
Topology-Hiding Computation

Tal Moran ∗ Ilan Orlov † Silas Richelson ‡

January 1, 2015

Abstract

Secure Multi-party Computation (MPC) is one of the foundational achievements of modern cryptog-
raphy, allowing multiple, distrusting, parties to jointly compute a function of their inputs, while revealing
nothing but the output of the function. Following the seminal works of Yao and Goldreich, Micali and
Wigderson and Ben-Or, Goldwasser and Wigderson, the study of MPC has expanded to consider a wide
variety of questions, including variants in the attack model, underlying assumptions, complexity and
composability of the resulting protocols.

One question that appears to have received very little attention, however, is that of MPC over an
underlying communication network whose structure is, in itself, sensitive information. This question,
in addition to being of pure theoretical interest, arises naturally in many contexts: designing privacy-
preserving social-networks, private peer-to-peer computations, vehicle-to-vehicle networks and the “in-
ternet of things” are some of the examples.

In this paper, we initiate the study of “topology-hiding computation” in the computational setting. We
give formal definitions in both simulation-based and indistinguishability-based flavors. We show that,
even for fail-stop adversaries, there are some strong impossibility results. Despite this, we show that
protocols for topology-hiding computation can be constructed in the semi-honest and fail-stop models,
if we somewhat restrict the set of nodes the adversary may corrupt.

∗Efi Arazi School of Computer Science, IDC Herzliya. Email: talm@idc.ac.il
†Efi Arazi School of Computer Science, IDC Herzliya. Email: iorlov@idc.ac.il
‡UCLA Department of Computer Science. Email: SiRichel@ucla.edu

1

1 Introduction

Secure multi party computation (MPC) has occupied a central role in cryptography since its inception in the
’80s. The unifying question can be stated simply:

Can mutually distrusting parties compute a function of their inputs, while keeping their inputs
private?

Classical feasibility results [26, 18, 4, 23] paved the way for a plenitude of research which has over time
simplified, optimized and generalized the original foundational constructions. Some particularly rich lines
of work include improving the complexity (round/communication/computation) of MPC protocols (e.g., [3,
15, 12, 11] and many more) and striving to achieve security in the more difficult (but realistic) setting where
the adversary may execute many instantiations of the protocol along with other protocols (e.g., [22, 20, 8, 6]
and many more).

Common to nearly all prior work, however, is the assumption that the parties are all capable of exchang-
ing messages with one another. That is to say, most work in the MPC literature assumes that the underlying
network topology is that of a complete graph. This is unrealistic as incomplete or even sparse networks are
much more common in practice. Moreover, the comparably small body of MPC work that deals with incom-
plete networks concerns itself with the classical goal of hiding the parties’ inputs. In light of the growing
impact of networking on today’s world, this traditional security goal is insufficient. Consider, for example,
the graph representing a social network: nodes representing people, edges representing relationships. Most
computation on social networks today is performed in a centralized way—Facebook, for example, performs
computations on the social network graph to provide popular services (e.g., recommendations that depend
on what “similar” people liked). However, in order to provide these services Facebook must “know” the
entire graph.

One could imagine wanting to perform such a computation in a distributed manner, where each user
communicates only with their own friends, without revealing any additional information to third parties
(there is clearly wide interest in this type of service—Diaspora*, a project that was expressly started to
provide “Facebook-like” functionality in a more privacy-preserving manner [2], raised over $200,000 in 40
days via Kickstarter).

Another motivating example is the recent push by US auto safety regulators towards vehicle-to-vehicle
communication [1], which envisions dynamic networks of communicating vehicles; many “global” compu-
tations seem to be interesting in this setting (such as analysis of traffic patterns), but leaking information
about the structure of this network could have severe privacy implications.

The rise of the “internet of things”, connected by mesh networks (networks of nodes that communicate
locally with each other) is yet another case in which the topology of the communication network could
reveal private information that users would prefer to hide.

It is with such applications in mind that we initiate the study of topology-hiding MPC in the computa-
tional setting. We consider the fundamental question:

Can an MPC protocol computationally hide the underlying network topology?

1.1 Our Contributions

Formally Defining Topology-Hiding MPC: In keeping with tradition we give both an indistinguishability
game-based definition and a simulation-based one. Very briefly, in the game-based definition the adversary
corrupts A ⊂ V and sends two network topologies G0,G1 on vertices V . These graphs must be so that the
neighborhoods of A are the same. The challenger then picks Gb at random and returns the collective view

2

of the parties in A resulting from the execution of the protocol on Gb. The adversary outputs b′ and wins if
b′ = b. We say a protocol is secure against chosen topology attack (IND-CTA−secure) if no PPT adversary
can win the above game with probability negligibly greater than if it simply guesses b′.

We then give a simulation-based definition of security using the UC framework. We define an ideal
functionality Fgraph and say that a protocol is “topology hiding” if it is UC secure in the Fgraph−hybrid
model. The functionality Fgraph models a network with private point-to-point links (private in the sense
that the adversary does not know the network topology). It receives G as input, and outputs to each party
a description of its neighborhood. It then acts as an “ideal communication channel” allowing neighbors to
send messages to each other. For more details on Fgraph and the motivations behind our definition see the
discussion below. Finally, we relate the two new notions by proving that simulation-based security implies
game-based security.

Feasibility of topology-hiding MPC against semi-honest adversary:

Theorem 1. Assume trapdoor permutations exist. Let G be the underlying network graph and d a bound on
the degree of every vertex in G. Then every multiparty functionality may be realized by a topology hiding
MPC protocol which is secure against a semi-honest adversary who does not corrupt all parties in any
k−neighborhood of the underlying network graph where k is such that dk = poly(n).

We point out that many naturally occurring graphs satisfy dD = poly(n) where D is the diameter. Exam-
ples of such graphs include binary trees, hypercubes, expanders, and generally graphs with relatively high
connectivity such as those occurring from social networks. For such graphs theorem 1 is a feasibility result
against a general semi-honest adversary.

Impossibility in fail-stop model:

Theorem 2. There exists a functionality F and a network graph G such that realizing F while hiding G is
impossible.

Our proof uses the ability of the adversary to disconnect G with his aborts; we then prove this is inherent.

Sufficient conditions in fail-stop model:

Theorem 3. Assume TDP exist. Every multiparty functionality may be realized by a topology hiding MPC
protocol which is secure against a fail-stop adversary who does not corrupt all parties in any neighborhood
of the underlying network graph and who’s aborts do not disconnect the graph.

1.2 Related Work

MPC on Incomplete Network Topologies One line of work which is in exception to the above began
with Dolev’s paper [13] proving impossibility of Byzantine agreement on incomplete network topologies
with too low connectivity. Dwork et. al. [14] coined the term “almost everywhere Byzantine agreement”
to be a relaxed variant of Byzantine agreement where agreement is reached by almost all of the honest
parties. Garay and Ostrovsky [16] used this to achieve almost everywhere (AE) MPC. Recently [9] gave
an improved construction of AE Byzantine agreement translating to an improved feasibility result for AE
MPC. These works are all in the information theoretic setting. We refer the curious reader to [9] and the
references therein for more details.

