ′(x) = 0 has at most d solutions x,
i.e., |Bf ′ | ≤ d. Then,

Pr
x←X

[f(x) = a] = Pr
x←X

[x ∈ Bf ′ ] ≤ d

2H∞(X)
≤ d

2n
.

Hence, H∞(f(X)) = − log(max
a∈F

Pr[f(X) = a]) ≥ n− log d.

Similar to the above analysis, if f is not identity function, then f ′′(x) = f(x)− x is not identically zero.
Hence f ′′(x) = 0 has at most d solutions over F, i.e., |Bf ′′ | ≤ d. Then

Pr[f(X) = X] =
∑
a∈F

Pr[f(X) = a ∧X = a]

=
∑

a∈Bf′′
Pr[f(X) = a ∧X = a] +

∑
a∈F\Bf′′

Pr[f(X) = a ∧X = a]

= Pr
x←X

[x ∈ Bf ′′ ] + 0

≤ d
2H∞(X) ≤ d

2n .

This completes the proof of Lemma 3. ut

Remark 1. In our main result (see Theorem 1), we restrict the RKD function class to polynomials as the
proof needs the properties stated in Lemma 3. In fact, we can extend it to any RKD function class that
has similar properties as polynomials. We call such function class High Output Entropy and Input-Output
Collision Resistant (HOE&IOCR) function class, which is formally defined in Definition 1.

Definition 1 (HOE&IOCR RKD function class). Let S be a set with super-polynomial size in the
security parameter κ. The RKD function class Φhoe

iocr : S → S is called the class of High Output Entropy and
Input-Output Collision Resistance (HOE&IOCR) as long as it satisfies the following properties.

– (High Output Entropy) When S is chosen uniformly at random from S, for each φ ∈ Φhoe
iocr\cf, the entropy

H∞(φ(S)) is sufficiently large, i.e., 2−H∞(φ(S)) is negligible in κ;
– (Input-Output Collision Resistance) For each φ ∈ Φhoe

iocr \ {id}, the probability Pr[φ(S) = S] is negligible
in κ.

Clearly, Φ
poly(d)
F ⊆ Φhoe

iocr, and Φ
poly(d)
F satisfies S = F, H∞(S) ≥ n, H∞(φ(S)) ≥ n− d and Pr[φ(S) = S] ≤

d
2n .

4 Continuous Non-Malleable Key Derivation

A key derivation function consists of three (PPT) algorithms: (1) The public parameter generation algorithm
KDF.Sys(1κ), on input 1κ, outputs a system parameter pp, which defines the derivation key space S and
the derived key space {0, 1}m. (2) KDF.Sample(pp), on input pp, samples a random derivation key s ∈ S
and computes a public key, denoted by π. (3) The deterministic algorithm KDFπ(s), on input (s, π), outputs
a derived key r or the special symbol ⊥, indicating that π is an invalid proof of s. The standard security
notion of KDF guarantees that r is (computationally or information theoretically) indistinguishable from a
uniform over {0, 1}m even given the public parameter pp and the proof π.

The notion of non-malleable key derivation [17] was firstly introduced by Faust et al. at Eurocrypt 2014.
Intuitively, a function KDF is a non-malleable key derivation function if KDF(s) 4 is statistically close to
uniform even given the output of KDF applied to a related input s′ as long as s′ 6= s. The non-malleability
for a key derivation function aims to capture the scenario of one-time tampering attack for tampering
function family with all circuits of bounded size. In this section, we extend it to the notion of continuous
non-malleability (see Fig. 1) for an a-priori class Φ of RKD functions, making it possible to protect against
multiple-time tampering attacks on a fixed secret key (i.e., RKAs).

4 In [17], the key derivation is defined in the information theoretic setting, not taking π as an auxiliary input, i.e.,
π is empty.
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Definition 2 (Continuous non-malleable KDFs). Let Φ be a class of RKD functions over the same
domain and range S. We say that (KDF.Sys, KDF.Sample, KDF) is a (Φ, ε)-continuous non-malleable key
derivation function if for any stateful PPT adversary A,

|Pr[A(RealKDF(Φ, κ)) = 1]− Pr[A(SimKDF(Φ, κ)) = 1]| ≤ ε.

