
Combining Secret Sharing and Garbled Circuits for Efficient
Private IEEE 754 Floating-Point Computations

Pille Pullonen1,2 and Sander Siim1,2

1 Cybernetica AS
2 University of Tartu

{pille.pullonen, sander.siim}@cyber.ee

Abstract. Two of the major branches in secure multi-party computation research are secret shar-
ing and garbled circuits. This work succeeds in combining these to enable seamlessly switching
to the technique more efficient for the required functionality. As an example, we add garbled cir-
cuits based IEEE 754 floating-point numbers to a secret sharing environment achieving very high
efficiency and the first, to our knowledge, fully IEEE 754 compliant secure floating-point imple-
mentation.

1 Introduction

Secure multi-party computation (MPC) enables parties to securely compute some function on their
secret inputs and receive the secret outputs, without leaking anything to other parties. The fastest MPC
protocols for integer arithmetic, like Sharemind [11][8] and SPDZ [13], rely on additive secret sharing.
Additive sharing supports efficient addition and multiplication due to the algebraic properties of the
scheme. However, floating-point arithmetic is much more sophisticated and contains a composition of
different operations, both integer arithmetic as well as bitwise operations. Existing implementations based
on secret sharing provide only near approximations to the IEEE 754 standard [1][20][27]. Although [14]
proposes IEEE 754 protocols, no implementation is provided.

Another MPC approach is based on the garbled circuits method (GC) attributed to Yao [35] and
detailed in [26]. A good overview of the recent advances can be found in [6][4], especially in the full
versions. The baseline method is applicable to the two-party setting, however it can be extended to
the case with more parties [7]. State-of-the-art garbling methods are already very efficient [4] and, in
addition, means to derive optimized circuits from existing programs have been developed [17][23]. This
allows secure protocols for arbitrary computations to be built with small effort using a general GC
approach. However, in many cases the obtained protocols are less efficient than their secret-sharing-
based alternatives. In practice, it would be useful to choose the more efficient technique, either sharing
or GC based, for each particular subprotocol, but this requires interleaving secret sharing and garbling
based methods in one computation.

In this paper, we present a hybrid protocol, which enables arbitrary secure computations through
a combination of GC and secret sharing protocols1. In our protocol, GC gives the power to do bit-
level operations in a compact manner, whereas secret sharing complements the construction with a
fast oblivious transfer as well as composability with other secret-sharing-based protocols. Thereby, large
and complex algorithms can be implemented by composition of the most efficient basic primitives. We
illustrate the benefits by extending the Sharemind MPC framework [11][8] with, to our knowledge, the
first secure floating-point protocol suite fully conforming to the IEEE 754 standard.

2 Preliminaries

In MPC, parties P1, . . . , Pm want to securely compute a function f on secret inputs x1, . . . , xm to learn
f(x1, . . . , xm) = (y1, . . . , ym), without leaking anything about inputs xi to other parties. Secret sharing
1 Part of this work has been previously published in a Cybernetica technical report [33]
This research was, in part, funded by the U.S. Government. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government. This work has also received funding from the Estonian Research
Council through grant IUT27-1, and ERDF through EXCS.



is a mechanism of distributing data between participants without giving any of them direct access to the
data, but enabling computations [32]. We denote a secret-shared vector x of n elements shared between
parties P1,. . . ,Pm by [[x]] = [[x1, x2, . . . , xn]] = [[x1]], . . . , [[xn]] where party Pi holds [[x]]i = [[x1, x2, . . . , xn]]i.
An ordered tuple of regular non-secret-shared values a1, . . . , an is denoted with (a1, . . . , an). We focus on
the additive secret sharing scheme, where sharing is defined with

∑m
i=1[[x]]i = x. However, other schemes

may also be used to implement our proposed protocol. We minimally require that the sharing scheme
supports efficient integer addition and multiplication which remain secure in the presence of one passively
corrupted party.

In the garbled circuits protocol [35][26], two parties called garbler and evaluator securely compute
a known function f(x, y) on their joint inputs. Essentially, the garbler encrypts a Boolean circuit of
g = f(a, ·) and sends the garbled truth tables of gates to the evaluator. The evaluator then uses oblivious
transfer to obtain the keys corresponding to its input to decrypt the garbled circuit and evaluate g(b).
We refer to these keys as tokens. The garbler generates two uniformly random tokens X0, X1 for all the
circuit’s wires, including input and output wires, one corresponding to a 0-bit and the other to a 1-bit.
The evaluation of the garbled circuit is completely oblivious, as the evaluator does not learn the circuit’s
output nor any intermediary results, only random tokens, which correspond to the actual values. The
garbler can later deduce the actual output of the computation from the output tokens received from the
garbled circuit evaluation. The output tokens only reveal the circuit output and no information about
the evaluator’s input. Thus, the inputs a and b are not revealed to the other party. In practice, symmetric
cryptographic primitives such as a secure block cipher or hash function are used for garbling the circuit.

We use the notation from [4] to describe a circuit f as a tuple (n,m, q,A,B,G), where n, m and q
respectively denote the number of external input wires, external output wires and gates in f . All wires
are labeled by indexes. Namely, 1 to n are input wires, n + 1 to n + q mark gate output wires and
n+ q−m+1 to n+ q are circuit outputs. Functions A and B, respectively, identify the first and second
input wire of any gate. The function G determines the functionality of each gate, especially for a gate
g ∈ Gates, the function G(g) : {0, 1}2 → {0, 1} denotes the functionality of g. We use Xb

j ∈ {0, 1}k to
denote the token of the j-th wire corresponding to bit b ∈ {0, 1}, where k is the length of the generated
tokens. We say Xb

j has the semantics of b and type lsb(Xb
j ).

Here we only emphasize the important aspects of the used security proof framework, for details
we refer to [9] or Appendix A. A protocol is said to be input private if, for any collection of allowed
corrupted parties, there exists a simulator that can simulate the view of the adversary based on the
inputs of corrupted parties. The ordered composition of an input private and a secure protocol, where
all outputs are provided by the secure protocol, is secure if it is output predictable. The latter means
that the composed protocols are correct and the final protocol does not leak information about its input
shares to ensure the privacy of the first part.

Garbled circuits have two important security definitions: privacy and obliviousness [6]. Respectively,
we consider prv.ind, prv.sim and obv.ind, obv.sim for either indistinguishability or simulation based
versions of these definitions. Both properties are formalized via the side-information function Φ that
captures the information that is revealed by the garbled circuit. We consider Φtopo and Φxor that leak
the topology and XOR operations. These functions are both efficiently invertible [4]. Therefore, by
equivalence relations from [6], indistinguishability and simulation-based definitions coincide for both
privacy and obliviousness. For a longer discussion of these properties see Appendix B.

3 Combining Garbled Circuits with Secret Sharing

Our goal is to construct an efficient protocol for securely evaluating Boolean circuits on bitwise secret-
shared input, thereby allowing secret sharing protocols to be composed with computations more suitable
for GC. Thus, each subprotocol can use the method more suitable for the given functionality and inputs,
which can ultimately increase the efficiency of a larger computation. A similar approach is also used in the
TASTY framework that combines GC and additively homomorphic encryption in a two-party setting [16].
As in our construction, TASTY relies on secure protocols to convert between different representations
of the secret values in order to combine secure computation methods. They use two-party protocols
for conversion between GC tokens and encrypted values [21], whereas our construction is based on a
multi-party setting with secret sharing instead of homomorphic encryption.

The idea of our protocol is to set up GC to accept secret-shared inputs and to produce shared
outputs. Thus, our protocol in Alg. 1 consists of three important steps. First, we require an efficient

2



Algorithm 1: Hybrid protocol for processing bitwise secret-shared data with a
garbled circuit

Input: Shared bit vector [[x]] = [[x1, . . . , xn]]
Boolean circuit f that calculates f : {0, 1}n → {0, 1}m
Output: Shared bit vector [[y]] = [[y1, . . . , ym]] such that [[y]] = f([[x]])

1 foreach input wire i ∈ {1, . . . , n} do
2 CP1 generates a token pair (X0

i , X
1
i ) ∈ {0, 1}k × {0, 1}k

3 The computing parties initiate an OT protocol which results in CP2 receiving
X = (Xx1

1 , . . . , Xxn
n ) (the input tokens corresponding to the actual input bits)

4 CP1 garbles circuit f and sends the garbled truth tables to CP2

5 CP2 evaluates garbled f using X to get output tokens Y = (Xy1
n+q−m+1, . . . , X

ym
n+q)

6 The garbled output is converted to secret-shared form to receive [[y]]
7 return [[y]]

garbling scheme to provide secure evaluation of circuits. Suppose we have CP1, . . . ,CPm who hold some
secret-shared data. We will let computing parties CP1 and CP2 respectively perform the computations
of garbler and evaluator from the GC protocol. Note that independently of the properties of the secret
sharing scheme we require that CP1 and CP2 are not colluding. Second, the GC protocol requires an
oblivious transfer (OT) to provide the input tokens to the evaluator based on the secret-shared inputs.
Third, we must convert the garbled outputs to the appropriate secret-shared form.

