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Abstract
Cloud computing sparked interest in Verifiable Computation
protocols, which allow a weak client to securely outsource com-
putations to remote parties. Recent work has dramatically re-
duced the client’s cost to verify the correctness of results, but
the overhead to produce proofs largely remains impractical.

Geppetto introduces complementary techniques for reducing
prover overhead and increasing prover flexibility. With Multi-
QAPs, Geppetto reduces the cost of sharing state between com-
putations (e.g., for MapReduce) or within a single computa-
tion by up to two orders of magnitude. Via a careful instantia-
tion of cryptographic primitives, Geppetto also brings down the
cost of verifying outsourced cryptographic computations (e.g.,
verifiably computing on signed data); together with Geppetto’s
notion of bounded proof bootstrapping, Geppetto improves on
prior bootstrapped systems by five orders of magnitude, albeit at
some cost in universality. Geppetto also supports qualitatively
new properties like verifying the correct execution of propri-
etary (i.e., secret) algorithms. Finally, Geppetto’s use of energy-
saving circuits brings the prover’s costs more in line with the
program’s actual (rather than worst-case) execution time.

Geppetto is implemented in a full-fledged, scalable compiler
that consumes LLVM code generated from a variety of apps, as
well as a large cryptographic library.

1 Introduction
The recent growth of mobile and cloud computing makes out-
sourcing computations from one party to another increasingly
attractive economically. Verifying the correctness of such out-
sourced computations, however, remains challenging, as does
maintaining the privacy of sensitive data used in such compu-
tations, or even the privacy of the computation itself. Prior
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work on verifying computation focused on narrow classes
of computation [36, 57], relied on physical-security assump-
tions [45, 52, 54], assumed uncorrelated failures [21, 22, 40],
or achieved good asymptotics [3, 32, 32, 34, 35, 37, 42, 48] but
impractical concrete performance [51, 56].

Recently, several lines of work [10, 51, 55, 58] on veri-
fiable computation [32] have combined theoretical and engi-
neering innovations to build systems that can verify the re-
sults of general-purpose outsourced computations while mak-
ing at most cryptographic assumptions. Currently, the best
performing, fully general-purpose verifiable computation pro-
tocols [51, 55] are based on Quadratic Arithmetic Programs
(QAPs) [33]. To provide non-interactive, publicly verifiable
computation, as well as zero-knowledge proofs (i.e., compu-
tations in which some or all of the worker’s inputs are private)
recent systems [4, 8, 10, 11, 18, 27, 43, 61] have converged on
the Pinocchio protocol [51] as a cryptographic back end. Pinoc-
chio, in turn, depends on QAPs.

While these protocols have made proof verification nearly
practical, the cost to generate a proof remains a significant bar-
rier to practicality. Indeed, most applications are constrained
to small instances, since proof generation costs 3-6 orders of
magnitude more than the original computation.

With Geppetto1, we introduce a series of interlocked tech-
niques that support more flexible, and hence more efficient,
provers. These techniques include MultiQAPs for sharing state
between or within computations, efficient embeddings for ver-
ifying cryptographic computations, bounded bootstrapping for
succinct proof aggregation, and energy-saving circuits to ensure
that the prover’s costs grow with actual execution time, rather
than worst-case execution time.

In more detail, we first generalize QAPs to create MultiQAPs,
which allow the verifier (or prover) to commit to data once and
then use that data in many related proofs. For example, the

1A skilled craftsman who can create and coordinate many Pinocchios.
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prover can commit to a data set and then use it in many differ-
ent MapReduce jobs. At a finer granularity, we show how to use
MultiQAPs to break an arithmetic circuit up into many smaller,
simpler circuits that can verifiably and efficiently share state.
Today, compiling code from C to a QAP typically requires un-
rolling all of the loops and inlining all of the functions, leading
to a huge circuit full of replicated subcircuit structures. Since
key size, and key and proof generation time all depend linearly
(or quasilinearly) on the circuit size, this blowup severely de-
grades performance. With MultiQAPs, instead of unrolling a
loop a hundred times, we can create a single circuit for the loop
body and then use MultiQAPs to efficiently connect the state at
the end of each iteration of the loop to the input of the next itera-
tion. This allows us to shrink key size and key generation time,
and, more importantly, to save the prover time and memory.
Prior work suggested achieving similar properties via Merkle
hash trees [9, 14, 30, 33, 47], but implementations show that
this approach increases the degree of the QAP by tens or hun-
dreds per state element [10, 18, 61], whereas with MultiQAPs,
the degree increases only by 1.

