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Abstract. In this paper, we propose a new phase-based enumeration algorithm based on two

interesting and useful observations for y-sparse representations of short lattice vectors in lattices

from SVP challenge benchmarks[24]. Experimental results show that the phase-based algorithm

greatly outperforms other famous enumeration algorithms in running time and achieves higher

dimensions, like the Kannan-Helfrich enumeration algorithm. Therefore, the phase-based algorithm

is a practically excellent solver for the shortest vector problem (SVP).
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1 Introduction

Lattice is a set of regularly arranged points in a Euclidean space, and it is widely used in both cryptanalysis

and cryptography in recent years. As a promising candidate for the post-quantum cryptography, the

lattice-based cryptography [19] attracts much attention from the cryptology community. The seminal

paper in 1982 by A. K. Lenstra, H. W. Lenstra and L. Lavász [15] proposes the famous LLL algorithm

for finding a short lattice basis. In the past 30 years after LLL algorithm, a variety of one-way functions

are proposed based on the worst-case hardness of variants of lattice problems [1][17][18], and some new

public-key cryptography [3][8][23] are put forward based on the hardness of lattice problems.

Therefore, the lattice problems are of prime importance to cryptography because the security of the

lattice-based cryptography is based on the hardness of them. The two famous lattice problems are, the

shortest vector problem (SVP), which is to, given a lattice basis, find the shortest nonzero vector in the

lattice, and the closest vector problem (CVP), which is to, given a lattice basis and a target vector, find

the lattice vector closest to the target vector.

The CVP has long been proved to be NP-hard by P. van Emde Baos in 1981 through classical

Cook/Karp reduction[27], and the proof is refined by D. Miccancio et al[16], while, at the same time,

the hardness of other lattice problem SVP remains an open problem until SVP is proved to be NP-hard

under a randomized reduction by M. Ajtai in 1998[2]. Therefore, both CVP and SVP are hard enough to

afford the security of lattice-based cryptography.

Since the hardness of both lattice problems, the algorithms to solve the two of them attracts interests of

more and more researchers in cryptology community recently. In the last 30 years, a variety of algorithms

have been proposed for both lattice problems, or, more specifically, for SVP. The SVP algorithms are

of the following two categories: the theoretically sound algorithms, and the practically sound ones. The

sieve algorithm for SVP [4] [22] [28] is proved to find the shortest vector within 2O(n) time complexity

with an exponential space complexity, which defies implementation, or, is not practical, especially for

lattices of high dimensions. The algorithm based on Voronoi-cell computation [20] is a deterministic SVP

algorithm, which is proved to be of 22n+o(n) time complexity, and not practical with an exponential
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space complexity. The blockwise Korkin-Zolotarev algorithm, or, BKZ algorithm [5][25], falls into the

second category, and the BKZ algorithm is a basis reduction algorithm and is to find lattice basis with

excellent properties (which will be discussed in Section 2), which is also, practically, good at finding

short vectors. The SVP algorithm is amenable for implementing with polynomial space, but it is still

unknown whether the BKZ algorithm will terminate within finite steps, though the basis is good enough

after finite iterations[9][10] (not theoretically sound). A genetic algorithm for SVP is proposed [6] based

on the y-sparse representation of short lattice vectors, with polynomial space complexity and excellent

experimental results, but it is still an open problem to estimate its time complexity.

The enumeration algorithm is sound both practically (of polynomial space complexity) and theoret-

ically (with delicate theoretical analysis). The most famous Kannan-Helfrich enumeration algorithm is

proposed by R. Kannan [13] and B. Helfrich[12], which is theoretically analyzed as of 2O(n logn) time

complexity[14][11]. Some further improved enumeration algorithms[7] are proposed afterwards obtaining

good experimental results.

The contributions of this paper are twofold. First, we propose some interesting observations for the

y-sparse representations of the short lattice vectors: dividing the vector y corresponding to the shortest

vector in a lattice evenly into phases, the second half of the y takes on an ascending order in their `1-norm

of each phases, and sparse as whole; second, based on the observations, we propose a new phase-based

enumeration algorithm, and the results show that the algorithm dramatically reduces the running time

compared to other famous enumeration algorithms, like the Kannan-Helfrich algorithm, without missing

the shortest vector.