Another recent line of work is that of Goldwasser et. al. [5] who consider MPC while minimizing the
communication locality, the number of parties each player must exchange messages with. Their work is in

3

the cryptographic setting and they give a meaningful upper bound on the locality and overall communication
complexity. Their work does not address the notion of hiding the graph. Moreover they employ techniques
such as leader election which seem inherently not to hide the graph.

Finally, we mention the two classical techniques of mix-net and onion routing. The mix-net technique
introduced by Chaum [10] uses public key encryption to implement a “message transmit” scheme allowing
a sender and receiver to using in a message transmit using an additional shuffling mechanism. The onion
routing technique [25, 24] and its extensions is a useful technique for anonymous communication over the
Internet. Its basic idea is establishing paths of entities called proxies that know the topology in order to
transmit massages.

Topology-Hiding MPC: While most of the cryptographic MPC literature disregards the interplay between
multiparty computation and networking, the above works give a relatively satisfactory view of the landscape.
Hiding the topology of the network in secure computation, on the other hand, is somewhat of a novel goal.
The only work in the MPC literature of which we are aware that has considered this question is that of
Hinkelmann and Jakoby [19] who focused on the information theoretic setting. Their main observation can
be summarized:

If vertices v and w are not adjacent in G then Pv cannot send a message to Pw without some
intermediate Pz learning that it sits between Pv and Pw.

They use this observation to prove that any MPC protocol in the information theoretic setting must inherently
leak information about G to an adversary. They do, however, prove a nice positive result: given some
minimal amount of network information to leak (formalized as a routing table of the network), one can
construct an MPC protocol which leaks no further information.

Their work leaves open the interesting possibility that, using cryptographic techniques, one could con-
struct an MPC protocol which (computationally) hides the network topology. In this work we explore this
possibility.

Organization of the Rest of the paper The rest of the paper is organized as follows. In section 2 we
go over the background and general definitions which are required to understand the technical portions
which follow. In section 3 we formally define our new notions of “topology hiding” computation. This
includes our game-based and simulation-based definitions as well as a proof that simulation-based security
implies game-based security. In section 4 we consider achieving topology-hiding MPC against a semi-honest
adversary. Our basic protocol is secure as long as the adversary does not corrupt any whole neighborhoods
of the network graph. We then lessen this requirement showing how to transform a protocol which is secure
against an adversary who doesn’t corrupt an entire k−neighborhood into one secure as long as A does not
corrupt any (k + 1)−neighborhood. This proves theorem 1. In section 5 we consider a fail-stop adversary
and give a somewhat complete picture of the landscape in this setting, proving theorem 2 and theorem 3.

2 Preliminaries

2.1 General Definitions

We model a network by a directed graph G = (V, E) that is not fully connected. We consider a system with
m = poly(n) parties, denoted P1, . . . , Pm. We often implicitly identify V with the set of parties {P1, . . . , Pm}.
We consider a static and computationally bounded (PPT) adversary that controls some subset of parties. That
is, at the beginning of the protocol, the adversary corrupts a subset of the parties and may instruct them to

4

deviate from the protocol according to the corruption model. Through this work, we consider mostly semi-
honest and fail-stop adversaries, though we discuss the implications of our fail-stop impossibility result
on the hope of achieving topology-hiding MPC in the malicious model. In addition, we assume that the
adversary is rushing; that is, in each round the adversary sees the messages sent by the honest parties
before sending the messages of the corrupted parties for this round. For general MPC definitions including
descriptions of the adversarial models we consider see [17].

2.2 Definitions of Graph Terms

Let G = (V, E) be an undirected graph. For v ∈ V we let N(v) = {w ∈ V : (v,w) ∈ E} denote the
neighborhood of v by; and similarly, the closed neighborhood of v, N[v] = N(v) ∪ {v}. We sometimes refer
to N[v] as the closed 1−neighborhood of v, and for k ≥ 1 we define the k−neighborhood of v as

Nk+1[v] =
⋃

w∈Nk(v)

N[w].

2.3 UC Security

We employ the UC model [7] in order to abstract away many of the implementation details and get at the
core of our definition. Our protocol for hiding the topology in MPC is local in nature, and our final protocol
is the result of composing many local subprotocols together. This motivates the need for using subprotocols
which are secure under some form of composition. UC security offers strong composability guarantees and
thus is well suited to our setting. One of the appealing features of our definition is that it fits entirely within
the existing UC framework, hence the UC composition theorem can be applied directly.

The downside of the UC model is that it requires setup [7] and opponents argue that it is “unrealistic”.
We have two responses to this. First, we encapsulate our setup into realizing the Fgraph functionality. This
functionality (defined formally in the next section) models the underlying communication network and so
we think of the setup required in order to realize it as an implementation issue. Second, we point out that our
subroutines need only be secure against bounded self-composition in order to obtain stand-alone security in
the Fgraph−hybrid model, corresponding to a stand-alone variant of topology hiding security. This allows
us to instantiate our protocol in the plain model on top of (for example) [20] in order to obtain stand-alone
topology hiding MPC.

3 Our Model of Security

3.1 Topology Hiding—The Simulation-Based Definition

In this section, we propose a simulation-based definition for topology hiding computation in the UC frame-
work. Generally, in the UC model, the communication between all parties passes through the environment,
so it seems the environment implicitly knows the structure of the underlying communication network. We
get around this by working in the Fgraph−hybrid model. The Fgraph functionality (shown in Figure 1) takes
as input the network graph from a special “graph party” Pgraph and returns to each other party a description
of their neighbors. It then handles communication between parties, acting as an “ideal channel” function-
ality allowing neighbors to communicate with each other without this communication going through the
environment.

In a real-world implementation, Fgraph models the actual communication network; i.e., whenever a pro-
tocol specifies a party should send a message to one of its neighbors using Fgraph, this corresponds to the
real-world party directly sending the message over the underlying communication network.

5

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph party Pgraph.

Initialization Phase:

Inputs: Fgraph waits to receive the graph G = (V, E) from Pgraph.

Outputs: Fgraph outputs NG[v] to each Pv.

Communication Phase:

Inputs: Fgraph receives from a party Pv a destination/data pair (w,m) where w ∈ N(v) and m is the
message Pv wants to send to Pw.

Output: Fgraph gives output (v,m) to Pw indicating that Pv sent the message m to Pv.

Figure 1: The functionality Fgraph.

Since Fgraph provides local information about the graph to all corrupted parties, any ideal-world ad-
versary must have access to this information as well (regardless of the functionality we are attempting to
implement). To capture this, we define the functionality FgraphInfo, that is identical to Fgraph but contains only
the initialization phase. For any functionality F , we define a “composed” functionality (FgraphInfo||F) that
adds the initialization phase of Fgraph to F . We can now define topology-hiding MPC in the UC framework:

Definition 3.1. We say that a protocol Π securely realizes a functionality F hiding topology if it UC-realizes
(FgraphInfo||F) in the Fgraph-hybrid model.