3.1 An Implementation of the Hybrid Protocol

Generally, the hybrid protocol can be implemented using various secret sharing and garbling schemes,
provided their composition retains the necessary security properties (see Sec. 3.2 for details). However,
we will focus on our instantiation built into the Sharemind MPC platform [8]. We chose Sharemind
because it already provides an optimized multi-party computation environment based on secret sharing,
which could easily be extended with our GC based protocol.

Our protocol extends Sharemind’s additive3pp protection domain, which implements various secure
computation protocols using a 3-out-of-3 additive secret sharing scheme [10]. This allows us to easily
compose the hybrid protocol with the fast existing primitives for integer arithmetic. Note that since we are
using the two-party Yao protocol, we can achieve security against at most one corrupted party. However,
this fits well with Sharemind’s additive3pp security model, which also provides security against a single
passively corrupted party and is thus the optimal secret sharing environment to use in this case.

To securely evaluate garbled circuits in the presence of colluding parties, protocols from [3][7] may
be used. However, it is unclear if there is anything to be gained performance-wise from extending this
with our approach, since secret sharing is already used as a sub-primitive in the multi-party garbled
circuit evaluation. Also, for security against two colluding parties, we would require at least 5 computing
parties [7], which considerably increases the complexity of the secure computation environment. Conse-
quently, we fix a setting with three computing parties CP1, CP2 and CP3 and additive secret sharing for
the rest of this paper.

Note that different data types provided by Sharemind can be efficiently converted to shared bit vectors
required in our construction using the bit extraction protocol from [11], which allows us to compose all
additive3pp protocols with the hybrid protocol.

Oblivious Transfer The garbler CP1 generates a pair (X0
i , X

1
i ) of tokens for every bit xi in the

beginning of the garbling process. We need to transfer the tokens that correspond to the protocol inputs
to the evaluator CP2. Clearly, if we have a subprotocol that calculates the necessary secret-shared tokens
[[Xx1

1 , . . . , Xxn
n ]], then we can complete the transfer by sending all result shares to CP2. This subprotocol

can be easily implemented using secret-sharing-based multiplication and addition protocols. The resulting
OT protocol is given in Alg. 2. An OT protocol is secure if the secret choice of the receiver remains private
and the receiver is only able to learn one of the two messages of the sender. In addition to basic OT
security properties, we also require that the choice bits xi are not leaked to any of the participants,
including the receiver.

3



Algorithm 2: Oblivious transfer of input tokens (OT)
Input: CP1 holds the input tokens (X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n)

The input bit vector [[x]] = [[x1, . . . , xn]] is shared between all parties
Output: CP2 receives input tokens (Xx1

1 , . . . , Xxn
n )

1 [[X0]] = [[X0
1 , . . . , X

0
n]] and [[X1]] = [[X1

1 , . . . , X
1
n]] are instantiated as shared values,

with shares of CP2 and CP3 initialized to 0
2 [[X]]← [[X0]] · ([[1]]− [[x]]) + [[X1]] · [[x]]
3 CP1 and CP3 send their shares of [[X]] to CP2

4 CP2 combines the shares of [[X]] to get (Xx1
1 , . . . , Xxn

n )
5 return (Xx1

1 , . . . , Xxn
n )

The computations on line 2 of Alg. 2 are performed using the secure and input private multiplication
and addition protocols from [11]. As a result, [[X]] = [[Xx1

1 , . . . , Xxn
n ]] and the inputs [[x]] remain private.

Essentially, we perform an oblivious choice on secret-shared values, similarly to [25]. Note that each
xi can easily be extended to the length of the tokens by creating a bit string consisting of k copies of
xi. Therefore, the operations are performed in Z2k . On line 3, the shares of [[X]] are sent to CP2 who
combines them to receive the input tokens.

Garbling The emphasis for achieving efficient GC is on reducing network communication, as this is
ultimately the bottleneck for all GC protocols. Recent garbling schemes already bring the cost of local
computations to a minimum as demonstrated in [4]. Due to these considerations, we chose the GaXR
scheme with the A4 dual-key cipher instantiation from [4] for our protocol, which is one of the fastest to
date and results in the smallest amount of network communication among alternatives proposed in [4].

The dual-key-cipher (DKC) is a formalization of the underlying encryption primitive of the garbling
process [6]. A DKC is a deterministic function E : {0, 1}k ×{0, 1}k ×{0, 1}τ ×{0, 1}k → {0, 1}k. It takes
secret wire tokens A and B and a tweak T to encrypt a wire token X. The function E for the A4 DKC
instantiation is defined as

E(A,B, T,X) = π(K ‖ T )[1:k] ⊕K ⊕X
where K = 2A ⊕ 4B. Here π(K ‖ T )[1:k] denotes the first k bits of the result. It is easy to see that the
decryption function D is completely symmetric to E.

The function π : {0, 1}k+τ → {0, 1}k+τ denotes a random permutation, as the security of GaXR
is shown in the random permutation model. We use fixed-key AES-128 with k = 80 and τ = 48 to
instantiate π, which provides reasonable security guarantees for this garbling scheme [4]. Tweak T is the
index of the garbled gate encoded as a τ -bit integer. For the doubling function denoted by 2A we use
multiplication with element x over finite field GF (2k), as it provides the best security guarantees over
other possible alternatives [4]. Note that here k also corresponds to bit-length of the wire tokens. Our
implementation uses the irreducible polynomial x80 + x9 + x4 + x2 + 1 from [31] for defining the finite
field.

The GaXR scheme incorporates free-XOR [22] and garbled row reduction [30] optimizations, both of
which significantly reduce network communication of GC. Also, the A4 DKC instantiation allows us to
use a smaller token size (80 bits as opposed to 128 bits for example), which drastically scales down the
size of the resulting garbled circuit. Naturally one could use other garbling schemes for instantiating the
hybrid protocol. However, for security we require that the scheme retains the obliviousness property [6]
(see also Section 3.2 about security of hybrid protocol).

Fig. 1 summarizes the hybrid protocol. The garbler CP1 first generates a token pair (X0
i , X

1
i ) for

each input wire, with X0
i and X1

i having the semantics of 0 and 1 respectively. Then all three computing
parties synchronously execute the OT protocol in Alg 2. As a result CP2 receives the correct input tokens
needed for evaluation. Next, CP1 garbles the circuit according to the GaXR scheme and sends the garbled
truth tables P to CP2. The evaluator CP2 can then evaluate the garbled circuit using the transferred
input tokens to receive the garbled output.

As an implementation detail, we have parallelized our protocol on two levels. First, the garbled
tables are streamed by fixed-size batches from garbler to evaluator, similarly to [18]. The evaluator can
then start evaluating the circuit while the garbler encrypts the next batch. This is especially relevant

4



performance-wise for large circuits. The batch size can be fixed for different circuits separately and
fine-tuned to match the Sharemind instance’s network and hardware capabilities.

In addition, our implementation allows both garbler and evaluator to run several threads to evaluate
the same circuit with different inputs simultaneously. This can be thought of as using a number of garbler-
evaluator pairs, similarly to the cut-and-choose implementation of [24] for actively secure GC. Besides
parallel garbling, this allows a joint OT to be done for all the scheduled evaluations. This parallelization
greatly reduces the cost of a single circuit evaluation when evaluating the circuit on a vector of inputs.

Resharing The final step in the protocol is resharing the output between all three computing parties
using perfectly secure Reshare protocol Alg. 1 from [8]. This protocol rerandomizes the output shares
held by CP1 and CP2 as y = [[y]]

′
1+[[y]]

′
2 to a uniformly secret-shared output [[y]] and ensures that we can

securely compose our protocol with all additive3pp protocols, which is vital for efficient computations
that would benefit from both GC and secret sharing.