The experiments RealKDF(Φ, κ) and SimKDF(Φ, κ) are defined in Fig. 1 (Suppose that A makes at most
Q(κ) queries).

Experiment RealKDF(Φ, κ) : Experiment SimKDF(Φ, κ) :
pp← KDF.Sys(1κ) pp← KDF.Sys(1κ)
s||π ← KDF.Sample(pp) // s ∈ S s||π ← KDF.Sample(pp) //s ∈ S
r = KDFπ(s) r ←R {0, 1}m
For i = 1 to Q(κ) For i = 1 to Q(κ)

(φ, π′)← A(pp, r, π) // φ ∈ Φ (φ, π′)← A(pp, r, π) // φ ∈ Φ
If φ(s)||π′ = s||π If φ(s)||π′ = s||π

return same?. return same?.
Else Else

return KDFπ′(φ(s)). return KDFπ′(φ(s)).

Fig. 1. Experiments for continuous non-malleable KDFs

4.1 The Construction

In this subsection, we construct a continuous non-malleable key derivation function with respect to Φ
poly(d)
F

from one-time lossy filter.

Let (LF.Gen, LF.Eval, LF.LTag) be a collection of one-time lossy filters with domain S (such that S ⊆ F),
range Y, residual leakage `LF and tag space T = {0, 1}∗×Tc. Let H be a family of pairwise independent hash
functions from domain S to range {0, 1}m. Let (OTS.Sys,OTS.Gen,OTS.Sig,OTS.Vrf) be a strongly secure
one-time signature with verification key space KOTS and signature space Σ. Define Π := T × Y × Σ. The
construction is given in Fig. 2.

– KDF.Sys(1κ): It runs (ekLF, tdLF) ← LF.Gen(1κ) and ppOTS ← OTS.Sys(1κ), chooses h ←R H, and returns
ppKDF := (ekLF, ppOTS, h).

– KDF.Sample(ppKDF): It runs (vk, sigk)← OTS.Gen(ppOTS), chooses s←R S and tc ←R Tc, and computes

y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y).

Let π := t||y||σ and t := (vk, tc). Finally, it returns s||π.
– KDFπ(s): It parses π as t||y||σ and t as (vk, tc). If the following two equations

LFekLF,(vk,tc)(s) = y (1)

OTS.Vrf(vk, tc||y, σ) = 1 (2)

hold simultaneously, it returns r = h(s); else it returns ⊥.

Fig. 2. Continuous non-malleable KDF w.r.t. RKD functions Φ
poly(d)
F
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Theorem 1. The KDF given in Fig. 2 is (Φ
poly(d)
F , ε)-continuously non-malleable. Concretely, for any δ > 0

and any PPT adversary A that makes at most Q(κ) queries and breaks the continuous non-malleability with
advantage ε, there exist adversaries B, B′ and B′′ of roughly the same time complexity as A, such that

ε ≤ 2
(
Advcma

OTS,B(κ) + AdvindLF,B′(κ) +Q(κ) · AdvevaLF,B′′(κ)+

Q(κ) ·
(
δ + d·2m+`LF+log 1/δ

|S|−Q(κ)+1

)
+ εH

)
,

where S and `LF respectively are the domain and residual leakage of the one-time lossy filter, m is the
output length of the pairwise independent hash, d is the maximum degree of RKD functions and log |S| ≥
max{`LF +m+ 2 log 1/εH, `LF +m+ log 1/δ}. Taking into account that ε should be negligible in the security
parameter κ, we may choose negligible δ and εH, and choose a OT-LF with sufficiently large domain S such
that log |S| = `LF + m + ω(log κ). Moreover, the degree of RKD functions can be made to 2κ as long as
log |S| = `LF +m+ ω(log κ) + κ.

Games: Key derivation rules : r: tc:

Game0 R0: If φ(s)||π′ = s||π, return same?, else if Eq. (1) and
Eq. (2) hold, return KDFπ′(φ(s)), else return ⊥.

r = h(s) tc ←R Tc

Game1 R1: If (φ, π′) = (id, π), return same?. If φ = φc, π
′ = π and

LFekLF,(vk,tc)(c) = y, return same?. If φ = φc but π′ 6= π or
LFekLF,(vk,tc)(c) 6= y, return KDFπ′(c).

r = h(s) tc ←R Tc

R0: As in Game0.