Note that this definition can also capture protocols that realize functionalities depending on the graph (e.g.,
find a shortest path between two nodes with the same input, or count the number of triangles in the graph).

3.2 Topology Hiding - The Indistinguishability-based Security Definition

In this section, we propose another definition for topology-hiding security that is not restricted to secure
multi-party computation. The definition is formalized using a security game between an adversaryA and a
challenger C. In addition, we prove that this definition is implied by the simulation-based definition from
subsection 3.1. The basic structure of the game fits several types of adversarial behaviors, e.g., semi-honest,
fail-stop, and malicious, thus, we do not emphasize the exact behavior of the adversary during the execution
of the protocol.

• Setup: LetG be a set of graphs. Let Π be a protocol capable of running over any of the communication
graphs in G according to the adversarial model of A (semi-honest, fail-stop, or malicious). Each Pi

gets an input xi ∈ Xi.

• A chooses a corrupt subset S , inputs x j for the corrupted parties P j ∈ S and, for i ∈ {0, 1}, two graphs
Gi = (Vi, Ei) ∈ G, such that S ⊂ V0 ∩ V1 and NG0[S] = NG1[S] (equality of graphs). It outputs(
S ; G0,G1; {x j}

)
. If S 1 V0 ∩ V1 or if some input x j is invalid C wins automatically.

• Now C chooses a random b ∈ {0, 1} and runs Π in the communication graph Gb, where each honest Pi

gets xi and each dishonest party gets the input prescribed by A. A receives the collective view of all
parties in S during the protocol execution. 1

1In the semi-honest model, the joint view of the corrupted parties is given to A by the end of the execution of Pi, while in the
active models such as fail-stop and malicious, A sends instructions during the execution of Π and can deviate from the prescribed
protocol.

6

• FinallyAmust output b′ ∈ {0, 1}. If b′ = b we say thatA wins the security game. OtherwiseA loses.

Definition 3.2. We say that an MPC protocol Π is Indistinguishable under Chosen Topology Attack (IND-
CTA secure) over G if for any PPT adversaryA there exists negligible function µ(·), such that for every n it
holds ∣∣∣∣∣Pr

(
A wins

)
−

1
2

∣∣∣∣∣ ≤ µ(n).

We prove below that IND-CTA security is weaker than security with respect to the simulation-based
security definition (Definition 3.1); thus, our impossibility results (in subsection 5.1) imply impossibility of
the simulation based definition as well.

Claim 3.3. For every functionality F that does not depend on the communication graph structure, if Π

securely realizes F with topology-hiding security (under Definition 3.1) then Π is IND-CTA secure.

Proof Sketch. Let Π be a topology-hiding secure-computation protocol with respect to Definition 3.1 and
let G0 and G1 be two graphs. We consider two specific executions of Π on network topologies G0 and
G1 with corrupt parties given the same inputs. We define random variables

(
HYBRIDG0 , IDEALG0

)
and(

HYBRIDG1 , IDEALG1

)
as usual. We observe that IDEALG0 are IDEALG1 are identically distributed, as in

both cases the adversary gets the same final output, in addition to the same set of local closed neighbor-
hoods. It follows that if Π realizes F with topology hiding security then HYBRIDG0 and HYBRIDG1 are
indistinguishable. It follows thatA cannot win the IND-CTA game with probability that is noticeably better
than 1/2. So Π meets also the IND-CTA security definition.

�

4 Topology Hiding MPC Against a Semi-Honest Adversary

In this section we describe a protocol for topology-hiding MPC against a semi-honest adversary. This
construction is the heart of the main positive result in the paper:

Theorem 4. Let d be a bound on the degree of any vertex in G. Then for every k satisfying dk = poly(n),
there exists a protocol Π that securely realizes the broadcast functionality hiding topology against a semi-
honest adversaryA that does not corrupt all parties in any closed k−neighborhood of G.

Note that this gives us security against a general semi-honest adversary when the graph has constant degree
and a logarithmic bound on the diameter (by setting k to be anything larger than the graph diameter). We
point out that many natural families of graphs are of this sort, including binary trees, hypercubes, expanders
and more. Theorem 1 follows from theorem 4 by standard methods for compiling broadcast into MPC.

4.1 High-Level Protocol Overview of Our Basic Protocol

Below we give a top-down description of our basic broadcast protocol: one that is secure against adversaries
that do not corrupt any complete 1-neighborhood in the graph (i.e., in every star there is at least one honest
node). This basic protocol can then be used to construct a broadcast protocol that tolerates larger corrupt
neighborhoods (more details of this transformation appear in section 4.6).

A Naı̈ve Broadcast Protocol

To understand the motivation for the construction, first consider a naı̈ve broadcast protocol for a single bit:

1. In the first round, the broadcaster sends the broadcast bit b to all of its neighbors. Every other party
sends 0 to all of their neighbors.

7

2. In each successive round, every party computes the OR of all bits received from their neighbors in the
previous round, and sends this bit to all neighbors.

After j rounds, every party at distance j or less from the broadcaster will be sending the bit b (this can
be easily shown by induction); after diam(G) rounds all parties will agree on the bit b. This protocol realizes
the broadcast functionality, but it is not topology-hiding: a party can tell how far it is from the broadcaster
by counting the number of rounds until it receives a non-zero bit (assume b = 1 for this attack). It can also
tell in which direction the broadcaster lies by noting which neighbor first sent a non-zero bit.

Using Local MPC to Hide Topology

Our construction hides the sensitive information by secret-sharing it among the nodes in a local neigh-
borhood. Essentially, our basic protocol replaces each node in the naı̈ve protocol above with a secure
computation between the node and all of its direct neighbors in the graph.

In order to communicate a bit between one local neighborhood and another, without revealing the bit to
the vertex connecting the two neighborhoods, each local neighborhood generates a public/private key pair,
for which the private key is secret-shared between the parties in the neighborhood. The input to each local
MPC includes the private key shares. The output to each party is encrypted under the public key of the
neighborhood represented by that party (i.e., of which the party is the center node).

Since no local neighborhood is entirely corrupted, the adversary does not learn any of the plaintext bits.
In the final round (at which point the broadcast bit has “percolated” to all the neighborhoods in the graph).
a secure computation is used to decrypt the bits and output the plaintext to all the parties.

The protocol is formally specified as two separate functionalities, each instantiated using a local se-
cure computation: the KeyGen functionality (LKeyGen), handles the generation and distribution of the pub-
lic/private key-pair shares in each local neighborhood, and the “broadcast-helper” functionality (Lbc-helper),
handles the encryption/decryption and ORing of the bits. The details of the construction are in section 4.4.