The rest of the paper is organized as follows: Section 2 presents some necessary preliminaries on

lattices and y-sparse representations of short lattice vectors; Section 3 introduces the concept of ”phase”

to the y-sparse representations of short lattice vectors, and proposes some interesting observations for

the short vectors of SVP challenge benchmarks; based on phases, we put forward a fast phase-based

enumeration algorithm in Section 4; experimental results are reported in Section 5, and the conclusion is

drawn in the following Section 6 and future work in Section 7.

2 Preliminaries

Let n be an integer, and let Rn be the n-dimensional Euclidean space. The Euclidean norm, `2-norm,

of a vector v is defined as ‖v‖ =
√∑n

i=1 vi
2, and the `1-norm of v as ‖v‖1 =

∑n
i=1 |vi|, in which

v = (v1, . . . , vn) ∈ Rn. The linear space spanned by a set of vectors is denoted by span(·) and its

orthogonal complement span(·)⊥, and BT is the transpose of a matrix B. We denote b·c as the closest

integer less than or equal to a real number, and d·e the upper closest integer. The closed sphere in Rn is

denoted as Bn(O, r) with O as its origin and r its radius. Finally, we denote the inf(·) as the infimum

of the sequence, min(·, ·) as the smaller of the two parameters, and dim(·) the dimension of the spanned

space.

2.1 Lattices

A lattice L is an additive subgroup of the Euclidean space Rn. The lattice can be defined as set of all the

integral combinations of n linearly independent vectors b1, . . . ,bn. If all the vectors are of dimensional

n, the lattice is called full-rank. All the lattices considered in this paper are full-rank if not specified

otherwise.

The basis B of a lattice L is the matrix B = [b1, . . . ,bn] ∈ Rn×n with the n vectors b1,b2, . . . ,bn as

its columns. Then the lattice can be represented as

L(B) = {Bx|x ∈ Zn} = {v ∈ Rn |v =

n∑
i=1

bixi, xi ∈ Z}.
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The ith successive minimum λi(L) (for i = 1, . . . , n) of a lattice L is defined as the smallest radium of a

sphere within which there are i linearly independent lattice points, i.e.,

λi(L) = inf{r ∈ Rn|dim{span(L ∩ Bn(O, r))} = i}.

Then, the first successive minima λ1(L) is the Euclidean norm, or length, of the shortest nonzero vector in

the lattice L. For a basis B = [b1, . . . ,bn] of a lattice L(B) ∈ Rn×n, its Gram-Schmidt Orthogonalization

B∗ = [b∗1, . . . ,b
∗
n] is defined as,

b∗i = bi −
i−1∑
j=1

µijb
∗
j ,

where

µij =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, for 1 ≤ j ≤ i ≤ n.

and the factor matrix µ = {µij}1≤i,j≤n in which µij = 0 for i < j.

We define πi : Rn 7→ span(b1, . . . ,bi−1)⊥ as the projection on the orthogonal complement of the span

of the first i− 1 bases of B, for all i ∈ {1, 2, . . . , n}. πi(bj) is expressed as

πi(bj) = b∗j +

j−1∑
k=i

µjkb
∗
k, if i < j.

And, we define L(k)
i as the lattice of rank k generated by the basis [πi(bi), . . . , πi(bi+k−1)] in which

i+k ≤ n+1. Clearly, it is true that L(n−i+1)
i = πi(L), which implies the lattice of rank n−i+1 generated

by basis [πi(bi), . . . , πi(bn)].

Thereby, we define a basis B = [b1, . . . ,bn] as a β-blockwise Korkin-Zolotarev basis, or BKZ-reduced

basis, if the following conditions hold:

1. Its |µij | ≤ 1/2, for 1 ≤ j < i ≤ n;

2. and πi(bi) is the shortest vector of the lattice L(min(β,n−i+1))
i under the Euclidean norm, or length,

for 1 ≤ i ≤ n.

You can refer to [16] for details of lattices.