Game2 R1: As in Game1. r = h(s) tc ←R Tc
R2: If vk′ = vk, but (t′c||y′, σ′) 6= (tc||y, σ), return ⊥.
R0: As in Game1.

Game3 R1: As in Game2. r = h(s) tc ←R Tc
R2: As in Game2.
R3: If π′ = π, but φ(s) 6= s, return ⊥.
R0: As in Game2.

Game4 The same as in Game3. r = h(s) tc ← LF.LTag(tdLF, vk)

Game5 R1: As in Game4. r = h(s) tc ← LF.LTag(tdLF, vk)
R2: As in Game4.
R3 : Replaced by R0’.
R0 : Replaced by R0’.
R0’: Return ⊥.

Game6 As in Game5. r ←R {0, 1}m tc ← LF.LTag(tdLF, vk)

Game7 As in Game0. r ←R {0, 1}m tc ←R Tc

Fig. 3. Changes in each game

Proof. We prove it through a sequence of games played between a simulator Sim and a fixed PPT adversary

A. The initial game (i.e., Game0) is the experiment RealKDF(Φ
poly(d)
F , κ) and the final game is the experiment

SimKDF(Φ
poly(d)
F , κ) as defined in Fig. 1. Denote by Si the output of A in Gamei.

Game0 (The real experiment): This is the real experiment RealKDF(Φ
poly(d)
F , κ) as defined in Fig. 1. For

simplicity, we denote by ppKDF = (ekLF,ppOTS, h) the challenge public parameters and denote by s||π the
challenge sample, where π = t||y||σ, t = (vk, tc) and vk is the corresponding OTS verification key (with
respect to the signing key sigk). We write (φ, π′) as A’s queries, where π′ = t′||y′||σ′ and t′ = (vk′, t′c).
Then,

Pr[A(RealKDF(Φ
poly(d)
F , κ)) = 1] = Pr[S0 = 1].
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Game1 (Handling trivial queries without the KDF key): This game is the same as Game0, except
that the simulator uses the new rule R1 to answer some trivial queries as given in Fig. 3. Specifical-
ly, for these trivial queries, the simulator never uses the real derivation key s to compute the value
of KDFπ′(φ(s)). Note that, in both Game0 and Game1, LF works in injective mode with overwhelming
probability. Recall that y = LFekLF,(vk,tc)(s). So, for a query (φc, π

′), it satisfies φc(s)||π′ = s||π if and
only if π′ = π and LFekLF,(vk,tc)(c) = y. Hence, with overwhelming probability, these modifications are
just conceptual and

Pr[S1 = 1] = Pr[S0 = 1].

Game2 (Eliminating OTS key reuse): This game is the same as Game1, except for a modification to
the verification oracle as stated in Fig. 3. Let EOTS denote the event that A submits a query (φ, π′ =
(vk′, t′c)||y′||σ′) such that vk′ = vk, (t′c||y′, σ′) 6= (tc||y, σ) but OTS.Vrf(vk, t′c||y′, σ′) = 1. Clearly, Game2
is identical to Game1 unless the event EOTS occurs. We briefly show that if the adversary makes the event
EOTS occur, then an efficient algorithm B can be constructed to break the strong security of OTS using
A as a subroutine.
Given an OTS challenge instance (ppOTS, vk), B runs (ekLF, tdLF) ← LF.Gen(1κ), chooses h ←R H, and
sets ppKDF := (ekLF,ppOTS, h). Then B samples s, tc and computes y = LFekLF,(vk,tc)(s) by itself. Also,
B generates σ by querying OTS signing oracle once with tc||y. Since B knows s, it can answer all the
decryption queries (φ, π′) from A (recall that decryption does not need the knowledge of the challenge
OTS signing key sigk). So, B perfectly simulates the real experiment defined in Game1 for A. If A submits
a query (φ, π′) making the event EOTS occur, B returns (t′c||y′, σ′) (Note that, B can check whether the
event EOTS occurs or not). From the above observation, we have

|Pr[S2 = 1]− Pr[S1 = 1]| ≤ Advcma
OTS,B(κ).