Implementing Local MPC

To implementLKeyGen andLbc-helper, the basic protocol uses a general MPC functionality, LMPC, that allows
the local neighborhoods to perform secure computation protocols (i.e., among parties connected in a star
graph). Realizing LMPC ammounts to constructing a compiler which transforms a standard MPC protocol
which runs on a complete graph into one which runs on a star graph. We achieve this by having players in
the star who are not connected pass messages to each other through the center. The messages are encrypted
to ensure privacy. One subtle point is that the protocol must not leak how many players are in the local
neighborhood, as parties are not supposed to learn the degrees of their neighbors. We sidestep this issue
by having the center node “invent” fake nodes so that parties learn only that the degree is at most d, some
public upper bound on the degree of any node in G. The functionality LMPC is shown in Figure 2.

4.2 Formal Protocol Construction and Proofs of Security

Below, we give the formal protocol definitions and sketch their proofs of security in the UC framework.

Notation

The protocols and functionalities in the remainder of this section involve parties P1, . . . , Pm and a special
graph party Pgraph whose role is always simply to pass his input, G, to Fgraph. For v ∈ V we let Pv be the
player corresponding to v. Many of these protocols/functionalities begin with a KeyGen phase which uses a
public key encryption scheme (Gen,Enc,Dec). Finally, we will make repeated use of “local” MPCs which

8

are executed by the parties in a local neighborhood of G. We will use repeated parallel executions of local
MPCs to realize global functionalities. We reserve the letter L for local functionalities realized by local
MPCs, and use F for global functionalities. For simplicity when describing a local functionality or local
MPC protocol, we will describe only the singular execution running in N[v] (involving Pv and {Pw}w∈N(v)),
even though the same process is occurring in every closed neighborhood in G simultaneously.

4.3 Realizing LMPC in the Fgraph−hybrid Model

The local MPC functionality LMPC is shown in Figure 2. As we have already mentioned, it is sufficient to
securely realize message passing between all parties in N[v] in the Fgraph−hybrid model. This is because,
once all parties can send messages to each other, they can simply run their favorite UC secure MPC protocol
as if the network topology is that of a complete graph. Note that as we are in the semi-honest model here,
UC secure MPC does not require setup. We will use the constant round, protocol of [21], as it is UC secure
against a semi-honest adversary (against general adversaries it is bounded concurrent secure).

Graph Entry Phase:

Input: LMPC receives the graph G from Pgraph.

Output: LMPC outputs N[v] to Pv.

MPC Phase:

Input: LMPC receives from Pv a d−party protocol Π and input xw from Pw, for each w ∈ N[v].

Computation: LMPC simulates Π with inputs {xw}w obtaining outputs {yw}w.

Output: LMPC gives yw to each Pw.

Figure 2: The functionality LMPC.

For simplicity we describe the protocol allowing Pw to securely send a message to Pu for w, u ∈ N[v].

1. Pu generates a key pair and sends the public key to Pw through Pv;

2. Pw encrypts its message and sends the ciphertext back to Pu through Pv.

Such a protocol naturally extends to allow all parties in N[v] to exchange messages with each other (as long
as Pv invents enough nodes to ensure that his neighbors do not learn his degree, but just the preselected
bound d). As we mention above, this is sufficient for securely realizing LMPC in the Fgraph−hybrid model.

Security of LMPC. The proof is very simple so we suffice it to briefly describe S, and leave checking that
it accurately emulates A’s view in the real world to the reader. Since Π is a UC secure MPC protocol on
a complete graph, there exists a simulator S′ who can replicate any adversary A’s real-world view in the
ideal world. The only difference between the view S′ outputs and the view we need to output is that we
must take into account that our messages are encrypted and passed through Pv. Therefore, S generates key
pairs {(pkw,u, skw,u)}w,u∈N[v], where Pw will use pkw,u to send messages to Pu and computes encryptions of
the messages in the view output by S, and distributes them accordingly to the players. Security follows from
the security of the encryption scheme.

4.4 The Functionalities LKeyGen and Lbc-helper

The functionality LMPC of the previous section is a general functionality that compiles an MPC protocol Π

on a complete graph into an analogous one which can be executed by the parties in N[v], without compromis-

9

Participants/Notation: This protocol involves players Pv, Pw, Pu, for w, u ∈ N[v], and allows Pw to
send the message msg to Pu. Let (Gen,Enc,Dec) be a public key encryption scheme.

Input: Pv and Pu use no input, Pw uses input msg.

Protocol for Message Passing:

– Pu chooses a key pair (pk, sk) ← Gen(1n) and sends
(
v; (w, pk)

)
to Fgraph; Pv receives(

u; (w, pk)
)
.

– Pv sends
(
w; (u, pk)

)
to Fgraph; Pw receives

(
v; (u, pk)

)
.

– Pw computes encryption y = Encpk (msg) and sends
(
v; (u, y)

)
to Fgraph; Pv receives

(
w; (u, y)

)
.

– Pv sends
(
u; (w, y)

)
to Fgraph; Pu receives

(
v; (w, y)

)
.

– Pu decrypts and outputs msg = Decsk (y).

Figure 3: The Fgraph−hybrid protocol Πmsg-transmit.

ing the security of Π, and also without leaking any information about the topology. We will be interested in
two specific local functionalities, LKeyGen andLbc-helper. These can be securely realized in the Fgraph−hybrid
model by simply instantiating LMPC with two specific MPC protocols.

Recall that our underlying idea is to replace the role of Pv in a usual broadcast protocol with an MPC to
be performed by the parties in Pv’s neighborhood. This will hide each player’s distance from the broadcaster
because even though the bit might have been received by Pv’s neighborhood, it will not be known to any
individual player. Our first functionality, LKeyGen, is useful towards this end. Intuitively, it generates a
key pair (pk, sk) for the neighborhood N[v] and gives pk to Pv and distributes secret shares of the secret
key among Pv’s neighbors. Our second functionality, Lbc-helper will allow the broadcast bit to spread from
neighborhood to neighborhood once the neighborhoods have keys distributed according to LKeyGen. The
functionalities LKeyGen and Lbc-helper are shown in Figure 4 and Figure 5, respectively. Let LKeyGen(v) and
Lbc-helper(v) denote the copies of LKeyGen and Lbc-helper, respectively, which take place in N[v]

Participants/Notation: Let (Gen,Enc ,Dec) be a public key encryption scheme.

Graph Entry Phase: same as in LMPC

KeyGen Phase:

– LKeyGen generates a key pair (pk, sk)← Gen(1n).

– LKeyGen computes random shares {skw}w∈N[v] such that
⊕

w skw = sk.

Output: LKeyGen gives outputs
(
pk, skv

)
to Pv, and skw to each Pw such that w ∈ N[v].

Figure 4: The functionality LKeyGen.

4.5 Realizing Fbroadcast in LMPC−hybrid model

Our LMPC−hybrid protocol for broadcast, Πbroadcast uses the ideal functionalities LKeyGen and Lbc-helper
described above. As mentioned in the previous section, these functionalities are obtained from LMPC by
instantiating LMPC with specific MPC protocols. A description of Πbroadcast is given in Figure 11. Note that
Πr

broadcast is correct as long r > diam(G), the diameter of the network graph G. Our statement and proof of
security are below.

