
A note on the security of
Higher-Order Threshold Implementations?

Oscar Reparaz
oscar.reparaz@esat.kuleuven.be

KU Leuven/COSIC and iMinds

Abstract. At ASIACRYPT 2014, Bilgin et al. describe higher-order threshold implementations: a mask-
ing countermeasure claiming resistance against higher-order differential power analysis attacks. In this
note, we point out that higher-order threshold implementations do not necessarily provide higher-order
security. We give as counterexamples two concrete higher-order threshold implementations that exhibit a
second order flaw.

1 Higher-Order Threshold Implementations

We refer the reader to [1] for background information. Higher-order threshold implementations (HOTI)
have the remarkable property of not needing extra randomness during computation, if each sharing
(=masked function) satisfies some properties (namely, uniformity). (This extra randomness is usually
called refreshing in other publications.) In the rest of this note, we show that higher-order security is
not preserved through the composition of arbitrary yet uniform sharings. Thus, it is possible to conceive
HOTI designs that are not higher-order secure.

2 A counterexample

For the sake of simplicity, in this example we compute on 1 unshared bit, split in 5 shares (one bit per
share). We aim at second order security. We define the sharing Fi,j,k for the identity function as follows:
on input (a1, . . . , a5) ∈ F5

2 it outputs (b1, . . . , b5) ∈ F5
2 as bm = am for m 6∈ {j, k}, bj = aj + ai and

bk = ak + ai. This sharing is parametrized by the tuple (i, j, k). A concrete instantiation of the sharing
is for example F1,2,3(a1, a2, a3, a4, a5) = (a1, a2 + a1, a3 + a1, a4, a5) as shown in Fig. 1. The reader can
verify that Fi,j,k is correct (it computes the identity function), second order non-complete and uniform
(as long as i, j, k are all different.)

a1

a3

a4

a2

b1

b2

b4

b5a5

b3

F1,2,3

Fig. 1. The sharing F1,2,3.

Consider now the composition F5,1,2 ◦ F4,1,2 ◦ F2,1,3, that is, first applying F2,1,3 on the input shares
(a1, a2, a3, a4, a5), then applying F4,1,2 on the output of the first function and finally applying F5,1,2. This
composition is shown in Fig. 2. Let us write the intermediate variables:

? Version as of 2014.12.10. The latest version is at http://www.esat.kuleuven.be/˜oreparaz/hoti/.



(a1, a2, a3, a4, a5) input
(a1 + a2, a2, a3 + a2, a4, a5) output after F2,1,3

(a1 + a2 + a4, a2 + a4, a3 + a2, a4, a5) output after F4,1,2

(a1 + a2 + a4 + a5, a2 + a4 + a5, a3 + a2, a4, a5) output after F5,1,2

Then the pair of variables (v1, v2) with v1 = a3 (third share of input) and v2 = a1 + a2 + a4 + a5 (first
share of the output after F5,1,2) is not independent from the unshared variable a1 + a2 + a3 + a4 + a5.
Thus, this particular valid HOTI construction is second order insecure.

F2,1,3 F4,1,2 F5,1,2(a1, a2, a3, a4, a5) 555 5 5 5
(a1 + a2 + a4 + a5, a2 + a4 + a5, a3 + a2, a4, a5)

Two probes

Fig. 2. The composition F5,1,2 ◦ F4,1,2 ◦ F2,1,3 with input (a1, a2, a3, a4, a5), showing the two values (v1, v2) that exhibit
second order leakage

This particular HOTI construction is only an example. Instead of using Fi,j,k, one could choose a more
straightforward sharing such that one attains higher-order security. However, the point here is that while
correctness, higher-order non-completeness and uniformity may provide security locally, by themselves
they do not provide higher-order security globally, that is, when the adversary is allowed to place probes
in different functions.

3 A non-linear example

Consider the following NLFSR. The unmasked state consists of 4 bits: L[0] to L[3]. Taps are at indices
1, 2, 3, feedback is plug at position 0. The feedback function f = f(L[3], L[2], L[1]) is the AND-XOR
function as of Eq. 5 from [1]. The shared version follows the lines of [1]; in particular, L[0] is split into 10
shares and L[1], L[2], L[3] are split into 5 shares. The conversion from 10 to 5 shares is done as in [1]. In
particular, the 5th share of L[1] sees 5 shares of L[0] when the cipher is clocked.
The reader can verify that the 5th share of L[1] at the end of the second cycle and the 5th share of L[1] at
the end of the tenth cycle leak jointly information about the initial state in the second statistical order.

4 Mitigation

One possible mitigation is to refresh the shares after each computation, for example by adding fresh shares
of the null vector. The idea here is to isolate the intermediates occuring within each computation stage
from intermediates of another stage, so that combining intermediates from different stages no longer
reveals information about a secret intermediate. The exact amount of refresh blocks needed to make the
implementation higher-order secure may depend from design to design. This fix naturally increases area
and randomness requirements.

Acknowledgements. The author thanks the authors of [1] and Fré Vercauteren for interesting discussions.
The author is supported by a PhD fellowship from the Fund for Scientific Research - Flanders (FWO).

References

1. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen. Higher-Order
Threshold Implementations. ASIACRYPT 2014.