2.2 y-Sparse Representations of Short Lattice Vectors

As defined above, a lattice vector v ∈ L(B) can be represented as v = Bx, in which x is an integer

vector. Then x can corresponds to a specific lattice vector v under a basis B. The y-sparse representation

is to regards the lattice v from another point of view, which is endowed with some excellent properties.

Given a lattice basis B = [b1, . . . ,bn] and its Gram-Schmidt orthogonalization B∗ = [b∗1, . . . ,b
∗
n] with

its factor matrix µ = {µij}1≤i,j≤n ∈ Rn×n such that B = B∗µT , for any vector v ∈ L(B), or v = Bx, in

which x = [x1, . . . , xn] ∈ Zn, we define another vector t = [t1, . . . , tn] ∈ Rn as, for 1 ≤ i ≤ n,

ti =

{
0 for i = n,∑n
j=i+1 µjixj for i < n.

and another vector y = (y1, y2, . . . , yn) ∈ Zn as, for 1 ≤ i ≤ n,

yi = bxi + tie.

Thereby, the definition establishes a one-to-one correspondence between a lattice vector v and its y as

below:

y
y=x+bte←−−−−→ x

v=Bx←−−−→ v,

We call v is correspondent to y, or, v ∼ y.
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We call such a representation as sparse because most of the elements in y corresponding to short lattice

vectors under a BKZ-reduced basis are zero’s. For example, the shortest vector of the 40-dimensional

lattice (generated by seed = 0) in SVP challenge v is (-398 -305 -268 125 96 214 284 -108 37 -2 402 228

-243 -33 -76 -265 -3 558 323 552 -419 -408 217 2 440 375 -153 108 79 80 -299 -81 385 -80 -53 -294 -170

380 164 172), (and ‖v‖ = 1702), and its corresponding y under its 5-BKZ reduced basis is (0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 1). We can see that only 4 nonzero elements

in y and they are all distributed in the second half with absolute value of 1.

Actually, most y-sparse representations of the short vectors in the lattice under a BKZ-reduced basis

shares this excellent property. Therefore, for an integer vector y = (y1, y2, . . . , yn) corresponding to a

short vector in a lattice under a BKZ-reduced basis, we have the following two heuristics as follows:

1. The first half integer elements y1, . . . , ybn/2c in y are all zero’s;

2. The absolute value ybn/2c+1, . . . , yn of the second half integers in y is bounded by
√

λ1

‖b∗i ‖
instead of

λ1

‖b∗i ‖
as stated in the theorem in [6], for bn/2c+ 1 ≤ i ≤ n;

For a more rigorous treatment of y-sparse representation, refer to [6].

3 y-Phase: Some Interesting Observations

In this section, we discuss the phase of the y-sparse representation of short lattice vectors and some

interesting and useful observations.

As discussed in Section II, the y that is correspondent to a short vector v is sparse, i.e., only a fraction

of the elements of y is nonzero, and, more precisely, the absolute value of the nonzero elements are small,

say 1, 2, or 3, and most nonzero elements fall into the second half of vector y. Like the y corresponding

to the shortest vector of the random lattice of dimension 40 of SVP challenge, under a BKZ-reduced

basis, as shown in Fig. 1, only 4 elements are nonzero (of absolute value 1), and they are all distributed

in the second half (of index 21-40) of y.

Fig. 1. The y-Phases of the 40-Dimensional Random Lattice of SVP Challenge

If we consider the y corresponding more deeply, we can see that nonzero elements are not distributed

evenly in the last half elements: the last ten elements includes 3 nonzero elements while only 1 nonzero

element falls between index 21 and 30 (the first half of the last 20 elements in y). Therefore, we can

divide the 40 elements of y evenly into 4 phases, each of which contains 10 elements. As in Fig. 1, the

first two phases are all 0’s, and the third phase has 1 nonzero element while the last phase obtains 3. We

can notate the first phase as y1,...,10, and y11,...,20, y21,...,30, and y31,...,40 as the following 3 phases, or

yl,...,l+9 for the low index l = 1, 11, 21, 31. On the phases, we can define the `1-norm of the phases, like

‖yl,...,l+9‖1, as a measure for the number of nonzero elements in the phase. Therefore, the `1-norm of the

4 phases of y corresponding the shortest vector of dimension 40 takes on an ascending order as (0, 0, 1, 3).