Second, we show how a careful choice of cryptographic
primitives significantly improves the efficiency of generating
proofs of cryptographic computations. Such computations arise
in many outsourcing applications. For instance, a MapReduce
job may need to compute over signed data, or a customer with
a smart meter may wish to privately compute a bill over signed
readings [53]. As another example, recent work [8, 27] shows
how to anonymize Bitcoin transactions using Pinocchio [51]
and would benefit from the ability to verify signatures within
Bitcoin transactions. In existing QAP systems, computations
take place over a small (e.g., 254-bit) field, so computing cryp-
tographic operations requires an awkward and inefficient em-
bedding of the cryptographic machinery via either a BigInte-
ger library built out of field elements or via large extension
fields [27]. With our techniques, all of these examples can be
naturally and efficiently embedded into a proof of an outsourced
computation.

With MultiQAPs, the prover generates multiple proofs about
related data. This improves flexibility and performance for the
prover, but it degrades an attractive feature of Pinocchio, in
which the proof consisted of a (tiny) constant-sized proof, and
the verifier’s work scaled only with the IO.

As a third contribution, we combine our MultiQAPs and
cryptographic embeddings to obtain MultiQAPs with constant-
sized proofs via bounded proof bootstrapping. In theory, with
proof bootstrapping [12, 59], the prover can combine any series
of proofs into one constant-sized proof by verifiably computing
the verification of all of those proofs. Very recent work ele-
gantly achieves unbounded proof bootstrapping [10], but this
generality comes at a cost (§5). Our bounded proof bootstrap-
ping shows that, as with semi-homomorphic vs. fully homomor-
phic encryption, if we pragmatically set a bound on the number
of proofs we intend to bootstrap, we can achieve more prac-
tical performance. Moreover, by considering (bounded or un-
bounded) bootstrapping in the context of our cryptographic em-
bedding techniques, we show how to efficiently outsource com-
putations where the computation itself is hidden from the veri-

fier. For example, a patient might verify that a trusted authority
(say the US FDA) signed the code for a medical-data analysis,
and that the analysis was correctly applied to the patient’s data,
without the patient ever learning anything about the proprietary
analysis algorithm.

Lastly, just as MultiQAPs eliminate the prover redundancy
that comes from code repetition (e.g., in the form of loops
or function invocations), we introduce the notion of energy-
saving circuits to eliminate the redundant work that arises from
code branching. In the standard approach to compiling code to
QAPs, the prover devotes considerable effort to proving the cor-
rectness of unused portions of the circuit. For example, in an if-
else statement, the prover must perform computations for both
the if and the else block. With energy-saving circuits, the prover
only exerts cryptographic effort for the actual path taken (e.g.,
only the if block when the condition is true). While energy-
saving circuits are generally useful, they are particularly benefi-
cial when using bounded proof bootstrapping to condense many
proofs from a MultiQAP. Such proof compaction requires the
key generator to commit, in advance, to the number of proofs
to be combined. With energy saving circuits, the key generator
can choose a large number, and if a particular computation re-
quires fewer proofs, the prover only performs cryptographic op-
erations proportional to the number of proofs used, rather than
the maximum chosen by the key generator.

We have implemented Geppetto as a complete toolchain for
verifying the execution of C programs and plan to make the
code available. Geppetto includes a compiler in F#, a crypto-
graphic runtime in C++, and QAP-friendly libraries in C. Our
compiler takes as input LLVM code produced by clang, a main-
stream state-of-the-art optimizing C compiler; this enables us to
focus on QAP-specific compilation. The compiler provides ex-
plicit, low-level control for programming MultiQAPs, allowing
the C programmer to dictate how state flows from one QAP to
another and hence control the resulting cryptographic costs. It
also provides higher-level C libraries for common programming
patterns, such as MapReduce or loops.

2 Geppetto Overview
In this section, we give a formal but abstract description of Gep-
petto’s main constructions, deferring cryptographic definitions
to §3 and our protocol to §4.

We first explain how we share state between computations via
MultiQAPs, beginning with an intuitive overview (§2.1). We
then formalize related computations using a schedule of related
proofs (§2.2) where the intermediate state can be represented
compactly via a commit-and-prove (CP) scheme (§2.3). Next,
we design an efficient MultiQAP-based CP system (§2.4). Fi-
nally, we turn to proofs for cryptographic operations and boot-
strapping (§2.5), and to energy-saving circuits (§2.6).

2.1 MultiQAP Intuition

Prior verifiable computation systems like Pinocchio [51] pro-
vide proofs of properties, abstractly written P(u), where u is
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Figure 1: MultiQAPs (a) Most existing verifiable computation sys-
tems compile programs to a single large circuit representation, lead-
ing to internal redundancy. (b) By extracting common substructures,
we can represent the program as a smaller collection of circuits, but
the verifier must now laboriously check all of the internal IO between
these circuits. (c) MultiQAPs connect circuits with a bus structure that
supports a succinct and efficient commitment to the bus values.

a tuple of parameters for P. Cryptographers refer to P as a
language, and u an instance. Programmers may see P(u) as
a trace-property, e.g., interpreting u as a valid input-output se-
quence obtained by running a program whose specification is
captured by P. As P grows to encompass larger and more com-
plex functionality, the CPU and memory costs for the prover (as
well as key size) increase linearly or worse. As §7.2 shows, this
limits prior systems to modest application parameters.