Game3 (Answering a trivial query with the KDF key): If the adversary submits a query (φ, π′) such
that π′ = π (i.e., vk′ = vk and (t′c||y′, σ′) = (tc||y, σ)), the simulator first checks whether φ(s) = s. If
not, it returns ⊥ and halts immediately. Otherwise, the simulator handles it as in Game2. Recall that,
with overwhelming probability, a randomly chosen LF tag (vk, tc) is injective. So, if φ(s) 6= s, then
LFekLF,(vk,tc)(φ(s)) 6= y. This implies that such queries will also be rejected under the rules of Game2.
Hence, with overwhelming probability

Pr[S3 = 1] = Pr[S2 = 1].

Game4 (From injective to lossy LF tag): Instead of picking tc ∈ Tc uniformly at random, the simulator
computes tc := LF.LTag(tdLF, vk).
We show that the difference between Game3 and Game4 can be reduced to the indistinguishability of the
underlying OT-LF. Given a challenge LF evaluation key ekLF, a PPT algorithm B′ chooses h and ppOTS,
samples s and (vk, sigk) by itself. Then, it queries its injective-lossy tag oracle with query ta = vk. B′
will receive a challenge core tag part tc. It computes y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y),
and sets π = (vk, tc)||y||σ. It sends ppKDF = (ekLF,ppOTS, h) together with π to A. Since B′ knows the
KDF key s, it can answer all the queries issued by A. Finally, B′ outputs whatever A outputs. Clearly,
if tc is sampled from Tc uniformly at random, then B′ simulates Game3 perfectly. If tc is computed by
LF.LTag(ekLF, ta), then B′ perfectly simulates Game4. Hence,

|Pr[S4 = 1]− Pr[S3 = 1]| ≤ AdvindLF,B′(κ)

for some adversary B′ attacking on the indistinguishability of OT-LF.
Game5 (Answering all queries without the KDF key): In this game, the simulator replaces the rules

in step R3 and R0 (relying on the KDF key) with R0’ (without relying on the KDF key) as stated in
Fig. 3. Note that, the new rule directly rejects all queries except those trivial queries which have already
be answered by rule R1. Denote by F the event that A submits a query (φ, π′) such that the simulator
returns the special symbol ⊥ in Game5, but not in Game4. Also, let Eninj denote the event that among all
the queries (φ, π′), there exists some non-injective LF tag such that (vk′, t′c) 6= (vk, tc). Recall that, for
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the same query (φ, π′), if the simulator responds to A a result not being the special symbol ⊥ in Game5,
then the simulator must return the same result as in Game4. So, unless event F occurs, the two games
are identical from the adversary’s point of view. By the difference lemma [26, Lemma 1], it follows that
|Pr[S5 = 1]− Pr[S4 = 1]| ≤ Pr[F ].
We show the upper bound of the probability Pr[F ] by the following observation

Pr[F ] = Pr[F ∧ Eninj] + Pr[F ∧ Eninj] ≤ Pr[Eninj] + Pr[F |Eninj]

where all probabilities are taken over the randomness used in the experiment in Game4. The following
two lemmas show that both the probabilities Pr[Eninj] and Pr[F |Eninj] are negligible in κ. We postpone
to prove them after the main proof.

Lemma 4. Suppose that A makes at most Q(κ) queries. Then

Pr[Eninj] ≤ Q(κ) · AdvevaLF,B′′(κ)

for some suitable adversary B′′ attacking on the evasiveness of OT-LF.

Lemma 5. Suppose that A makes at most Q(κ) queries. For any δ > 0, we have

Pr[F |Eninj] ≤ Q(κ) ·
(
δ +

d · 2m+`LF+log 1/δ

|S| −Q(κ) + 1

)
.

Game6 (Replacing h(s) by a random string): This game is the same as Game5, except that the simulator
samples a random string r ←R {0, 1}m instead of computing r = h(s). Recall that in both Game5 and
Game6, except r, the simulator never uses the KDF derivation key s to answer A’s queries. So, the
adversary does not learn any more information on s through the key derivation oracle KDFπ′(φ(s)).
Observe that from the adversary’s point of view, only the value y may reveal information on s and all
other values are independent of s (e.g., ppKDF and (vk, tc)) or are just functions of y (e.g., σ). It holds
by the lossiness property of the OT-LF and by Lemma 1 that

H̃∞(s|(ppKDF, π)) ≥ H̃∞(s|ppKDF)− `LF = log |S| − `LF.