Let us take a look at two more examples. As shown in Table 1, the y corresponding to the short

vector of 95-dimensional random lattice, under a BKZ-reduced basis, is divided into 10 phases (with

each consecutive 10 elements as a phase). We can see that the first 6 phases are of `1-norm 0, and that

the `1-norm of the last 4 phases are 1,2,3,4 (an ascending order). Similarly, Fig. 2 shows that the y

corresponding to the shortest vector v of the 134-dimensional random lattice takes on an ascending order

of the `1-norms of its 14 phases. The `1-norm of the phases are (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 5, 6, 7). Actually,
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Phases yl...min(l+10,n) `1-norm of the Phases

y1, . . . , y10 ( 0 0 0 0 0 0 0 0 0 0 0

y11, . . . , y20 0 0 0 0 0 0 0 0 0 0 0

y21, . . . , y30 0 0 0 0 0 0 0 0 0 0 0

y31, . . . , y40 0 0 0 0 0 0 0 0 0 0 0

y41, . . . , y50 0 0 0 0 0 0 0 0 0 0 0

y51, . . . , y60 0 0 0 0 0 0 0 0 0 0 0

y61, . . . , y70 1 0 0 0 0 0 0 0 0 0 1

y71, . . . , y80 0 0 0 0 1 -1 0 0 0 0 2

y81, . . . , y90 0 0 0 1 0 0 -1 0 0 -1 3

y91, . . . , y95 1 0 0 1 -2) 4

Table 1. y-Phases of the Random Lattice of Dimension 95 (‖v‖ = 2584)

most of y corresponding to the short vectors in random lattices of SVP challenges obtains the same

property as we observe above, Therefore, we concludes the two useful observations as follows:

Phases yl...min(l+10,n) `1-norm of the Phases

y1, . . . , y10 ( 0 0 0 0 0 0 0 0 0 0 0

y11, . . . , y20 0 0 0 0 0 0 0 0 0 0 0

y21, . . . , y30 0 0 0 0 0 0 0 0 0 0 0

y31, . . . , y40 0 0 0 0 0 0 0 0 0 0 0

y41, . . . , y50 0 0 0 0 0 0 0 0 0 0 0

y51, . . . , y60 0 0 0 0 0 0 0 0 0 0 0

y61, . . . , y70 0 0 0 0 0 0 0 0 0 0 0

y71, . . . , y80 0 0 0 1 0 0 0 0 0 0 1

y81, . . . , y90 0 0 0 0 0 0 0 1 0 0 1

y91, . . . , y100 0 0 0 0 0 1 0 0 0 0 1

y101, . . . , y110 0 -1 0 0 1 0 0 1 0 0 3

y111, . . . , y120 0 0 1 -1 0 0 2 1 0 0 5

y121, . . . , y130 0 0 0 2 -1 0 -1 0 -1 1 6

y131, . . . , y134 3 2 -1 -1) 7

Table 2. y-Phases of the Random Lattice of Dimension 134 (‖v‖ = 2976)

Observation 1 Under a BKZ-reduced basis, only a fraction of the y-representation of the short vectors

are nonzero elements (only 1
10 ∼ 1

6). And as stated in [6], the nonzero elements almost all fall into the

second half of its y-representation with small absolute value of the nonzero elements. In other words, the

`1-norm of the whole y is approximately between n
10 and n

6 .

Observation 2 Divided into phases of length 10, the y-representation of the short vectors of random

lattices in SVP challenge, under a BKZ-reduced basis, is of an ascending order under `1-norm.

The two observations are useful in designing fast enumeration algorithm for SVP challenge as in the

next section.

4 A Phase-Based Enumeration Algorithm for SVP challenge

In this section, we discuss in detail our phase-based enumeration algorithm, which applies the two useful

observations in the last section.
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4.1 Overview

Table 3. The Phase-Based Enumeration Algorithm for SVP

Input: A β-BKZ reduced basis B = [b1, . . . ,bn] of a lattice L.