Algorithm 3: Hybrid protocol algo-
rithm for CP1

Input: [[x]]1 = [[x1, . . . , xn]]1 and circuit
f = (n,m, q,A,B,G)

Output: [[y]]1 = [[y1, . . . , ym]]1 such that
[[y]] = f([[x]])

R
$←− {0, 1}k−1 ‖ 1

for i←− 1 to n do
t

$←− {0, 1}
X0

i
$←− {0, 1}k−1 ‖ t, X1

i ←− X0
i ⊕R

OT ((X0
1 , . . . , X

0
n), (X

1
1 , . . . , X

1
n), [[x]]1)

for g ←− n+ 1 to n+ q do
a←− A(g), b←− B(g)
if G(g) = XOR then
X0

g ←− X0
a ⊕X0

b , X1
g ←− X0

g ⊕R
else

for i←− 0 to 1, j ←− 0 to 1 do
u←− i⊕ lsb(X0

a)
v ←− j ⊕ lsb(X0

b )
r ←− G(g, u, v)
if i = 0 and j = 0 then
Xr

g ←− E(Xu
a , X

v
b , g, 0

k)
Xr−1

g ←− Xr
g ⊕R

else
P [g, i, j]←− E(Xu

a , X
v
b , g,X

r
g )

Send P to CP2

for i←− 1 to m do
y′i1 ←− lsb(X0

n+q−m+i)
[[y]]′1 ← (y′11, . . . , y

′
m1)

[[y1, . . . , ym]]1 ← Reshare([[y]]′1)
return [[y]]1 = [[y1, . . . , ym]]1

Algorithm 4: Hybrid protocol algo-
rithm for CP2

Input: [[x]]2 = [[x1, . . . , xn]]2 and circuit
f = (n,m, q,A,B,G)

Output: [[y]]2 = [[y1, . . . , ym]]2 such that
[[y]] = f([[x]])

(X1, . . . , Xn)←− OT (0k·n, 0k·n, [[x]]2)
Receive P from CP1

for g ←− n+ 1 to n+ q do
a←− A(g), b←− B(g)
i←− lsb(Xa), j ←− lsb(Xb)
if G(g) = XOR then
Xg ←− Xa ⊕Xb

else if i = 0 and j = 0 then
Xg ←− E(Xa, Xb, g, 0

k)
else
Xg ←− D(Xa, Xb, g, P [g, i, j])

for i←− 1 to m do
y′i2 ←− lsb(Xn+q−m+i)

[[y]]′2 ← (y′12, . . . , y
′
m2)

[[y1, . . . , ym]]2 ← Reshare([[y]]′2)
return [[y]]2 = [[y1, . . . , ym]]2

Algorithm 5: Hybrid protocol algo-
rithm for CP3

Input: [[x]]3 = [[x1, . . . , xn]]3
Output: [[y]]3 = [[y1, . . . , ym]]3 such that

[[y]] = f([[x]])
OT (0k·n, 0k·n, [[x]]3)
[[y]]′3 ← 0m

[[y1, . . . , ym]]3 ← Reshare([[y]]′3)
return [[y]]3 = [[y1, . . . , ym]]3

Fig. 1. Detailed algorithms of the hybrid protocol for all computing parties.

3.2 Security of the Hybrid Protocol

Our main security proof for the hybrid protocol is based on the proof scheme of [9]. Using this framework,
we need to prove that the protocol up until the Reshare function is passively input private and then
apply the composition result from [9]. For this, we need to establish the output predictability of the

5



composition. We denote the part of the hybrid protocol on Fig. 1 before final Reshare protocol as
Hybrid’. This section gives an overview of the important building blocks of the proof, a full proof can
be found in Appendix C. Especially, this section gives a general overview of combining the input privacy
based view of [9] and the properties of the garbled circuits [6] and some intuition about the security of
such construction. We consider only passive corruption and static adversaries that can corrupt at most
one of the participants.

The description of basic Sharemind protocols as well as the proofs of their input privacy or security
can be found in [11],[8]. They also use passive static adversaries that corrupt at most one of the three
parties. In the following, we require privacy of addition and multiplication operations as well as the
security of the resharing and multiplication protocols.

Output predictability is a notion that allows to capture the correctness of the composition of private
and secure system. This is necessary as the privacy definition does not ensure that the protocol computes
correct outputs. In addition, if we compose input private and secure protocols then we must ensure that
the outputs of the private protocol are hidden. This is also captured by the notion of joint output
predictability. This is defined for Hybrid’ and the ideal functionality corresponding to Reshare. This
ideal functionality of Reshare simply outputs uniformly random sharing of the input value.

Theorem 1. Hybrid’ protocol is correct.

Proof (Proof idea). The correctness follows from the correctness of the sub-protocols used in the OT part
and the correctness of the GaXR garbling scheme.

Corollary 1. The ordered composition of Hybrid’ and Reshare is jointly output predictable.

Proof (Proof idea). The output predictability follows from Lemma 2 in [9] and Thm. 1.

Note, that the obliviousness of the garbling scheme [6] is quite like the input privacy [9] and is
necessary for the input privacy of the Hybrid’ protocol. However, only prv.sim security of GaXR is
shown in the full version [5] of [4]. Hence, we also need to establish the obliviousness of the garbling
scheme used in the hybrid protocol.

Theorem 2. GaXR scheme is computationally obv.ind secure.

Proof (Proof idea). The types of the input wires are independent of the semantics as they are generated
independently on line 3 of Alg. 3 by CP1. In short, the obv.ind security follows from the fact that the
keys of the outputs are generated the same way as the intermediate keys. Therefore, if the obliviousness
property would be invalidated then we could build an adversary that adds some computations to the
circuits that invalidate obliviousness to also break the privacy property that is proved in [5].

In the following we need to provide a privacy simulator for the Hybrid’ protocol. However, for that
we also need to have a simulator for the obliviousness property of the garbling scheme. Hence, besides
obv.ind security we also require obv.sim security.

Corollary 2. GaXR is computationally obv.sim secure.

Proof (Proof idea). It follows directly from Thm. 2 as the indistinguishability and simulatability based
definitions are equivalent.

The main security property required for using [9] is the input privacy. For our security proof we need
to establish that Hybrid’ protocol is input private.

Theorem 3. Protocol Hybrid’ is perfectly input private for passively corrupted CP1 or CP3 and com-
putationally input private against passively corrupted CP2.

Proof (Proof idea). We have to show the existence of the privacy simulator that can simulate the view
of the corrupted party based on its inputs.

Corrupted CP1 or CP3. The perfect input privacy of these parties is ensured by the perfect input
privacy of the addition and multiplication protocol and the composability of input privacy (Thm. 3
in [9]).

6



Corrupted CP2. From obv.sim security in Cor. 2 we know that there exists a simulator S such that it
outputs garblings indistinguishable from those output by the real garbler. The privacy simulator P for
CP2 can be built from the simulator S. This P knows the circuit f and can run S to obtain the simulated
garbling. Next, it has to simulate the OT that can be done perfectly by using the privacy simulator for
OT.

Using all the previous results we are ready to establish the fact that the proposed hybrid protocol is
a secure multi-party computation protocol that computes the function f . Especially, we require the main
result of [9] which states that the composition of a private and a secure system is secure if all outputs
come only from the secure system and the built composition is output predictable.

Corollary 3. Hybrid protocol algorithm is perfectly secure against passively corrupted CP1 and CP3 and
computationally secure against passively corrupted CP2.

Proof (Proof idea). From Cor. 1 we know that the composition is jointly output predictable. Thm. 3 also
showed that Hybrid’ being the first part of the ordered composition is input private. Therefore, we can
use the composition result in Thm. 2 in [9] to conclude that the full hybrid protocol is secure.

In general, an analogous secure construction can be obtained from any oblivious correct garbling
scheme, a secure protocol to convert garbled outputs to shares, and a sharing-based secure oblivious
transfer that is input private for all parties except the evaluator. For example, any sharing scheme could
be used as long as the additional requirement that the evaluator and garbler are not corrupted together
holds and there exists a protocol to convert the garbled outputs to a shared bit vector.

Note that following the ideas of [9] it would also be meaningful to combine Hybrid’ directly with
other input private secure computation protocols and only perform the final Reshare step after all desired
computations are finished. At first we would then combine the private protocols into the composed private
protocol according to the composability of input privacy. The final Reshare step can be added analogously
to Cor. 3 to make the composed private protocol secure.

4 Using the Hybrid Protocol for Efficient Computations

Sharemind’s additive3pp protocols enable fast integer operations. On the other hand, bit-level opera-
tions are more costly. However, in practical applications we are also interested in more complex primitives
that rely heavily on different non-linear operations. A very relevant example of this is floating-point com-
putations.

The de facto standard today for binary floating-point arithmetic is the IEEE Standard for Floating-
Point Arithmetic (IEEE 754) [19]. Although existing secure implementations of floating-point operations
resemble IEEE 754 [1][20][27], they do not always produce identical results compared to regular hardware
implementations. The main shortcomings are in not rounding inexact results to nearest representable
floating-point numbers, lack of support for gradual underflow and missing error handling [15]. The pre-
vious implementations rely on secret-sharing the sign, exponent and significand of the floating-point
number separately for efficiency of computations, which makes it difficult to cover all the finer details of
the IEEE 754 standard.