10

Participants/Notation: For w ∈ N[v], let pkw be the public key output to Pw by LKeyGen(w). Let skv
w

denote Pw’s share of skv (the secret key corresponding to pkv), given as output by LKeyGen(v).

Graph Entry Phase: same as in LMPC

Main Phase:

Input: Lbc-helper receives inputs:

– αw ∈ {“cipher”, “plain”} from each Pw;

–
(
pkw, skv

w
)

from each Pw;

– encryptions {xw}w∈N[v] from Pv, where xw = Encpkv (bw) for a bit bw ∈ {0, 1}.

The first input αw is a tag which determines whether Lbc-helper outputs ciphertexts or plaintests. If
all parties do not agree on αw, Lbc-helper halts giving no output.

Computation:

– Lbc-helper reconstructs the secret key skv =
⊕

w∈N[v] skv
w;

– Lbc-helper decrypts the bits bw = Decskv (xw);

– Lbc-helper computes b =
∨

w∈N[v] bw.

Output:

– If αw = “cipher” for all w ∈ N[v] then Lbc-helper outputs yw = Encpkw (b) to each Pw.

– If αw = “plain” for all w ∈ N[v] then Lbc-helper outputs b to each Pw.

Figure 5: The functionality Lbc-helper.

Claim 4.1. The protocol Πr
broadcast UC securely realizes Fbroadcast in the Fgraph−hybrid model as long as the

network topology graph G is such that

1. Diameter(G) < r;

2. A does not corrupt any entire closed neighborhood of G.

Simulator. Consider a corrupt party Pv. S simulates Pv’s view as follows:

1. KeyGen: S generates (pkv, skv) ← Gen(1n). When the parties call LKeyGen, S returns pkv to Pv and
random strings rw

v to each Pw such that w ∈ N[v], instead of shares of Pw’s secret key.

2. Main Computation: As output to each of the first r − 1 calls to Lbc-helper, S gives output {xc
v,w}w,c to

Pv, where xc
v,w = Encpkv(0n) to Pv. To compute the output of the last call of Lbc-helper, S inputs bv and

all other corrupt parties’ input bits to Fbroadcast receiving b∗ which it returns to Pv.

Hybrid Argument.

H0 − This is the real execution of Πr
broadcast. Namely, each environment first runs LKeyGen, after which each

Pv has key data
(
pkv, {skw

v }w∈N[v]
)
. Then parties enter the loop, running Lbc-helper r times. Initially,

parties enter their secret bit and the key data received from LKeyGen. In each subsequent call to
Lbc-helper, the output from the previous call is also given as input. Finally, Pv receives many copies
of the same bit b∗v as output from the last call to Lbc-helper, and Pv outputs this bit. The view of Pv

therefore consists of the following:

11

Input: Pgraph inputs the graph G, each Pv inputs a bit bv ∈ {0, 1}.

KeyGen: Parties call LKeyGen and each Pv receives N[v] and (pkv, skv
v) from LKeyGen(v) and skvw

from LKeyGen(w) for each w ∈ N[v].

Main Computation:

– Each Pv sets x0
v,w = Encpkv (bv) for each w ∈ N[v].

– For c = 1, . . . , r − 1, parties call Lbc-helper:

∗ Pv gives input
{
“cipher”;

(
pkv, skv

v
)
; {xc−1

v,w }w∈N[v]
}

to Lbc-helper(v);
∗ For each w ∈ N[v], Pv gives input

{
“cipher”;

(
pkv, skw

v
)}

to Lbc-helper(w);
∗ Pv receives output xc

v,w from Lbc-helper(w) for all w ∈ N[v].

– Finally, parties call Lbc-helper:

∗ Pv gives input
{
“plain”;

(
pkv, skv

v
)
; {xr−1

v,w }w∈N[v]
}

to Lbc-helper(v);
∗ For each w ∈ N[v], Pv gives input

{
“plain”;

(
pkv, skw

v
)}

to Lbc-helper(w);
∗ Pv receives the bit b∗v,w as output from Lbc-helper(w).

Output: Pv outputs b∗v =
∨

w b∗v,w.

Figure 6: The (LKeyGen||Lbc-helper)-hybrid protocol Πr
broadcast.

1. input bv ∈ {0, 1}, output b∗v ∈ {0, 1};

2. key data
(
pkv, {(skw

v)}w∈N[v]
)
;

3. encryptions
{
xc

v,w
}c=0,...,r−1
w∈N[v] .

Let B ⊂ V be the set of bad parties corrupted byA. The view of the adversary is{(
bv, b∗v; pkv,

{
skw

v
}
w∈N[v];

{
xc

v,w
}
w,c

)}
v∈B
.

H1 − This is the same as the above experiment except the secret key shares are replaced by random strings.
The resulting view is {(

bv, b∗v; pkv, {rw
v }w; {xc

v,w}w,c
)}

v∈B
.

As the secret key skv is secret shared among N[v] using a
∣∣∣ N[v]

∣∣∣−out−of−
∣∣∣ N[v]

∣∣∣ secret sharing
scheme, andA does not corrupt all of N[v], we have that H1 ≈ H0.

H2 − This is identical to H1 except that all of the encryptions xc
v,w are changed to encryptions of 0. The

resulting view is exactly the view of the ideal world adversary, and is indistinguishable from the view
in H1 by semantic security of the encryption scheme.

4.6 Allowing for Corruption of Whole Neighborhoods

Our protocol Πr
broadcast from the previous section successfully realizes the broadcast functionality while

hiding the topology of the graph so long asA does not corrupt any entire neighborhood of G. IfA were to
corrupt N[v] for some v, our protocol immediately becomes insecure, as A would possess all of the shares
of skv and so could simply decrypt all of the encrypted bits Pv receives and learn when the broadcast bit
reaches Pv. In this section, we show how, given a protocol Π that is secure as long as A does not corrupt
all parties in a k−neighborhood, one can construct another protocol Π′ for the same functionality as Π, but
is secure as long as A does not corrupt an entire (k + 1)−neighborhood. The round complexity of Π′ will

12

be a constant times the round complexity of Π and so one can only repeat this process logarithmically many
times.

The main ideas of this section are essentially the same as those in the previous section; showing that the
technique of using local MPC to hide information as it spreads to all parties in the graph is quite general. Like
Πbroadcast, our protocol Π′ will be given in theLMPC−hybrid model, where we will use the ideal functionality
LKeyGen. However, instead of using Lbc-helper, we will use a similar but different local functionality, LΠ,
shown in Figure 7. Essentially, LΠ allows the role of Pv in Π to be computed using a local MPC by all of the
parties in N[v]. Then the protocol Π′ uses LΠ to execute Π except that each party’s role in Π is computed
using local MPC by its local neighborhood in Π′. This ensures that if Π is such that any adversary wishing
to attack Π must corrupt an entire k−neighborhood, then any adversary wishing to attack Π′ must corrupt an
entire (k + 1)−neighborhood.

Participants/Notation: For w ∈ N[v], let pkw be the public key output to Pw by LKeyGen(w). Let skv
w

denote Pw’s share of skv (the secret key corresponding to pkv), given as output by LKeyGen(v).