Output: The Shortest Nonzero Vector v′ in the lattice L(B)

1. Compute B’s Gram-Schmidt Orthogonalizations B∗ = [b∗1, . . . ,b
∗
n]

and its factor matrix µ = {µij}1≤i,j≤n;

2. Estimate the first minima λ1 by Gaussian Heuristic;

3. Initialize α = (α1, . . . , αn) as αi ← 0, for 1 ≤ i < bn
2
c,

and αi ←
√

λ1

‖b∗i ‖
, for bn

2
c ≤ i ≤ n;

4. Let y← (0, 0, . . . , 0), and v′ ← b1;

5. Let m← dn
2
/10e; d← {d1, d2, . . . , dm};//max `1-norms of phases

6. PhaseEnumeration(0, bn
2
c, min(bn

2
c+ 10, n), y, v′);

7. Return v′;

The low `1-norm of y-representation of short vectors as in Observation 1 shows us that we need not

waste time enumerating all the feasible lattice vectors, and that all we need to do is to enumerate all the

y such that the `1-norm of the last half of y is n
10 to n

6 , i.e.,
∥∥∥ybn2 c,...,n∥∥∥1 ∈ [ n10 ,

n
6 ]. Moreover, Observation

2 reveals that the nonzero elements are distributed unevenly among the phases in the last half of y, and,

more precisely, the `1-norm of the phases in the second half takes on an ascending order. Then, we can

enumerate phase by phase the y with ascending `1-norms for phases in the second half, which highlights

the main idea of our phase-based enumeration algorithm.

Our phase-based enumeration predefines an integer sequence d = (d1, . . . , dm) (m is the number of

phases) of the maximum `1-norm for each phases (the sum of all the `1-norm are only n
10 to n

6 ), and it

is clear that the sequence is in an ascending order. Then, the algorithm enumerates y recursively phase-

after-phase with the ith phase of `1-norm less than di. Finally, the algorithm returns the shortest lattice

vector. Clearly, the enumeration procedure based on phase searches much less lattice vectors than the

common enumeration algorithm which runs over all the lattice vectors, and the two observations in the

last section ensure that the shortest vector will not be omitted in such phase-based method.

Table 3 shows the pseudo-codes of the main procedure of our phase-based enumeration algorithm. As

in the table, given a lattice basis B = [b1, . . . ,bn] (which is BKZ-reduced), the procedure first computes

the Gram-Schmidt orthogonalzation B∗ and its µ. Estimating the first minima λ1 of the lattice, the

procedure calculates the bounds α = (α1, . . . , αn) of y as 0 for the first half of the elements and
√

λ1

‖b∗i ‖
for the second half, based on theorem and heuristics in [6]. Then, the procedure initialize the integer

vector y as all-zero and the shortest vector v′ as the first vector b1 of the basis B. Note that we only

take the phases in the second half into consideration, and, so, the number of phases m is set as dn2 /10e.
After predefining the integer sequence d = (d1, . . . , dm) in an ascending order with

∑m
i=1(di) ≤ n

6 , we

starts to enumerates all the y such that the `1-norm of the ith phase is less than di using the subroutine

PhaseEnumeration(), which will be described in the following subsection.

4.2 PhaseEnumeration() and PhaseEnumerationBottom()

In this subsection, we discuss two subroutines PhaseEnumeration() and PhaseEnumerationBot-

tom(), which constitute the main body of our phase-base enumeration algorithm.

Table 4 shows that pseudo-codes of PhaseEnumeration(). As shown in the table, it is an enu-

meration procedure using ”recursion”. Given the parameters of phase number p, the low index of l, the

high index h, and the current y, which has been set before the low index l, the procedure searches the

current phase such that the `1-norm of current phase is less than the predefined dp, i.e., ‖yl,...,h−1‖1 ≤
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Table 4. PhaseEnumeration()

Input: the phase p, low index l, high index h, an integer vector

y = (y1, . . . , yn) and a lattice vector v′;

Output: The shortest nonzero vector v′ = (v′1, . . . , v
′
n).