Using the CBMC-GC circuit compiler [17] (v.0.9.3 [12]), we were able to implement an efficient
and fully IEEE 754 compliant floating-point protocol suite based on our hybrid protocol. The CBMC-
GC compiler transforms C programs directly to highly optimized circuits usable in a GC protocol. This
allowed us to use exact IEEE 754 software implementations as a basis for our protocols, thereby achieving
compliance with the standard. We chose CBMC-GC for this task, since its latest version tends to produce
smaller circuits than other similar compilers, such as [23]. Minimal circuit size, or specifically, the number
of non-XOR gates, is paramount for the performance of any garbled circuits protocol. However, CBMC-
GC does not scale well to very large circuits in terms of compilation time, as our results in Sec. 4.1
show. Nevertheless, CBMC-GC currently seems to be the best choice for implementing small efficient
primitives using a garbled circuits method.

We implemented both single and double precision secret-shared floating-point data types. The float
and double types are represented as 32-bit and 64-bit bitwise secret-shared integers that correspond
exactly to the IEEE 754 standard. Our construction guarantees bit-by-bit identical results to those of

7



regular hardware floating-point procedures, excluding non-standardized details such as the significand
bits of a NaN. We empirically verified this claim for the four arithmetic operations and square root for
both precisions on a machine with Intel Core i7-870 2.93 GHz processor against equivalent C programs
compiled with GCC 4.8.1-2. For all operations, we tested both the secure protocols and corresponding
C programs on a representative sample of inputs to cover all corner cases and verified that the results
were identical, while considering all NaN representations as equivalent.

4.1 Circuits for IEEE 754 Primitives

The circuits used in our protocol suite are listed and described in Table 1. We list circuit sizes as well
as the number of garbled tables batches sent during one evaluation of the circuit. The circuits were
compiled on a workstation with 16 GB RAM and an Intel Core i7-870 2.93 GHz processor. Although it
would have much reduced the circuit sizes, we were unable to use the SAT-minimization functionality of
CBMC-GC for larger circuits due to high compilation times. We note that compiling the largest circuit
float64_erf used a maximum of ∼10 GB of RAM. Also, CBMC-GC used only one processor core for
compilation, which means the order of magnitude of these compilation times is unavoidable in practice
with the current version of CBMC-GC, since it does not leverage the multi-core architecture of modern
processors.

We used the efficient SoftFloat [34] IEEE 754 software implementation for compiling addition, mul-
tiplication, division and square root circuits. We additionally used musl libc [28] for double precision ex
and error function (erf) as an example of more complex operations and the flexibility of our approach to
implement arbitrary primitives. Only minor syntactic modifications of the source code were required to
compile it with CBMC-GC. Although SoftFloat supports all four rounding modes described in the IEEE
754 standard, we hard-coded rounding to the default "Round to nearest, ties to even" mode, since this
is most used in practice and provides the best bounds on rounding errors [15]. Alternatively, we could
compile a different circuit for each rounding mode, or a single circuit that takes the rounding mode as
an input.

Table 1. IEEE 754 floating-point operation circuits compiled with CBMC-GC

Circuit Non-XOR
Gates Total Gates No of

Batches
Used SAT-

minimization
Compilation

Time
float_add 5671 7052 1 + 8 min 32 s
float_sub 5671 7052 1 + 5 min 28 s
float_mul 5138 7701 1 + 5 min 1 s
float_div 12851 21384 1 - 58 s
float_sqrt 35987 66003 2 - 2 min 40 s
double_add 13129 15882 1 + 1 h 8 min
double_sub 13129 15882 1 + 1 h 11 min
double_mul 13104 25276 1 + 3 h 46 min
double_div 36133 73684 2 - 5 min 35 s
double_sqrt 85975 169932 4 - 10 min 11 s
double_exp 393807 579281 8 - 1 h 13 min
double_erf 2585188 3979603 52 - 47 h 4 min

We chose to ignore all floating-point exceptions that may be raised during computations, since in an
MPC environment, we cannot guarantee that raising an exception (e.g. division by zero) in the middle of a
computation would not leak information about inputs. As our protocols correctly handle all special cases
defined in the IEEE 754 standard such as NaNs, infinities and denormalized numbers, any exceptions will
be reflected in the final result. For example, overflows and underflows will result in infinities, multiplying
0 with infinity results in NaN etc. Previous implementations [1][20][27] did not explicitly handle such
cases and produced valid but meaningless results in error situations. Nonetheless, our approach would
easily support raising standardized exception flags also in between operations, for example by adding an
exception flag variable as an input and output to all circuits.

8



4.2 Performance Analysis

We measured the performance of all primitives implemented with our hybrid protocol and compared the
results to existing approximation-based floating-point operations [20] in Sharemind. Note that Sharemind
has undergone a complete rewrite of its network layer since [20] was published. Because of this, we also
performed new benchmarks for the approximation-based floating-point. We used the division protocol
based on Chebyshev polynomials and ex protocol with Taylor polynomials, since the precision of the
Taylor polynomial version is better comparable with the IEEE 754 protocol.

The benchmarks were performed on a cluster of three nodes hosting Sharemind. All nodes had 48
GB of RAM and a 12-core 3GHz Intel CPU supporting AES-NI and HyperThreading. The nodes were
connected to a LAN with 1 Gbps full duplex links. All tests were executed with a maximum of 24
concurrent garbler-evaluator pairs, as the hardware supports up to 24 parallel threads.

The performance results are shown in Table 2 for single precision and Table 3 for double precision.
All measurements are presented in operations per second (ops) as the mean of 5 to 1000 iterations
depending on the circuit size. The measurements depict the whole running time of the protocol including
oblivious transfer, garbling and evaluation. Circuits are parsed and cached in an offline phase, however.
The input size refers to the number of respective operations computed in one test using the parallelization
techniques described in Sec. 3.1.

Table 2. Performance of single precision floating-point operations (ops)

Input size in elements
1 10 100 1000 10000

Add Approx. 2.43 24.1 228.1 1496 3790
IEEE 754 24.99 134.5 477.2 583.6 597

Multiply Approx. 7.76 77.94 751.6 5413 16 830
IEEE 754 26.17 135.5 506 632.9 632.9

Divide Approx. 0.53 5.25 46.48 237 432.6
IEEE 754 14.53 88.2 233.6 279.1 284.5

Square root Approx. 0.34 3.26 28.07 126.1 206.1
IEEE 754 7.83 44 92.9 105.1 106.6

Our measurements show that hybrid protocol IEEE 754 operations, excluding error function, are
faster than approximation-based operations for smaller input sizes. The error function clearly illus-
trates the substantial overhead for evaluating very large circuits compared to a secret-sharing-based
protocol, thereby motivating the composition of small but efficient primitives as opposed to full circuit
programs. The IEEE 754 division and square root perform very well compared to approximation-based
versions, whereas the error function and multiplication are slower on larger input sizes. Our protocols
well outperform the results from [27] and our double precision addition and division are faster than
the implementation of [1], however, multiplication is slightly slower. The latter is expected, since it is
efficient to implement floating-point multiplication using secret sharing and less is gained from a GC
approach. Overall, we see that for smaller input sizes, our IEEE 754 operations tend to be faster than
secret-sharing-based alternatives.

The results also show that IEEE 754 operations do not benefit much from parallelization already
after inputs of size ∼100, while the approximation-based operations parallelize well to 10000 elements.
This is due to the large size of the garbled tables that are transmitted over the network. Notice that
since XOR-gates can be evaluated without sending the corresponding garbled tables to the evaluator,
then, in practice, performance depends only on the number of non-XOR circuits in the gate.

In all larger tests with the IEEE 754 operations, the network link was constantly saturated, which
introduced an inevitable upper bound on performance. This demonstrates the trade-off between GC and
secret sharing, as GC generally requires more network communication, but has better round-complexity.
For example, in our instantiation, the garbled circuit for float addition has size ∼175 KB, whereas
the approximation-based protocol uses at most 12 KB of one-way network communication for a single
operation over a series of communication rounds. In both cases, this amount scales linearly with the input
size, and consequently the sharing-based protocols have better amortized performance for larger inputs.

9



In practice, the input size can be used to dynamically choose between GC or sharing-based protocols.
However, the overhead of converting between additive and bitwise shared values must also be taken into
account. This overhead is relatively small when operations in one domain are grouped together, but may
become significant when many conversions back-and-forth from bitwise to additive shares are required.