Graph Entry Phase: same as in LMPC

Main Phase:

Input: LΠ receives inputs:

– a round number cw ∈ {1, . . . , r} from each w ∈ N[v];

–
(
pkw, skv

w
)

from each Pw such that w ∈ N[v];

– an encrypted transcript so far T̂ c−1
v =

(
xv, σv; {ŷ`v,w}

`≤c−1
w

)
from Pv, where xv and σv are Pv’s

input and randomness and ŷ`v,w = Encpkv (y`v,w) is an encryption of the message Pw sent to Pv

in the `−th round of Π.

If all parties don’t agree on the round number, LΠ halts giving no output.

Computation:

– LΠ reconstructs the secret key skv =
⊕

w∈N[v] skv
w;

– LΠ decrypts y`v,w = Decskv (ŷ`v,w) for all w ∈ N[v] and ` ≤ c − 1;

– LΠ computes the next message function of Π,

FΠ
v,c

(
xv, σv, {y`v,w}w,`

)
=

{
{yc

w,v}w, c ≤ r − 1
zv, c = r

Output:

– If c ≤ r − 1 then each Pw with w ∈ N[v] receives ŷc
w,v = Encpkw (yc

w,v) from LΠ.

– If c = r then LΠ outputs zv to Pv.

Figure 7: The functionality LΠ.

Our hybrid protocol Π′ is described in Figure 8. Our statement and construction of simulator are below.
We leave out the hybrid argument as it is very similar to the one in subsection 4.5

Claim 4.2. The protocol Π′ realizes the same functionality as Π. Moreover if Π realizes the functionality
UC securely in the Fgraph−hybrid model as long asA does not corrupt an entire k−neighborhood of G, then
Π′ is UC secure in the Fgraph−hybrid model as long asA does not corrupt an entire (k + 1)−neighborhood
of G.

13

Input: Pgraph inputs the graph G, each Pv inputs xv, their input to Π.

KeyGen: Parties call LKeyGen and each Pv receives N[v] and
(
pkv, {skw

v }w∈N[v]
)
.

Main Computation:

– Pv initializes T̂ 0
v to (xv, σv; ∅).

– For c = 1, . . . , r, parties call LΠ:

∗ Pv gives input
{
c;

(
pkv, skv

v
)
; T̂ c−1

v
}

to Lbc-helper(v);
∗ For each w ∈ N[v], Pv gives input

{
c;

(
pkv, skw

v
)}

to Lbc-helper(w);
∗ Pv receives output ŷc

v,w from Lbc-helper(w) for all w ∈ N[v].

∗ If c ≤ r − 1, Pv updates T̂ c
v to include the messages {ŷc

v,w} j he just received.

Output: When c = r, Pv receives zv from LΠ(v), which it outputs.

Figure 8: The (LKeyGen||LΠ)-hybrid protocol Π′.

Simulator. We construct a simulator S′ which will make use of the simulator S for Π. Consider a corrupt
party Pv. S′ simulates Pv’s view as follows:

1. KeyGen: S′ generates (pkv, skv)← Gen(1n) and random shares {skv
w}w∈N[v] such that

⊕
w skv

w = skv.
When the parties call LKeyGen, S′ returns (pkv, skv

v) to Pv and skv
w to Pw.

2. Main Computation: In order to simulate Pv’s view we consider two cases:

Case 1−(Pv has at least one honest neighbor): In this case S′ simulates Pv’s view by replacing all the
messages Pv would receive with encryptions of 0n.

Case 2−(all of N[v] is corrupt): In this caseA can reconstruct skv and so will be able to distinguish if
S′ sends encryptions of zero. However,A does not corrupt an entire (k + 1)−neighborhood of G
which means the set {v ∈ V : N[v] is corrupt} does not contain any k−neighborhood. Moreover,
since each neighborhood in Π′ plays the role of a player in Π, we can simulate the view of such
Pv using the simulator S for Π. Specifically, S′ internally runs S in order to simulate Pv’s view
in Π, and encrypts with pkv to obtain Pv’s view in Π′.

5 Topology Hiding MPC Against a Fail-Stop Adversary

In this section we consider a stronger adversarial model: the fail-stop adversary. A party controlled by a fail-
stop adversary must follow the honest protocol exactly, except that they may abort if the adversary instructs
them to.

We have two main results in this section. In section 5.1 we give a general impossibility result, showing
that any protocol that implements even a weak version of the broadcast functionality is not IND-CTA secure
against fail-stop adversaries. Our proof crucially relies on the ability of the adversary to disconnect the
communication graph by aborting with well-placed corrupt parties. In Section 5.2 we show that this is
inherent by transforming our broadcast protocol from the previous section into one which is secure against
a fail-stop adversary who does not disconnect the graph with his aborts, and who does not corrupt (even
semi-honestly) any k−neighborhood. We give a high level overview of our techniques of this section before
proceeding to the details.

In section 5.1 we consider a protocol Π realizing the broadcast functionality being executed on a line.
The proof of the impossibility result is based on two simple observations. First, if some party aborts early

14

in the protocol then honest parties’ outputs cannot depend on b. Clearly, if P∗ aborts before the information
about b has reached him, then no information about b will reach the honest parties on the other side of P∗.
This means that the outputs of all honest parties must be independent of b, otherwise an adversary would
be able to corrupt another party Pdet to act as a detective. Namely, A will instruct Pdet to play honestly and
based on Pdet’s output,A will be able to guess which side of P∗ Pdet is on. Second, if P∗ aborts near the end
of the protocol then all parties (other than P∗’s neighbors) must ignore this abort and output what they would
have output had nobody aborted. Indeed, if P∗ aborts with only k rounds remaining in the protocol, then
there simply isn’t time for honest parties of distance greater than k from P∗ to learn of this abort. Therefore,
all honest parties’ outputs must be independent of the fact that P∗ aborted, lest anAwould be able to employ
Pdet to detect whether is within distance k of P∗ or not. This difference in honest parties’ outputs when P∗

aborts early versus late means there is a round i∗ such that the output distribution of Pdet when P∗ aborts in
round i∗ is distinguishable from Pdet’s output distribution when P∗ aborts in round i∗ + 1. We take advantage
of this by having two aborters P∗1 and P∗2 who abort in rounds i∗ and i∗ + 1. We prove thatA will be able to
distinguish the cases from when Pdet is to the left of P∗1 with the case when he is to the right of P∗2 allowing
A to win the IND-CTA game with non-negligible advantage.

In Section 5.2 we modify our broadcast protocol of section 4 to be secure against a fail-stop adversary who
does not disconnect the graph with his aborts. The idea is to run the semi-honest protocol 2m − 1 times.
Since the adversary can corrupt and abort with at most m − 1 parties we are guaranteed that the majority
of the executions have no aborts. We ensure that A learns nothing from the outputs of the executions with
aborts by holding off on giving any output until all 2m − 1 executions have occurred. Then we use a final
local MPC protocol to compute all outputs, select the majority and output this to all parties.