1. If h ≥ n then PhaseEnumerationBottom(l, y, v′, l);

//Enter the bottom procedure

2. else for i ∈ {l, . . . , h} do
(a) if i = h then PhaseEnumeration(p+ 1, h, min(h+ 10, n),

y, v′); //Enter the next phase

(b) else for j ∈ {−αi, . . . , αi} do
(i) if ‖yh−10,...,i−1‖1 + |j| ≤ dp then

(1) Let yi ← j;

(2) if ‖yh−10,...,i‖1 = dp then //enter the next phase

PhaseEnumeration(p+ 1, h, min(h+ 10, n), y, v′);

(3) else //continue with the current phase

PhaseEnumeration(p, i+ 1, h, y, v′);

(4) Let yi ← 0;

3. Return v′.

dp−‖yh−10,...,l−1‖1, and, then, it invokes itself or the bottom procedure PhaseEnumerationBottom()

to search the next phase.

Entering the procedure PhaseEnumeration(), it invokes the bottom subroutine PhaseEnumera-

tionBottom() if the high index h is larger than the lattice rank n. If not, the procedure has not arrived

at the last phase, and (at Line 2) it searches all the index between l and h. If the variable i grabs the

high index h, the procedure has enters the phase that follows, and, then, it calls itself with parameters

of p+ 1, h, h+ 10. If i grabs an index less than h, the procedure chooses a j as the nonzero value for yi
within bounds [−αi, αi]. If the newly chosen has not made the `1-norm of the current phase larger than

dp, yi is set as j, and the procedure either enters another phase if the `1-norm of the current phase is

equal to dp, or, otherwise, continues with current phase by invoking itself with the low index l replaced

by i+ 1 (searches between index i+ 1 and h). Thereby, the procedure searches all the y that satisfies the

requirements of the predefined maximum `1-norm d.

Table 5. PhaseEnumerationBottom()

Input: the low index l, an integer vector y = (y1, . . . , yn), a lattice vector v′,

and the low index l′ of the last phase;

Output: The shortest nonzero vector v′ = (v′1, . . . , v
′
n).

1. for i ∈ {l, . . . , n} do
(a) for j ∈ {−αi, . . . , αi} do

(i) if ‖yl′,...,i‖1 + |j| ≤ dm then

(1) Let yi ← j;

(2) Compute v ∼ y using B∗ and µ;

(3) if ‖v‖ < ‖v′‖ then v′ ← v;

(4) if ‖yl′,...,i‖1 < dm then

PhaseEnumerationBottom(i+ 1, y, v′, l′);

(5) Let yi ← 0.

2. Return v′.

Table 5 shows the bottom procedure of our phase-based enumeration algorithm. Given the low index

l, the bottom procedure searches all the index between l and the lattice rank n, and updates the shortest

vector v′ if it finds shorter vectors. Entering the bottom procedure, the index i runs over [l, . . . , n] and j
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chooses all the value between −αi and αi for yi. If the newly-generated nonzero element does not make

the `1-norm of the current phase go beyond dm, the yi is set as j and we go on with updating the shortest

vector v′ if better solution comes to light. After that, if the `1-norm of the current phase is still less

than dm, or, in other words, the current phase can still contain more nonzero elements, the procedure

continues with the phase by invoking itself with a new low index i+ 1.

The two subroutines recursively searches all the y = (y1, . . . , yn) which satisfies that the `1-norm of

each phases is less than a predefined maximum `1-norm sequence d = (d1, . . . , dn), thereby finding the

shortest vector in the lattice by searching relatively few lattice vectors.