The fact that the network link was saturated for the IEEE protocols means that the performance of
our implementation is close to the theoretical maximum when considering only communication overhead
and disregarding the computational complexity entirely. If we consider only transferring the garbled
tables over the network, the maximum performance for the float square root protocol using 1 Gbps
network links is ∼116 ops, since one garbled table of the square root circuit has size ∼1.08 MB. Our
implementation achieves 106.6 ops on input size 10000, which is very close to the theoretical maximum
with this garbling scheme. The results are similar also for the other operations. The float square root
protocol also achieved the highest amortized rate for the number of non-XOR circuit gates garbled and
evaluated per second, which was a little over 3.8 million non-XOR gates per second.

The IEEE 754 protocols used significantly more memory and processing power, as all processor
cores of the garbler node were nearly constantly working at maximum capacity. The effect of the high-
speed parallel garbling on overall performance was nevertheless ultimately dominated by the network
bandwidth, since the garbled tables were generated faster than they could be transferred to the evaluator.
This was evident, as the garbler node finished processing much earlier (in larger tests, minutes earlier)
than the evaluator, which suggests that less powerful hardware could have been used for similar results.
The approximation-based counterparts used only ∼10% of the hardware capability and the network
saturation point arrived at much larger input sizes.

Table 3. Performance of double precision floating-point operations (ops)

Input size in elements
1 10 100 1000

Add Approx. 2.29 22.22 188.2 857.7
IEEE 754 16 103 228 260

Multiply Approx. 7.17 71.98 647.9 3560
IEEE 754 13.74 90.8 221 259

Divide Approx. 0.5 4.78 35.22 115.7
IEEE 754 7.31 46 89.2 101

Square root Approx. 0.26 2.4 14.23 31
IEEE 754 3.57 23.3 39.5 43.4

ex
Approx. 0.28 2.57 14.7 31.1
IEEE 754 1.1 6.38 9 9.5

Error function Approx. 0.3 2.92 19.8 55.4
IEEE 754 0.18 0.95 1.35 1.47

4.3 Private Satellite Collision Analysis with IEEE 754

To see the effects of different floating-point implementations on the performance of larger applications, we
also carried out benchmarks on the satellite conjunction analysis algorithm from [20] using both our IEEE
754 and Sharemind’s current approximation-based floating-point operations. The algorithm’s running
time and precision of the result depends on the number of iterations done in the integral approximation
routine using Simpson’s rule. We used 40 iterations similarly to [20]. The tests were performed on the
same cluster as benchmarks in the previous section using double precision operations. The results of the
tests are presented in Table 4.

10



Table 4. Collision analysis performance with 40 iterations for the integral approximation
step. We include the total running time and also the running time per satellite pair in
parentheses.

Number of satellite pairs
1 2 4

Approx.-based 77 (77) sec 102 (51) sec 153 (38) sec
IEEE 754 154 (154) sec 292 (146) sec 567 (142) sec

We can see that the approximation-based floating-point outperforms the IEEE 754 implementation
and also parallelizes better, as the cost for analyzing a single satellite pair greatly decreases when analyz-
ing multiple pairs at once. However, examining the breakdown of the running times of different operations
(Fig. 2 and Fig. 3), we see that the IEEE 754 version is slower mainly due to the low performance of its
error function implementation. For a single satellite pair, the error function operation took up 76.9% of
the whole analysis using the IEEE 754 floating-point. With the approximation-based floating-point, the
percentage of the error function was only 7.7%.

Arithme(c*
(add,*sub,*mul)*

22,81%*

Division*
37,35%*

Error*func(on*
7,72%*

Exponent*func(on*
11,03%*

Square*root*
21,09%*

0%* 10%* 20%* 30%* 40%* 50%* 60%* 70%* 80%* 90%* 100%*

 Time*

Fig. 2. Breakdown of operation runtime in collision analysis with approximation-based floating-point.

Arithme(c*
9,06%*

Error*func(on*
76,85%*

Exponent*func(on*
11,50%*

Square*root*
2,59%*

0%* 10%* 20%* 30%* 40%* 50%* 60%* 70%* 80%* 90%* 100%*

 Time*

Fig. 3. Breakdown of operation runtime in collision analysis with IEEE 754 floating-point.

This suggests that the running time of the collision analysis could be much improved by using the
IEEE 754 operations, but converting to the approximation-based floating-point format only for calculat-
ing the error function. This conversion is easily implemented using the bit extraction protocol from [11].
The error function is calculated only once in the algorithm on a vector of inputs, therefore only one
conversion between floating-point formats is required, which will have negligible overhead compared to
the gain of a much faster error function computation. Specifically, for 1 satellite pair, the error function
is computed on an input vector of size 162. The conversion of 162 floating-point numbers to and from the
secret-shared format takes time less than ∼1 second. Thus, in this case, processing one satellite pair would

11



take ∼43 seconds, which is almost two times faster than using only approximation-based floating-point.
This demonstrates first-hand how our approach of combining different MPC methods can significantly
increase the performance of applications, as the same operation implemented with different techniques
can have very different performance profiles.

5 Conclusion

This work provided a protocol for combining GC with secret sharing. For this we consider a setting where
the oblivious transfer for the garbled evaluation inputs can work for secret-shared inputs rather than
the inputs known to the evaluator. In addition, it is required that the outputs of the garbled evaluation
remain private. This allows us to combine the strengths of both approaches. Especially, efficient secret-
sharing-based computation protocols can be augmented with easily generated GC based protocols for
the functionalities where no known efficient sharing-based protocol exists. As an example, we added a
very efficient first fully IEEE 754 compliant secure floating-point implementation to Sharemind. We also
analyzed the performance of a private satellite collision analysis algorithm and showed that much greater
performance can be achieved with our approach by using the more efficient method—either secret sharing
or GC—for each subprotocol.

Acknowledgments

We would like to thank the authors of the CBMC-GC circuit compiler for supporting us in our efforts
to generate the circuits described in this paper.

References

[1] Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers.
In: Proc. of NDSS’13. The Internet Society (2013)

[2] Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) framework for asyn-
chronous systems. Information and Computation 205(12), 1685–1720 (2007)

[3] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract).
In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA. pp. 503–513. ACM (1990), http://doi.acm.org/10.
1145/100216.100287

[4] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher.
In: Proc. of SP’13. pp. 478–492. IEEE Computer Society, Washington, DC, USA (2013)

[5] Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher.
Cryptology ePrint Archive (2013)

[6] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proc. of CCS’12. pp.
784–796. ACM, New York, USA (2012)

[7] Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In:
Proc. of CCS’08. pp. 257–266. ACM (2008)

[8] Bogdanov, D.: Sharemind: programmable secure computations with practical applications. Ph.D.
thesis, University of Tartu (2013)

[9] Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally composable secure
multi-party computation. In: Proc. of CSF’14. IEEE Computer Society (2014)

[10] Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of privacy-preserving
applications. In: Proc. of PETShop’13. pp. 23–26. ACM (2013)

[11] Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computa-
tion for data mining applications. IJIS 11(6), 403–418 (2012)

[12] CBMC-GC. http://forsyte.at/software/cbmc-gc/
[13] Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homo-

morphic encryption. In: Proc. of CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer (2012)
[14] Franz, M., Katzenbeisser, S.: Processing encrypted floating point signals. In: Proc. of MM&Sec’11.

pp. 103–108. ACM, New York, NY, USA (2011)

12



[15] Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys 23(1), 5–48 (1991)

[16] Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: Tool for automating
secure two-party computations. In: Proc. of CCS’10. pp. 451–462. ACM, New York, NY, USA (2010)

[17] Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations in ANSI C. In:
Proc. of CCS’12. pp. 772–783. ACM (2012)

[18] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled
circuits. In: Proc. of SEC’11. USENIX Association (2011)

[19] 754-2008 - IEEE standard for floating-point arithmetic. http://ieeexplore.ieee.org/servlet/
opac?punumber=4610933 (2008)

[20] Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite collision analysis.
IJIS (to appear 2015)

[21] Kolesnikov, V., Sadeghi, A., Schneider, T.: A systematic approach to practically efficient general two-
party secure function evaluation protocols and their modular design. Journal of Computer Security
21(2), 283–315 (2013), http://dx.doi.org/10.3233/JCS-130464

[22] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Proc.
of ICALP (2). LNCS, vol. 5126, pp. 486–498. Springer (2008)

[23] Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: A portable circuit format for scalable two-party
secure computation. In: Proc. of SEC’13. pp. 321–336. USENIX Association, Berkeley, CA, USA
(2013)

[24] Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious adversaries. In:
Proc. of Security’12. USENIX Association (2012)

[25] Laur, S., Willemson, J., Zhang, B.: Round-Efficient Oblivious Database Manipulation. In: Proceed-
ings of the 14th International Conference on Information Security. ISC’11. pp. 262–277 (2011)

[26] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryp-
tology 22(2), 161–188 (2009)

[27] Liu, Y.C., Chiang, Y.T., Hsu, T.S., Liau, C.J., Wang, D.W.: Floating point arithmetic protocols for
constructing secure data analysis application. Procedia Computer Science 22(0), 152 – 161 (2013)

[28] musl libc. http://www.musl-libc.org/
[29] Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its Application to

Secure Message Transmission. In: Proc. of SP’01. pp. 184– (2001)
[30] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical.