Since log |S|− `LF−2 log(1/εH) ≥ m, by Lemma 2, we have that h(s) is εH-close to uniform over {0, 1}m
from A’s point of view. Hence,

|Pr[S6 = 1]− Pr[S5 = 1]| ≤ εH.
Game7 (Reversing to answer all queries with the KDF key): This game is the same as in Game 6,

except that the simulator samples ppKDF and s||π, and answers queries (φ, π′) as in Game0. Note that,
in this game, r is still sampled as in Game6. Through defining a sequence of reverse games from Game6
to Game0, we can prove that

|Pr[S7 = 1]− Pr[S6 = 1]| ≤ |Pr[S6 = 1]− Pr[S0 = 1]|.

Observe that, Game7 is just the simulated experiment SimKDF(Φ
poly(d)
F , κ) and hence

Pr[A(SimKDF(Φ
poly(d)
F , κ)) = 1] = Pr[S7 = 1].

Taking all together, Theorem 1 follows. ut

Now, we prove Lemma 4 and Lemma 5.

Proof (Proof of Lemma 4). Given a challenge LF evaluation key ekLF, B′′ simulates A’s environment in
Game4 as follows. It first picks ppOTS ← OTS.Sys(1κ), h←R H and s←R S. It then samples a OTS key pair
(vk, sigk) ← OTS.Gen(ppOTS). After that, B′′ queries LF.LTag(ekLF, ·) with vk to obtain the challenge core
tag part i.e., tc = LF.LTag(tdLF, vk). Next, B′′ computes y = LFekLF,(vk,tc)(s) and σ = OTS.Sig(sigk, tc||y).
B′′ sends ppKDF = (ekLF,ppOTS, h) and π = (vk, tc)||y||σ to the adversary A. Since B′′ knows the KDF key
s, he can answer all the queries as in Game4. Let T = {(vk′, t′c)} be the set of tags extracted from A’s
queries (φ, π′) such that (vk′, t′c) 6= (vk, tc). Finally, B′′ chooses a tag (vk′, t′c) from T uniformly at random
as his output. If Eninj occurs, with probability at least 1/Q(κ), B′′ outputs a fresh non-injective tag. Hence,
Pr[Eninj] ≤ Q(κ) · AdvevaLF,B′′(κ). ut
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Proof (Proof of Lemma 5). Let (φ, π′) be the first query that does not satisfy the key derivation rules of R1
and R2 in Game4 and event Eninj does not happen. We call such query invalid query. Recall that an invalid
query is always rejected (output ⊥) in Game5. We show that it is not rejected in Game4 with a negligible
probability. Clearly, if (t′c||y′, σ′) is an invalid signature, then (φ, π′) will be rejected in both Game4 and
Game5. We consider three cases:

– Case 0: π′ = π and φ(s) 6= s.
– Case 1: π′ = π, φ 6= id, but φ(s) = s.
– Case 2: vk′ 6= vk and φ /∈ cf.

Note that, for any query (φ, π′), it always satisfies the key derivation rules defined in either R1 or R2, except
for the above three cases. Recall that, in the first case, both Game4 and Game5 outputs ⊥. Hence, only the
Case 1 and Case 2 may cause the difference between Game4 and Game5. Next, we show that the last two
cases will be rejected in Game4 with overwhelming probability.

Observe that in Game4, only values r and y may contain information on the KDF derivation key s. The
other values are independent of s (e.g., ppKDF and vk) or just functions of y (e.g., σ). Denote by V the
adversary’s view in Game4. From Lemma 1 and the fact that r and y have at most 2m and 2`LF possible
values respectively, we have

H̃∞(s|V ) = H̃∞(s|(ppKDF, r||π)) ≥ H̃∞(s|ppKDF)−m− `LF.

Recall that s is independent of ppKDF. So, the average min-entropy of s conditioned on the adversary’s
point of view is at least log |S| −m − `LF. According to Lemma 1, for any δ > 0, with probability at least
1− δ,

H∞(s|V = v) ≥ H̃∞(s|V )− log 1/δ ≥ log |S| −m− `LF − log 1/δ

over the choice of V = v.
According to Lemma 3, for any φ 6= id, we have

Pr[φ(s) = s] ≤ d

2H∞(s|V=v)
.