5 Experimental Results

In this section, we compare the running times of our phase-based enumeration algorithm with the seminal

Kannan-Helfrich Enumeration algorithm [14] and `1-norm based enumeration algorithm, and all the three

algorithms are implemented using C++ with Victor Shoup’s Number Theory Library (NTL) version 6.0.0

[26]. Experiments are performed on a workstation with 16 Intel Xeon 2.4Ghz CPUs and 16G RAM under

a Red Hat Linux Server release 5.4. All the experiments are run on the SVP challenge benchmarks [24]

of dimension 20-95, and all the random bases are generated using their random lattice generator with

random seed = 0. All the bases are preprocessed by a BKZ subroutine with their block size β < n
4 (n

is their rank of the lattices). The Kannan-Helfrich enumeration algorithm is, actually, to search all the

feasible lattice vectors in the hypersphere of
∑n
i=1 y

2
i ‖b∗i ‖

2 ≤ λ1, which has been deeply researched into

in the recent years [12][11][21], and the `1-norm based enumeration algorithm is to search y with the last

half of `1-norm less than n
10 ∼ n

6 (based on Observation 1), or, in other words, the 1-phase enumeration

algorithm. Our phase-based enumeration algorithm runs with the predefined maximum `1-norm for the

second half phases d as (1, 2, . . . ,m).

Table 6. Running Time Comparison of Enumeration Algorithms under Dimension-40 Random Lattices

Running Time Enumeration Algorithms

3017.3270s the Kannan-Helfrich Enumeration Algorithm

12.0048s the `1-Norm Based Enumeration Algorithm

1.47209s the Phase-Based Enumeration Algorithm

The three algorithms are run under the random lattice basis of dimension 40 (with a preprocessing

of 5-BKZ reduction), the running time of the three are compared in Table 5. As shown in the table,

the Kannan-Helfrich enumeration algorithm find the shortest vector (of Euclidean norm 1702) with over

3000 seconds, and the `1-norm based enumeration algorithm uses approximately 12 seconds, and our

phase-enumeration algorithm only 1.4 seconds, which is over 3000 faster than Kannan-Helfrich algorithm

and 10 times faster than `1-norm based algorithm.

We continue to run the three algorithms on the random lattices of dimension 20-95 and the running

time comparison is given in Fig. 2. As shown in the figure, the Kannan-Helfrich enumeration algorithm

consumes the most running time: it consumes over hundreds of seconds under lattice basis of dimension 20,

and it only runs up to lattice basis of dimension 70 with unbearably long time. The `1-norm enumeration

algorithm runs faster: nearly 1.3 seconds for lattice of dimension 20, and runs up to the 80-dimensional

lattice. The second algorithm runs over some lattices of dimension 20-80 and approximately tens or

hundreds of times faster than Kannan-Helfrich algorithm. Finally, our phase-based enumeration algorithm

outperforms the other two enumeration algorithms: it runs less than 1 seconds for lattice of dimension

20, and runs through most lattices of dimension 20-95, and it enjoys a thousands of times speedup over

Kannan-Helfrich algorithm, and also much better than the 1-phase enumeration. It is clear that the

running time of our phase-based algorithm depends heavily on the predefined integer sequence d of the

8



Fig. 2. Running Time Comparison of the Enumeration Algorithms for SVP Challenge

maximum `1-norm for phases, and we believe that an improvement can be achieved by choosing a better

d.

The experimental results implies that the phase-based enumeration algorithm gains a great advantage

over the other two enumeration algorithm in running time, and it never misses any optimum solution

though searching only a fraction of the feasible lattice vectors.

6 Conclusion

In this paper, we propose a novel phase-based enumeration algorithm for shortest vector problems based

on the two interesting and useful observations for the short lattice vectors. The experimental results show

that the phase-based enumeration greatly outperforms the other famous enumeration algorithms in time

complexity under the most random lattice bases in SVP challenge benchmarks[24]. In conclusion, it is

practically an excellent algorithm for SVP challenge.

7 Future Work

In the future, we will attempt to give a theoretical and quantitative analysis of time complexity of our

phase-based enumeration algorithm compared to Kannan-Helfrich algorithm, and, at the same time, we

will run our phase-based enumeration algorithm under the lattices of much higher dimensions, like of

dimension 136, with more delicately-chosen predefined maximum phase-wise `1-norms.
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9. Hanrot, G., Pujol, X., and Stehlé, D. Analyzing blockwise lattice algorithms using dynamical systems.

Advances in Cryptology-CRYPTO 6841, 447-464 (2011).
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