5.1 Impossibility Result

Definition 5.1. We say that a protocol Π weakly realizes the broadcast functionality if Π is such that when
all parties execute the protocol honestly, all parties output

∨
xi where xi is Pi’s input.

Note that in weak broadcast, there are no guarantees on the behavior of honest parties if any of the
parties deviates from the honest protocol.

Theorem 5. There does not exist an IND-CTA secure protocol Π that weakly realizes the broadcast func-
tionality in the fail-stop model.

Let G be a line with m vertices. Namely, G = (V, E) with V = {P1, . . . , Pm} and E = {(Pi, Pi+1)}i=1,...,m−1.
Let Π be a protocol executed on G that weakly realizes the broadcast functionality where P1 (the left most
node) is the broadcaster (P1 has input b, and the inputs to all other nodes is 0). Suppose Π has r rounds. We
will show that Π cannot be IND-CTA secure.

Claim 5.2. Let Hv,b be the event that Pv’s output after executing Π matches the broadcast bit b. Let Ei be
the event that the first abort occurs in round i. Then either Π is not IND-CTA secure, or there exists a bit
b ∈ {0, 1} such that ∣∣∣∣Pr

(
Hv,b

∣∣∣Er−1
)
− Pr

(
Hv,b

∣∣∣E1
)∣∣∣∣ ≥ 1

2
− negl(n)

for all honest Pv whose neighbors do not abort.

Proof. If some P∗ aborts during the first round of Π then he disconnects the graph, making it impossible
for the parties separated from P1 to learn about b. These parties’ outputs therefore must be independent of
b, which implies that there exists a b ∈ {0, 1} such that Pr

(
Hb

∣∣∣E1
)
≤ 1

2 . If Π is to be IND-CTA secure then
it must be that this inequality holds (with possibly a negligible error) for all honest parties. Otherwise an

15

adversary could use the correlation between b and a party’s output to deduce that this party is in the same
connected component as P1.

Formally, consider a fail-stop adversaryA who corrupts three parties: the broadcaster P1, aborter P∗ = Pbm
2 c

and detective Pdet. A then submits (G0,G1, S), to the challenger where G0 = G and G1 is constructed
from G by exchanging the labels of the nodes (P3, P4, P5) with (Pm−2, Pm−1, Pm). That is, in G1, the nodes
P3, P4, P5 appear at the end of the line. We call Pdet = P4 the “detective” node. The set S consists of the
nodes P1, P∗ and Pdet. Note thatA’s neighborhoods are the same in G0 and G1 (for m ≥ 12).
A instructs P∗ to abort during the first round and observes Pdet’s output. Since Pm−1’s output must be

independent of b, if P4’s output depends in a non-negligible way on b, this will translate into an advantage
forA in the CTA game.

Finally, note that Pr
(
Hv,b

∣∣∣Er−1
)

= Pr
(
Hv,b

∣∣∣ no aborts
)

= 1 for all Pv which are not neighbors of P∗. The claim
follows. �

Proof of Theorem 5. It follows from Claim 5.2 that there exists a pair (i∗, b) ∈ {1, . . . , r} × {0, 1} such that∣∣∣∣Pr
(
Hv,b

∣∣∣Ei∗
)
− Pr

(
Hv,b

∣∣∣Ei∗+1
)∣∣∣∣ ≥ 1

2r
− negl(n). (1)

for all honest Pv who do not have an aborting neighbor. Furthermore, assume without loss of generality that
Pr

(
Hv,b

∣∣∣Ei∗
)
> Pr

(
Hv,b

∣∣∣Ei∗+1
)
. We construct a fail-stop adversary A who can leverage this fact to win the

CTA game with non-negligible advantage.

Our adversary A corrupts four parties: the broadcaster P1, two aborters
(
P∗L, P

∗
R
)

=
(
Pbm

2 c−1, Pbm
2 c+1

)
, and

the detective Pdet. A then submits (G0,G1, S) to the challenger where G0 = G, G1 is constructed from G by
exchanging (P3, P4, P5) with (Pm−2, Pm−1, Pm) and S = {P1, P∗L, P

∗
R, Pdet = P4}. These graphs are shown in

Figure 9. Note that these adversary structures have identical neighborhoods for m ≥ 14.

Now A guesses (i∗, b) ∈ {1, . . . , r} × {0, 1}. With non-negligible probability, (i∗, b) is such that inequality
(1) is satisfied. A gives b as input to P1 and instructs P∗L to abort on round i∗, P∗R to abort on round i∗ + 1.
Notice that since the two aborting parties are at distance 2 from each other, the information about P∗L’s abort
does not reach P∗R by the time he aborts one round later. Therefore, the information about P∗L’s abort does
not reach any of the parties to the right of P∗R at any point during the protocol. This means that if G0 was
chosen by the challenger, Pdet’s output will be consistent with Ei∗ whereas if G1 was chosen, Pdet’s output
will be consistent with Ei∗+1. A concludes by comparing Pdet’s output bit to the broadcast bit b. If they are
equal, A sends 0 to the challenger, otherwise he sends 1. The noticeable difference in output distributions
ensured by i∗ translates to a noticeable advantage forA.

P1 Pdet,0 P∗L P∗R Pdet,1

G0 : ∗ • • ∗ ∗ • ∗ • •

G1 : ∗ • • • ∗ • ∗ ∗ •

Figure 9: Graphs used byA in proof of theorem 5.

�

16

5.2 Feasibility Result

In this section we show how to modify the broadcast protocol from section 4 which is secure against a
semi-honest adversary who doesn’t corrupt any k−neighborhood into one which is secure against a fail
stop adversary, who doesn’t corrupt a k−neighborhood and whose aborts don’t disconnect the graph. For
simplicity in describing the protocol we take k to be 1, and point out what would have to be changed
to accomodate k = O(log n). Our protocol, Πfstop-bcast, is shown in Figure 11, it makes use of another
local functionality Lmaj shown in Figure 12. Πfstop-bcast realizes the fail-stop broadcast functionality shown
in Figure 10

The main idea of our protocol is to run the semihonest protocol many times, ensuring that the majority
of the executions contain no aborts. The correctness of the semi-honest protocol guarantees that these exe-
cutions with no aborts result in correct output. However, to prevent parties from learning which executions
contain an abort, we change our protocol so that the outputs of the individual executions are given to the
parties in encrypted form, and only after all of them have been completed, N[v] runs a local MPC realizing
Lmaj to compute the majority of the outputs it has received. This ensures that all parties will receive the
correct output.

We comment that an adversary who aborts during the final majority MPC will stop each local neighbor-
hood he is a part of from being able to reconstruct the output. However, since A knows which parties he is
connected to, forcing them to output ⊥ does not tell him anything about the graph. If a corrupt party aborts
during the main part of the protocol then he ruins the local MPCs running in all closed neighborhoods to
which he belongs, but does not affect anything else. Neighbors of the aborting party will get an output of ⊥
for the current run of the semi-honest protocol, but now that this corrupt party has aborted he cannot ruin any
other repititions. The majority at the end will ensure that this abort does not upset the output of Πfstop-bcast.