So, in Case 1, with probability at least 1− δ,

Pr[φ(s) = s] ≤ d · 2m+`LF+log 1/δ

|S|
.

Again, according to Lemma 3, for any φ /∈ cf

H∞(φ(s)|V = v) ≥ H∞(s|V = v)− log d ≥ log |S| −m− `LF − log 1/δ − log d

with probability at least 1− δ.
Recall that event Eninj does not happen, so (vk′, t′c) is an injective tag, which means that LFekLF,(vk′,t′c)(·)

is injective. As a result, the adversary can correctly guess the value LFekLF,(vk′,t′c)(φ(s)) with probability at

most δ + d · 2m+`LF+log 1/δ/|S|. Therefore, the first invalid query passes the key derivation rules in Game4
with probability at most δ + d · 2m+`LF+log 1/δ/|S|.

An almost identical argument holds for all subsequent invalid queries. The only difference is that the
adversary can rule out one more value s from each rejection of invalid query. So, R3 or R0 accepts the i-th
invalid query with probability at most δ+d ·2m+`LF+log 1/δ/(|S|− i+1). Since A makes at most Q(κ) queries,
the event F |Eninj occurs with probability at most

Q(κ) ·
(
δ +

d · 2m+`LF+log 1/δ

|S| −Q(κ) + 1

)
.

This finishes the proof of Lemma 5. ut
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4.2 Instantiations

According to [24,25], OT-LFs can be constructed from standard assumptions including the DDH assumption

and the DCR assumption. This results in instantiations of Φ
poly(d)
F -cnm-KDF (w.r.t. Φhoe

iocr-cnm-KDF) based
on these standard assumptions.

5 Application to RKA-secure IBE

An identity-based encryption scheme IBE consists of five (PPT) algorithms: (1) IBE.Sys(1κ), on input 1κ,
outputs a system parameter pp, which defines an identity space ID. (2) IBE.Gen(pp), on input pp, outputs a
master public key mpk and a master secret key msk. (3) IBE.Ext(msk, id), on input msk and an identity id ∈
ID, outputs a decryption key dkid. (4) IBE.Enc(mpk, id,M), on input a message M , outputs a ciphertext C
encrypted under mpk and identity id. (5) The deterministic algorithm IBE.Dec(dkid, C), on input decryption
key dkid and ciphertext C, outputs a message M . Correctness requires that for all public parameter pp ←
IBE.Sys(1κ), all master public/secret key pair (mpk,msk)← IBE.Gen(pp), all identity id and message M , it
always has IBE.Dec(dkid, IBE.Enc(mpk, id,M)) = M .

RKA-secure IBE. We recall the Φ-RKA security of IBE schemes from [4]. In the context of IBE, an RKA
adversary is allowed to access a decryption key generation oracle: OΦmsk(·, ·), on input (φ, id) ∈ Φ × ID, it
returns IBE.Ext(φ(msk), id). Besides this, the oracle initializes an empty set I := ∅ and id∗ = ⊥. For an RKA
query (φ, id), if φ(msk) = msk 5, it adds id to the set I := I∪{id}, and if id equals the challenge identity id∗,
it returns ⊥ directly. An IBE scheme is Φ-RKA secure, if for any PPT adversary A, the following advantage

AdvrkaIBE,A(κ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

pp← IBE.Sys(1κ)
(mpk,msk)← IBE.Gen(pp)

(M0,M1, id
∗, St)← AOΦmsk(·,·)(pp,mpk)

b←R {0, 1}, C ← IBE.Enc(mpk, id∗,Mb)

b′ ← AOΦmsk(·,·)(St, C)

− 1

2

∣∣∣∣∣∣∣∣∣∣
is negligible in κ, where M0 and M1 are two equal length messages. Clearly, if Φ only contains the identity
function id, then the above definition is just the traditional CPA-security of IBE schemes [9].

Suppose that IBE.Gen(pp) utilizes an m-bit random string as the internal coin for generating mpk and
msk. We write r explicitly in the key generation algorithm, i.e., IBE.Gen(pp; r) = (mpk,msk) (a deterministic
algorithm w.r.t. input (pp, r)).