In: Proc. of ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer (2009)
[31] Seroussi, G.: Table of low-weight binary irreducible polynomials. http://www.hpl.hp.com/

techreports/98/HPL-98-135.html (1998)
[32] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[33] Siim, S., Bogdanov, D.: A general mechanism for implementing secure operations on secret shared

data. Tech. Rep. T-4-21, Cybernetica, http://research.cyber.ee/. (2014)
[34] SoftFloat. http://www.jhauser.us/arithmetic/SoftFloat.html
[35] Yao, A.C.: Protocols for secure computations. In: Proc. of SFCS’82. pp. 160–164. IEEE Computer

Society, Washington, DC, USA (1982)

A Input Privacy Based Security

Our security proofs are based on the proof framework that allows to securely combine input private
protocols with secure protocols to obtain universally composable secure protocols as defined in [9]. In
this section, we give a general overview of this framework and introduce the more important definitions
and results. For a longer introduction see [9]. The general idea is that for most MPC protocols it is
sufficient to show that they are input private and that a secure protocol can be obtained via specific
compositions of input private and secure protocols. The formalization is defined based on the reactive
simulatability (RSIM) framework [29],[2], but here we only consider the limited versions required for [9]
and focus on giving an overview rather than all the details. Each party is modelled as a machine M and
a protocol is executed by a group M̂ of machines whose program corresponds to the protocol description
of the respective party. For example, each party in a protocol can be represented by one machine and the
collection M̂ then consists of all the parties described. Besides the machines described by the protocol,

13



there are two important machines to consider: the honest user (or the environment) H and the adversary
A. The adversary can corrupt parties, especially for passive security, the adversary sees everything that
the corrupted party sees in the protocol. The honest user represents all previous, simultaneous and
following computations and is responsible for giving protocol inputs as well as learning the outcomes.

Machines communicate with each other over different ports. Particularly, for a collection M̂ we specify
the set of ports S that is used to communicate with the honest user H. In addition, all ports not in S
are forbidden for H to use to communicate with M̂. Moreover, ports of M̂ not in S and not used to
communicate between machines in M̂ are used for communicating with the adversary A. Analogously,
there are ports that allow communication between H and A. We call (M̂, S) a system Sys. Note that
the system describes our protocol by fixing the codes of machines in M̂ as well as the intended input and
output ports that are contained in S. Especially, for each system the interface that it uses to communicate
with either H or A is well defined by S. Based on this we define a set of configurations Conf(Sys) that
contains tuples (M̂, S,H,A) for each valid H and A with respect to the interface specified for the system
Sys so that this set does not have any open ports. A configuration is said to be polynomial time, if
respective H and A are polynomial time machines. The communication is illustrated on Fig. 4 where all
arrows denote one way communication defined by a set of respective ports.

If the protocols are executed then the machines in Sys obtain their inputs from H, interact together
to compute the required functionality, and return outputs to H. In addition, for passive corruption all
corrupted parties always forward their view of the protocol as well as their current state to the adversary.
A view of the party is the set of all messages it receives in the communication.

Definition 1 (Simulatability). We say that Sys1 = (M̂1, S) is perfectly as secure as Sys2 = (M̂2, S)

if, for every configuration conf1 = (M̂1, S,H,A1) ∈ Conf(Sys1), there exists a configuration conf2 =

(M̂2, S,H,A2) ∈ Conf(Sys2) with the same H such that the environments have coinciding views

viewconf1(H) = viewconf2(H) .

Similar definitions can be given for computational and statistical security. For computational security,
views created by all polynomial configurations Conf(Sys1) should be computationally indistinguishable
from some views of configurations in Conf(Sys2). Analogously, statistical indistinguishability of views
for all configurations is required for statistical security.

H

Sys
A

H ′

Sys

H⊥

A

Fig. 4. Security configuration with H, A and our system and privacy configuration with H = H ′ ∪H⊥. Arrows
denote the communication directions.

For secret-sharing-based information theoretic secure multi-party computation we require that the
ideal functionality is such that the output shares are uniformly random shares of the computed result.
The only case where we can allow for a relaxation is when no communication occurs in the protocol.
This captures the intuition that the output shares should not leak anything until the output value
is published and even then they should not leak more than is revealed by the output value. If the
shares are not uniformly random then they might give extra information about the input shares or
performed computations. For example when the final shares are opened when declassifying a value then
all that should be obtained is the output of the computation. However, non-uniform shares might reveal
information about the flow of the computation.

The main goal of MPC protocol security is that nothing is leaked about the inputs other than what
can be learned from the outputs. This is well captured by the simulatability security definition. However,
in secret-sharing-based MPC for example, it is also interesting to consider protocols that have secret

14



shared output, meaning that the output each party gets, should leak nothing about the inputs or the
output value. This is formalized as the input privacy notion, because in such protocols no information
should be leaked about the protocol inputs. Input privacy is a special security notion in the sense that
it only protect the inputs of honest parties. It is not sufficient for ensuring the correctness or secrecy of
the outputs of the protocol. However, it is sufficient for secure computation as long as the parties do not
publish their private outputs.

Definition 2 (Input privacy). We say that Sys1 = (M̂1, S) is perfectly at least as input-private as
Sys2 = (M̂2, S) if, for every privacy configuration conf1 = (M̂1, S,H

′ ∪H⊥,A1) ∈ Conf(Sys1), there
exists a privacy configuration conf2 = (M̂2, S,H

′∪H⊥,A2) ∈ Conf(Sys2) with the same H ′∪H⊥, such
that the restricted views coincide viewconf1(H ′) = viewconf2(H

′).

The important difference from the simulatability definition is that the environment H consist of two
distinct parts H = H ′ ∪H⊥ where only H⊥ learns the joint output of the protocol, but does not help
H ′ in distinguishing the real and the simulated worlds. This H is also illustrated on Fig. 4 and means
that in the formalization we do not care about the consistency of the outputs as they are in some sense
discarded to H⊥ only that the inputs and consecutive communication do not give the adversary the
power to distinguish real world and the ideal world.Analogously to the simulatability security definition,
we can also consider the computational and statistical flavors of the definition.

In addition, an ordered composition of protocols is considered, where two systems Sys1 and Sys2 are
said to be in ordered composition Sys1 → Sys2 if Sys1 can give inputs to Sys2, but not vice versa.
This is required to easily specify which sub-protocols can provide the outputs of the final protocol.
Finally, as the input privacy definition does not ensure the correctness of the input private protocol with
respect to the specified ideal functionality, we also have to restrict which protocols can be securely and
correctly composed. For this purpose, the output predictability (Definitions 9 and 10 in [9]) is defined for
a composition to capture the correctness as well as the fact that the final protocol does not leak too much
information about its inputs. Notably, two properties can ensure predictability of Sys1 → Sys2, Sys1
has to be correct and Sys2 should not leak the values of the input shares. Furthermore, for Sharemind,
the Reshare protocol is well suitable for Sys2 as it just sends uniformly random values and does not
reveal anything about the input shares. Note that Reshare is a special protocol as it is secure as well as
input private.

The two main results of [9] are that the ordered composition of two input private systems is input
private (Thm. 3 in [9]) and that the ordered and output predictable composition of input private and
secure system is secure (Thm. 2 in [9]). These establish that we can prove that some main component of
the protocol is input private and then we can combine input private protocols for specific operations to
form an input private protocol for the required computations. Only the full protocol needs to be finished
with some secure protocol to obtain a secure resulting protocol for the desired computations.

B Security Definitions for Garbled Circuits

A good formalization of garbled circuits security is given in [6]. The two security notions relevant to this
work are privacy and obliviousness. In fact, given the previous treatment of MPC, the simulatability
property of MPC is similarities to the privacy property of garbled circuits and likewise connection exists
between input privacy and obliviousness that both rely on the construction not leaking the outputs and
hiding the inputs.

Both of the GC security properties have two flavors of definitions: indistinguishability based and
simulation based. In general, the two are not equivalent and in such cases the simulatability based
definition is considered to be the correct one. However, for our purposes the two versions of definitions
coincide. Both flavors are defined via security games. The ones we need for this work, are given on Fig. 5.
We require PrvInd for indistinguishability based privacy definition as this is the property proved for the
garbling scheme that we use. In addition, we need to examine both versions of obliviousness as this is the
property required for the security of our hybrid scheme. In the games we consider a security parameter
k, garbled circuit F , garbled inputs X, garbling function Gb, encoding information e, encoding function
E and output decoding information d. Additionally, S is a simulator. Each game starts and finishes with
the described initial and final procedures respectively. Initializing procedure picks the challenge bit and
the finalizing phase checks if the adversary correctly distinguished between the two challenges.