Finally, we comment that if the local MPC run at the end to compute the majority is executed by the
parties in N[v], then the resulting protocol will only be secure ifA does not corrupt any closed neighborhood
in G. However, we can compile a protocol which is secure against a semi-honestA who does not corrupt all
parties in a k−neighborhood of G into one that is secure against a fail-stopA simply by having the last MPC
be computed by all the parties in the k−neighborhood of v. This involves implementing a message passing
protocol between all parties in the k−neighborhood of v which may be done similarly to Πmsg-transmit.

Input: Fbc-failstop receives inputs:

– the graph G from Pgraph;

– a bit bv ∈ {0, 1} from each Pv;

– a value αv ∈ {complete, abort early, abort late} from each corrupt Pv.

Output: Fbc-failstop gives outputs:

– ⊥ to all adversarial Pv such that αv ∈ {abort early, abort late};

– ⊥ to all honest Pv who are adjacent to an adversarial Pw such that αw = abort late;

–
∨

v bv to all other parties.

Figure 10: The fail-stop broadcast functionality Fbc-failstop.

17

Input: Pgraph inputs the graph G, each Pv inputs a bit bv ∈ {0, 1}.

KeyGen: Parties call LKeyGen and each Pv receives N[v],
(
pkv, skv

v
)

from LKeyGen(v) and skw
v from

LKeyGen(w) for all w ∈ N[v]. If a party aborts during this phase then start again, ignoring that party
for the remainder of the protocol.

Main Computation For j = 1, . . . , 2m − 1 do:

– Each Pv sets x̂0
v,w = Encpkv (bv) for each w ∈ N[v].

– For i = 1, . . . , r, parties call Lbc-helper:

∗ Pv gives input
{
“cipher”;

(
pkv, {skw

v }w
)
; {x̂i−1

v,w}w

}
;

∗ Pv receives output {x̂i
v,w}w.

– Pv picks w ∈ N[v] randomly and sets ŷ j
v = x̂r

v,w.

– If a party aborts during this computation all of his neighbors set ŷ j
v = Encpkv (⊥) and ignore

the aborting party for the remainder of the protocol.

Output:

– Parties call Lmaj:

∗ Pv gives input
{(

pkv, {skw
v }w

)
; {ŷ j

v} j

}
;

∗ Pv receives output b∗v
– Each Pv outputs b∗v.

Figure 11: The protocol Πfstop-bcast (in the LMPC−hybrid model).

Graph Entry Phase: same as in LMPC

Main Phase:

Input: Lmaj receives inputs:

–
(
pkv, {skw

v }w∈N[v]
)
− the data Pv receives from Lmaj

– {ŷ1
v , . . . , ŷ

2m−1
j } − encryptions ŷ j

v = Encpkv (b j
v) of values b j

v ∈ {0, 1} ∪ {⊥}

from each Pv.

Computation:

– Lmaj reconstructs the secret key skv =
⊕

w∈N[v] skv
w for each v ∈ V .

– For each v ∈ V , Lmaj decrypts the bits b j
v = Decskv (ŷ j

v) for j = 1, . . . , 2m − 1.

– Lmaj computes bv = MAJ j(b
j
v), where MAJ is the majority function.

Output: Lmaj gives Pv the output bv.

Figure 12: The functionality Lmaj.

18

6 Discussion and Open Questions

Malicious Model. The most basic question we leave open in this work is the situation in the malicious
model. Clearly, our impossibility results for the fail-stop model also apply here. Our positive results do not
carry over, however. This is because a malicious adversary can “pretend” to be connected to an entire graph;
in this fake graph, the adversary can corrupt any size neighborhood, violating our security assumptions.

General Graphs in the Semi-Honest Model. A second natural question that arises from this work is
whether the restriction to graphs of logarithmic diameter is a necessary one, even in the semi-honest model.
Does there exist a protocol for topology-hiding secure computation in arbitrary graphs?

Hiding the Identities of Neighbors. Another open problem we leave is whether topology-hiding security
can be realized while hiding from Pv the identities of his neighbors. This would involve changing the Fgraph
functionality to give as output a local identity for each of the parties in Pv’s neighborhood, and this identity
would differ in other closed neighborhoods. One interesting application would be that adversaries in the
same local neighborhood would not learn that they are distance 2 from each other. Even our semi-honest
protocol revealed this information as parties at distance 2 had to communicate in local MPCs.

References

[1] http://www.its.dot.gov/research/v2v.htm.

[2] http://www.nytimes.com/2010/05/12/nyregion/12about.html.

[3] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended abstract).
In STOC, pages 503–513. ACM, 1990.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In STOC, pages 1–10. ACM, 1988.

[5] E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-party computation -
how to run sublinear algorithms in a distributed setting. In TCC, pages 356–376, 2013.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

[7] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145. IEEE Computer Society, 2001.

[8] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party
secure computation. Cryptology ePrint Archive, Report 2002/140, 2002. http://eprint.iacr.
org/2002/140.

[9] N. Chandran, J. A. Garay, and R. Ostrovsky. Edge fault tolerance on sparse networks. In A. Czumaj,
K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, editors, ICALP (2), volume 7392 of Lecture Notes in
Computer Science, pages 452–463. Springer, 2012.

[10] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM,
24(2):84–88, 1981.

19

[11] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the computational
overhead of cryptography. In H. Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in
Computer Science, pages 445–465. Springer, 2010.

[12] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In
A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 572–590.
Springer, 2007.

[13] D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.

[14] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault tolerance in networks of bounded degree. SIAM
J. Comput., 17(5):975–988, 1988.

[15] M. K. Franklin and M. Yung. Communication complexity of secure computation (extended abstract).
In STOC, pages 699–710. ACM, 1992.

[16] J. Garay and R. Ostrovsky. Almost-everywhere secure computation. In N. P. Smart, editor, EURO-
CRYPT, volume 4965 of Lecture Notes in Computer Science, pages 307–323. Springer, 2008.

[17] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University
Press, New York, NY, USA, 2004.

[18] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In STOC, pages 218–229. ACM, 1987.

[19] M. Hinkelmann and A. Jakoby. Communications in unknown networks: Preserving the secret of
topology. Theor. Comput. Sci., 384(2-3):184–200, 2007.

[20] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In L. Babai,
editor, STOC, pages 232–241. ACM, 2004.

[21] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC ’04, pages 232–241,
2004.

[22] R. Pass and A. Rosen. Bounded-concurrent secure two-party computation in a constant number of
rounds. In FOCS, pages 404–413. IEEE Computer Society, 2003.

[23] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In STOC, pages 73–85. ACM, 1989.

[24] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion routing. IEEE
Journal on Selected Areas in Communications, 16(4):482–494, 1998.

[25] M. K. Reiter and A. D. Rubin. Anonymous web transactions with crowds. Commun. ACM, 42(2):32–
38, 1999.

[26] A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160–164. IEEE,
1982.

20