The IBE Construction. Starting from a (Φ, εKDF)-continuous non-malleable KDF (KDF.Sys, KDF.Sample,
KDF) and a CPA-secure IBE scheme (IBE.Sys, IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec), we construct a new IBE
scheme (IBE.Sys, IBE.Gen, IBE.Ext, IBE.Enc, IBE.Dec) as follows:

– IBE.Sys(1κ): It runs ppKDF ← KDF.Sys(1κ) and ppIBE ← IBE.Sys(1κ), and returns ppIBE = (ppKDF,ppIBE).
– IBE.Gen(ppIBE): It samples s||π ← KDF.Sample(ppKDF) and computes r = KDFπ(s). Then, it computes

(mpk,msk) = IBE.Gen(ppIBE; r) and returns master public key mpk = (mpk, π) and secret key msk =
(s, π).

– IBE.Ext(msk, id): For msk = (s, π), it computes r = KDFπ(s). If r is the special symbol ⊥, it returns ⊥
and halts. Otherwise, it computes (mpk,msk) = IBE.Gen(ppIBE; r) and returns dkid = IBE.Ext(msk, id).

– IBE.Enc(mpk, id,M): It first parses mpk as (mpk, π) and then returns C = IBE.Enc(mpk, id,M).
– IBE.Dec(dkid, C): It returns IBE.Dec(dkid, C).

Theorem 2. If KDF is (Φ, εKDF)-continuously non-malleable and IBE is CPA-secure, then the above con-
struction is a Φ-RKA secure IBE scheme. Concretely, for any PPT adversary A, there exist KDF distin-
guisher D and adversary B of roughly the same complexity as A such that

Advrka
IBE,A(κ) ≤ εKDF + AdvcpaIBE,B(κ).

5 If msk contains some public information, for example in our construction msk = (s, π) where π is completely given
to an adversary, we define φ(msk) = (φ(s), π′) and π′ is implicitly defined in the adversary’s query (φ, id).
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Proof. We prove it through two games: Game0 and Game1. The former is just the original experiment of
RKA-security and the later is slightly different from the former in which the internal coin r is replaced by a
uniform random string. We depict the difference between these two games in Fig. 4. In addition, we define an
auxiliary game Game′0, which is the same as Game0 except that the key extraction oracle works as in Game1.
Observe that, in the case of φ(s)||π′ = s||π, the random coin r′ computed via KDFπ′(φ(s)) is always equal
to r, the random coin involved in the challenge master key generation algorithm. Hence, this modification is
just conceptional and we can view Game0 as Game′0 in the following proof.

In Game0: In Game1:

Master s||π ← KDF.Sample(ppKDF) s||π ← KDF.Sample(ppKDF)

public r = KDFπ(s) r ←R {0, 1}m

key (mpk,msk) = IBE.Gen(ppIBE; r) (mpk,msk) = IBE.Gen(ppIBE; r)

Return mpk = (mpk, π). Return mpk = (mpk, π).

Dec. If φ(s)||π′ = s||π, set I := I ∪ {id}. If φ(s)||π′ = s||π, set I := I ∪ {id} and

key return IBE.Ext(msk, id) .

oracle Else compute
r′ = KDFπ′(φ(s)) r′ = KDFπ′(φ(s))

Input: If r′ =⊥, return ⊥. Else, compute If r′ =⊥, return ⊥. Else, compute
(φ, id) (mpk′,msk′) = IBE.Gen(ppIBE; r′) (mpk′,msk′) = IBE.Gen(ppIBE; r′)

Return dkid ← IBE.Ext(msk′, id). Return dkid ← IBE.Ext(msk′, id).

Fig. 4. Differences between Game0 and Game1

Denote by S0 and S1 the event that A successfully guesses the random coin b in Game0 and Game1
respectively. We show shortly that

|Pr[S0]− Pr[S1]| ≤ εKDF (3)

|Pr[S1]− 1/2| ≤ AdvcpaIBE,B(κ). (4)

Clearly,
Advrka

IBE,A(κ) = |Pr[S0]− 1/2|.