15



Algorithm 6: Game PrvInd, function
Garble(f0, f1, x0, x1)

if Φ(f0) 6= Φ(f1) ∨ f0(x0) 6= f1(x1)∨
{x0, x1} * {0, 1}f0.n then
return ⊥

(F, e, d)← Gb(1k, fb)
X ← E(e, xb)
return (F,X, d)

Algorithm 7: Game ObvInd, function
Garble(f0, f1, x0, x1)

if Φ(f0) 6= Φ(f1)∨
{x0, x1} * {0, 1}f0.n then
return ⊥

(F, e, d)← Gb(1k, fb)
X ← E(e, xb)
return (F,X)

Algorithm 8: Game ObvSim, function
Garble(f, x)

if x * {0, 1}f0.n then
return ⊥

if b = 1 then
(F, e, d)← Gb(1k, f)
X ← E(e, x)

else
(F,X)← S(1k, Φ(f))

return (F,X)

Algorithm 9: Initializing procedure, function
Initialize()

b
$←− {0, 1}

return b

Algorithm 10: Finalizing procedure, func-
tion Finalize(b′)

return b == b′

Fig. 5. Games for defining prv.ind, obv.ind and obv.sim security of a garbling scheme with garbling algorithm
Gb and encoding algorithm E.

The main difference of the two security properties is that in case of privacy the adversary obtains the
whole information needed to evaluate the garbled circuit and decode the result. However, for obliviousness
the decoding information is missing meaning that the adversary can evaluate the circuit, but can only
obtain the tokens of the output wires. Moreover, as the two functions in the obliviousness games do not
need to have the same output, then this definition guarantees that as long as the decoding information
is unknown the circuit does not reveal the output value. However, if the decoding becomes known then
something besides the output value might also be revealed about the evaluation process. On the contrary,
for the private scheme the decoding value d is present, but the output of the garbling scheme may be
decodable even without the d. Still, the definition of privacy is sufficient to ensure that nothing that can
not be learned from the output value is leaked in the protocol. Hence, these notions are both interesting
in different use-cases.

As one can not achieve absolute security then the notion of side-information function Φ is used to
specify what the garbling construction leaks. The most common part of Φ is a function Φtopo that leaks
the topology of the circuit. In this work, we also consider Φxor because using free-XOR technique reveals
which gates are XOR. From [4] we know that these functions are both efficiently invertible and, therefore,
by equivalence relations from [6], indistinguishability and simulation based definitions of privacy and
obliviousness coincide. In the following, we use the GaXR garbling scheme from [4] that is known to be
private and for which Φ is efficiently invertible. However, for fitting well with the general proof framework
of [9] where most of the protocols need to be input private, we need to show that this garbling scheme
is also oblivious.

The GaXR garbling scheme relies on a σ-derived dual key cipher (DKC) for a mapping σ that satisfies
several properties from [4]. Note that the DKC that we used is defined for random permutations as well
as the security of the GaXR scheme is defined in the random permutation model. In our instantiations,
we use AES as described in Sec. 3.1. Our security proofs are based on the original privacy proof of the
GaXR scheme that can be found in [5] and holds in the random permutation model. However, for our
protocol we also need to establish that the used garbling scheme is oblivious.

C Security Proof of the Hybrid Protocol

We use the general proof framework of [9] introduced in Appendix A to show that the hybrid protocol
is secure against passive static adversaries that corrupt at most one participant. Lets denote the part of
the hybrid protocol on Fig. 1 before final Reshare protocol as Hybrid’. In this case, the total protocol

16



can be seen as an ordered composition of Hybrid’ and Reshare. For this we need to prove that the
protocol up until the Reshare function is input private and then apply the composition result from [9].
However, for applying this theorem we also need to establish the output predictability of the composition
in addition to the the privacy of the main protocol Hybrid’. Likewise, note that Reshare (Alg. 1 in [8])
is secure and is well suitable for the second protocol in the output predictability definition as it does not
use the input shares for any of the protocol messages and totally rerandomizes the inputs.

We use the garbling scheme GaXR from [4] and we use a version of the correct σ-derived DKC from
the same paper. The indistinguishability based privacy and obliviousness proofs are formalized as games
PrvInd and ObvInd on Fig 5.

In order to obtain the output predictability of the composition, we at first require that the private
composed protocol is correct. This is necessary to ensure that the private protocol computes the same
functionality as the associated ideal functionality, currently defined by the function f in the hybrid
protocol.

The ideal functionality corresponding to Reshare is such that it takes the input as shares and outputs
a uniformly random sharing of the same secret value that was encoded by the inputs. For Hybrid’ the
ideal functionality is such that it takes as inputs the shares [[x]] and outputs the value y = f(x) as
shares [[y]] where [[y]]3 = (0, . . . , 0) but the other shares [[y]]1 and [[y]]2 are uniformly random. It is
easy to see that the corresponding ideal functionality for the hybrid protocol is such that it outputs
uniformly random shares of f(x). Note that this corresponds to the definition of an ideal functionality
for a secret-sharing-based secure multi-party computation protocol.

Theorem 1. Hybrid’ protocol is correct.

Proof. The correctness follows from the correctness of the sub-protocols used in the OT part and the
correctness of the GaXR garbling scheme. We require that if all participants follow the protocol, then
the outputs are correct. We can consider Hybrid’ in two parts: OT and garbling scheme. If oblivious
transfer transmits the correct keys then the rest follows from the correctness of the algorithm pair for
garbling and evaluation.

The OT is trivially correct if the used subprotocols are correct. It is easy to see that if the secret input
bit xi = 0 then [[Xi]] = [[X0

i ]] · (1 − 0) + [[X1
i ]] · 0 = [[X0

i ]] and analogously [[Xi]] = [[X1
i ]] if xi = 1. Hence,

we always have [[Xi]] = [[Xxi
i ]] and the OT protocol is correct.

The garbling scheme. The DKC that we use is correct, meaning that given the correct keys the
decoding can recover the encoded message. The rest of the correctness follows from the usage of standard
techniques for garbling in GaXR, including free-XOR and garbled row reduction.

Corollary 1. The ordered composition of Hybrid’ and Reshare is jointly output predictable.

Proof. The output predictability follows from Lemma 2 in [9] and Thm. 1. For a correct protocol Hybrid’
we know that it is sufficient to show an output predictor for the composition of Hybrid’ and ideal
Reshare. However, this is simple as the first part Hybrid’ is correct and the ideal Reshare protocol is
such that on input [[x]] its behaviour, by definition, depends only on the value x and not on the shares
[[x]]i. Therefore, the output predictor can just compute the functionality Hybrid’ based on the input
circuit f and output uniformly random shares of the result.

In order to establish the privacy of Hybrid’, we need to analyze the combination of secret-sharing-
based OT and the garbling scheme. Note that the obliviousness property of the garbling scheme [6] is
quite like the input privacy property [9] and, in fact, the obliviousness of the garbling scheme is required
for the composed system to be input private. Intuitively, it is clear that we can securely continue the
computation after Hybrid’ only if the output tokens obtained by the evaluator CP2 do not reveal the
output to CP2. Hence, we have to establish that the used GaXR scheme that is known to be private is
also oblivious. This can be done analogously to obtaining obliviousness proof of Garble2 from privacy
proof of Garble1 in [6], however, in the following we consider a reduction based proof that is easier to
follow just considering the games on Fig. 5.

Theorem 2. GaXR scheme is computationally obv.ind secure.

Proof. The only thing we need to consider here is if the types (least significant bits) of the output wire
tokens are independent of the semantics of these wires. The rest of the proof follows the proof of privacy

17



of GaXR from the full version [5] of [4] except that the procedure Garble returns only (F,X) and not
the decoding information.

Clearly the types of the input wires are independent of the semantics as they are generated inde-
pendently on line 3 by CP1 in Alg. 3. In short, the rest of the independence follows from the fact that
the tokens of the circuit outputs are generated the same way as the intermediate tokens in the circuit.
Therefore, if the output types would reveal information about the semantics then also some intermediate
values on the same (or other circuits that contain this circuit) would leak information about the state of
the evaluation and invalidate the privacy property. Following is a longer specification of this observation.