This completes the proof of Theorem 2. ut

Proof (Proof of Eq. (3)). Given (ppKDF, r, π) where r either equals KDFπ(s) or a uniform random string,
the simulator chooses ppIBE and computes (mpk,msk) = IBE.Gen(ppIBE; r). It sends mpk = (mpk, π) to the
adversary and keeps the secret keymsk. The simulator answersA’s decryption key queries (φ, id) as follows: It
sends (φ, π′) to the KDF oracle and obtains the value r′. If r′ = same?, the simulator returns IBE.Ext(msk, id)
to A and updates I := I ∪ {id}. If r′ =⊥, the simulator returns ⊥. Otherwise, the simulator computes
(mpk′,msk′) = IBE.Gen(ppIBE; r′) and returns IBE.Ext(msk′, id) to A. After the phase of decryption key
queries, A submits two equal-length messages (M0,M1) and a challenge identity id∗. The simulator picks
b ←R {0, 1} and returns C = IBE.Enc(mpk, id∗,Mb) to A. Finally, the simulator outputs what A outputs.
Recall that, the symbol same? implies φ(s)||π′ = s||π. So, if r = KDFπ(s), the simulator perfectly simulates
Game0. While if r is a uniform string, the simulator simulates Game1. This completes the proof of Eq. (3). ut

Proof (Proof of Eq. (4)). Given an IBE challenge instance (ppIBE,mpk), the simulator samples ppKDF ←
KDF.Sys(1κ) and sets ppIBE = (ppKDF,ppIBE). It also samples s||π ← KDF.Sample(ppKDF) and sets mpk =

(mpk, π). Then it sends (ppIBE,mpk) to A. To answer A’s decryption key queries (φ, id), the simulator first
checks whether φ(s)||π′ = s||π. If so, it submits id to its own decryption key generation oracle and forwards
the result to A. Since the simulator knows s and it can handle the case φ(s)||π′ 6= s||π as in Game1. When A
queries the challenge ciphertext, the simulator forwards (M0,M1, id

∗) to its own encryption oracle to obtain
a challenge ciphertext C. The simulator forwards C to the adversary. Finally, the simulator outputs what
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A outputs. Clearly, the simulator perfectly simulates A’s environment in Game1. If A succeeds, so does the
simulator. This completes the proof of Eq. (4). ut

From [27], we have a CPA-secure IBE scheme under the standard DBDH assumption. Subsection 4.2

suggests that Φ
poly(d)
F -continuously non-malleable KDFs can be constructed from the DDH and DCR assump-

tions. Consequently, our IBE construction above immediately results in the first IBE that is RKA-secure

for class Φ
poly(d)
F , i.e., the sets of all polynomial functions of bounded degree, under the standard DBDH

assumption, and the security follows from Theorem 1 and Theorem 2. We stress that the degree of our
RKD polynomial functions is not limited to polynomial size in κ and we can always enlarge the polynomial

function class Φ
poly(d)
F to class Φhoe

iocr whose functions has high output entropy and input-output collision re-

sistance, as defined in Definition 1. As a result, the Φ
poly(d)
F -RKA security of IBE can be extended to Φhoe

iocr,

with Φhoe
iocr ⊇ Φ

poly(d)
F .

Extensions to PKE and Signature. Bellare et al. [6] showed that the CHK [10] IBE-to-CCA-PKE trans-

form and the Naor IBE-to-Sig transform both preserve Φ-RKA security. Thus, we readily obtain Φ
poly(d)
F (also

extended to Φhoe
iocr)-RKA-secure CCA-PKE and signature schemes under standard assumptions.

On the other hand, the continuous non-malleable KDFs can also be directly used to transform a cryp-
tographic primitive to a RKA secure version in a modular way, as long as the key generation algorithm of
the primitive takes uniform random coins r to generate (secret/public) keys. The transformation with the
help of cnm-KDF is as follows. First, sample a random derivation key s together with the public key π such
that KDFπ(s) = r; Then, store s in the cryptographic hardware device. In addition, we append the proof π
of s to the public key of the system. When using r, we retrieve it via computing KDFπ(s). By the property
of continuous non-malleability, if s is modified to φ(s) 6= s and π to π′, then r′ = KDFπ′(φ(s)) is either
the rejection symbol ⊥ or a value independent of r. Finally, the Φ-RKA security is reduced to the original
security of the primitive.
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