Assume, by contradiction, that there exists some adversary A that is good at the ObvInd game,
meaning that it wins with a non-negligible probability. In addition, without loss of generality, we assume
that A always queries Garble with inputs that pass the initial checks. Consider an adversary B against
the game PrvInd. We can construct the adversary B such that it interacts with the adversary A. If A
queries (f0, f1, x0, x1) from Garble, then B takes a constant function f∗ and concatenates this with f0
and f1 to obtain f∗0 = f∗ ◦ f0 and f∗1 = f∗ ◦ f1. All outputs of fi are inputs to f∗ that then outputs
a constant value c. Trivially f∗0 (x0) = c = f∗1 (x1) and this is a valid input to PrvInd. Especially, the
addition of f∗ affects the Φtopo and Φxor outcomes in the same way giving Φ(f∗1 ) = Φ(f∗0 ) (as we had
Φ(f1) = Φ(f0) from the checks in the game) and trivially the inputs still belong to the correct range,
therefore making it a useful query for B.

Clearly f1 and f0 must have the same number of outputs as Φtopo(f1) = Φtopo(f0). Assume, that they
have two output bits x1 and x2, then we could have f∗(x1, x2) = x1 ∧ x2 ∧ (x1 ⊕ x2) = 0 that can be
extended as f∗(x1, . . . , xn) = x1 ∧ x2 ∧ . . . ∧ xn ∧ (x1 ⊕ x2) = 0 for more than two outputs. For one bit
output x1 the chosen f∗ has to be a bit more invasive and, for example, can also define an additional
input bit y1 to compute f∗(x1, y1) = x1 ∧ y1 ∧ (x1 ⊕ y1) = 0. In such case, also the token corresponding
to this extra bit must be stripped by the adversary B to forward the garbled function to A. In total, f∗
can always be added with linear time in the output length of f0 and f1 which is trivially at most linear
in the original circuit size.

Adversary B receives (F ∗, X, d) from the game. It then computes F by removing the gates from F ∗

that correspond to f∗ and outputs (F,X) to A. The garbling scheme proceeds in topological order and
the garbling of gates corresponding to the final part f∗ does not affect the garbled output corresponding
to f . In addition, these gates can be removed as the output wires are generated in the same manner as
the intermediate wires of the circuit, hence also the intermediate wires in F ∗ that correspond to outputs
of F are valid output tokens for F . Adversary B outputs the same final value as A. As argued before f∗
adds at most linear overhead, therefore, the running-time of B is at most a linear factor longer that A
that has to prepare the initial circuits. For a polynomial time A the new adversary B is also polynomial
time.

We clearly have Adv(B) = Adv(A) because B outputs correct answer exactly if A gave a correct
answer as both of these cases had the same challenge bit. In addition, A had the same view as it usually
does in the ObvInd game because adding f∗ and removing it from F ∗ later gives the same output as
just garbling f to obtain F . Furthermore, the inputs X are generated in the same way and connected to
xb for challenge b. In total, this is a contradiction because we know that Adv(B) is negligible because
the scheme is prv.ind secure, but we assumed Adv(A) to be non-negligible. Therefore there can exist no
such adversary A that breaks the obv.ind security.

Corollary 2. GaXR is computationally obv.sim secure.

Proof. We know that Φtopo and Φxor are efficiently invertible and therefore obv.ind security and obv.sim
security are equivalent as shown in [6]. Hence, it follows directly from Thm. 2.

From Cor. 2 we know that there exists a simulator S such that for inputs S(1k, Φ(f)) it outputs
(F,X) indistinguishable from those output by the garbling scheme. This simulator is defined by game
ObvSim in [6] and here on Fig. 5. In the following, we use this simulator to prove the input privacy of
the Hybrid’ protocol.

In the following, we call the computation part of the OT protocol in Alg. 2 the oblivious choice to
distinguish it from the final part where the values of the input tokens are opened for the evaluator CP2.

Theorem 3. Protocol Hybrid’ is perfectly input private for passively corrupted CP1 or CP3 and com-
putationally input private against passively corrupted CP2.

18



Proof. We have to consider the possibility of each of the three parties being corrupted by the adversary.
For each of these cases we have to show the existence of the privacy simulator that can, based on the
inputs of the corrupted party, simulate the view of the corrupted party.

Party CP1 or CP3 is corrupted. The only incoming communication for these parties in Hybrid’occurs
during the OT phase, especially during the computation of the oblivious choice, but not during declassi-
fication. Therefore, the perfect input privacy of these parties is ensured by the perfect input privacy of
the addition and multiplication protocol and the composability of input privacy (Thm. 3 in [9]).

Party CP2 is corrupted. The privacy simulator for CP2 can be built from the simulator S in the
obv.sim privacy definition of the garbling scheme (game ObvSim on Fig. 5). The privacy simulator
knows the circuit f that is to be computed and also has the security parameter k, therefore, it can run
S(1k, Φ(f)) to obtain (F,X). Next, it has to simulate the oblivious transfer with output X that can be
done perfectly by using the privacy simulator for the computation part of the OT protocol and finally,
simulating the declassifying procedure with output X, by choosing suitable [[X]]1 and [[X]]3. In addition,
it has to simulate CP1 sending garbled circuit to CP2 that can be done by sending F . In the following,
we analyze the correctness of this simulator construction.

First, consider the simulation of the OT protocol in more detail to understand why it can be simulated
perfectly. In short, if the output X is known then OT is also secure against corrupted receiver and there
exists a simulator that can simulate the protocol run with that output. This simulation works as follows. It
is clear that the oblivious choice part of the protocol is perfectly input private because it is a composition
of perfectly input private protocols. We can use the privacy simulator for this part. For the declassification
protocol we still need to analyze further why opening the output to CP2 can be perfectly simulated in this
protocol. Note that, as analyzed in [9], the full multiplication protocol of Sharemind is secure because
of the finishing Reshare step. Hence, the output shares of the multiplication protocol are uniformly
random. In addition, the final addition protocol in the oblivious choice protocol then adds two uniformly
random shares locally and also obtains a uniformly random output. Therefore, oblivious choice protocol
is also secure and has a uniformly random output share for each party. In the opening, [[X]]1 and [[X]]3
can be simulated by choosing [[X]]1 uniformly at random and fixing [[X]]3 = X − [[X]]1 − [[X]]2 where
the simulator had to compute [[X]]2 as corrupted party’s output in oblivious choice. This simulation is
perfect.

Assume, by contradiction, that the previous construction is not a good privacy simulation for Hybrid’
and there exists some configuration with environment H = H ′∪H⊥ and adversary A (that has corrupted
CP2) for which the real and simulated worlds of some functionality f are distinguishable with some non-
negligible probability. Denote this combination as AH . Consider an adversary B against the obv.sim
security of the garbling scheme that functions as a Sys that interacts with AH (as in the privacy
definition on Fig. 4) and also interacts with the ObvSim game. At first the adversary B runs AH and
the respective needed simulation of the oblivious choice, until it has received all shares of [[x]] from H.
Specifically, the parties that have already received their input shares can send the first round of messages
of the multiplication protocol as part of the OT and B can simulate these messages using the privacy
simulator of the OT. Upon receiving all input shares [[x]], the adversary B restores the value x and queries
Garble of the ObvSim game with input (f,x) for the circuit f computed in this instance of the hybrid
protocol. It receives (F,X) and continues the simulation of the OT protocol with output X and simulation
of the Hybrid’ protocol with the garbled tables F . In the end, it outputs the choice b of the honest user
H ′.

For computational security, we require H and A as well as the simulator S and real garbling algorithm
to be polynomial time by definition. In addition, the OT protocol as well as its simulation is polynomial
time. Therefore the new adversary B is also polynomial time because it is a combination of polynomial
time machines.

We know that the rest of the privacy simulation, except for the choice of (F,X), is perfect. Especially,
this means that this part of the view of H ′ in the real and simulated world is indistinguishable for the
cases where X and F are indistinguishable in the two worlds. Therefore, B wins exactly if H ′ successfully
distinguishes the real and the ideal world, because this is exactly when H ′ distinguished simulated (F,X)
from the real ones. This is a contradiction, as the garbling scheme is obv.sim secure, but we assumed that
the total protocol is not input private. Hence, there can not exist any such configurations that provide
A and H for our AH and invalidate the input privacy with respect to the described simulator.

19



Corollary 3. Hybrid protocol algorithm is perfectly secure against passively corrupted CP1 and CP3 and
computationally secure against passively corrupted CP2.

Proof. From Cor. 1 we know that the composition is jointly output predictable. Clearly Hybrid’ and
Reshare are in ordered composition because all outputs of Hybrid’ are inputs to the secure Reshare
protocol. There is no data dependency from Reshare to Hybrid’. Thm 3 also showed that Hybrid’, being
the first part of the ordered composition, is input private. Finally, Reshare is also secure. Therefore, we
can use the composition result that ordered composition of input private and secure protocols is secure
if the composition has predictable outcome [9] to conclude that the full hybrid protocol is secure.

20