To scale to larger problems, we can decompose the proof of P
into a conjunction of proofs of m simpler properties P0,...,Pm−1.
Figure 1 illustrates this decomposition in the context of circuits.
The decomposition may follow the structure of the source pro-
gram; for instance, one Pi may prove the correct execution of
a single function call, or a single loop iteration in the program.
The whole proof then consists of n proof instances, since it may
include multiple instances of each property Pi, with the various
instances potentially sharing some of their parameters; e.g., the
result of one loop iteration may be passed as the input for the
next iteration. §2.2 defines the notations used in the rest of the
paper for scheduling proofs and sharing parameters.

While proof decomposition aids prover scalability, used
naively, it destroys the verifier’s performance. In other words,
if the prover simply uses Pinocchio to prove the correctness of
each Pi instance, then he must send all of the computation’s in-
termediate values back to the verifier, so that she could check,
e.g., that the prover correctly transferred the output of one Pi
to the input of the next. Handling so much intermediate state
would make it difficult or impossible for the verifier to “win”
from outsourcing.

To avoid placing this burden on the verifier, we will build
a non-interactive commit-and-prove scheme [20, 28, 41], i.e.,
a scheme in which the prover can supply a short commitment
to intermediate values and prove multiple statements about the

Figure 2: Overview for § 2. Geppetto’s compiler runs in two phases:
(I) Key generation phase splits the code into properties (procedures)
that are later expressed as Quadratic Arithmetic Programs (QAPs).
A MultiQAP Q? is then produced by overlapping the QAPs to cre-
ate buses for sharing state. The compiler also produces a schedule σ

specifying which bank, including locals, inputs and outputs, should be
included at each step. Finally, key generation also produces keys for
the prover and verifier as well as the verifier code. (II) The prover exe-
cutes the program to create variable assignments for the MultiQAP Q?

and its buses according to the schedule. In each step, the prover gener-
ates a proof for the sub-QAP Qi, where i is specified in the schedule,
and commits to any outputs produced by Qi. The verifier verifies the
proofs as well as the commitments. ∗In addition, for bootstrapping
compile the verifier’s code and prove correct verification such that the
top-level verifier is left to verify only the latter.

committed values. §2.3 gives a more formal definition. Our
commitments optionally offer privacy, meaning that the com-
mitted values are hidden from the verifier.

Instead of building expensive commitments atop existing pro-
tocols as in prior work [18], in §2.4, we show how to build
shared state into a generalization of the underlying QAP rep-
resentation, which we call MultiQAPs, hence making commit-
ments nearly free.

In more detail, we use Pinocchio’s techniques to express each
Pi as a Quadratic Arithmetic Program (QAP) Qi, a format suit-
able for succinct cryptographic proofs. To share state between
individual Qi, a single MultiQAP Q? combines the Qi with one
or more buses, each carrying some number of values. Each of its
sub-QAPs can “tap into” a bus to write or read the bus value. In
our cryptographic instantiation, writing to the bus corresponds
to generating a commitment for the corresponding portion of
the MultiQAP, while reading the bus corresponds to including
the commitment in the proof for the sub-QAP. Connecting the
QAPs via buses lets us use a single instance of our commit-
and-prove scheme for Q? for all proof schedules over (Qi)i∈[m],
with the capability to share compact, potentially private com-
mitments between their proofs (rather than large collections
of parameters in plaintext) without significantly increasing the
prover’s costs.

Figure 2 visualizes the flow of our compiler.
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2.2 Scheduling Proofs With Shared State
Multi-Proof Systems To scale prover performance, we de-
compose instances of single, complex properties P into con-
junctions of related instances of simpler properties (Pi)i∈[m] of
the form

P(u0)
4
= ∃u1.

∧
(i,t)∈σ

Pi(ut)

where σ is a ‘schedule’, that is, a set of pairs (i, t) with i the in-
dex of the simpler property to use, and t a vector selecting vari-
ables from u0,u1. Crucially, the properties Pi may thus share
intermediate worker variables.

For instance, we may decompose the Boolean function
P(u,r) 4

= r = f (g( f (u))) into

P0(u,r)
4
= r = f (u) P1(u,r)

4
= u = g(r)

and the 3-proof schedule σ = (0,(u1,r1));(1,(u2,r1));
(0,(u2,r2)), since we have P(u1,r2) ⇔ ∃r1u2.P0(u1,r1) ∧
P1(u2,r1)∧P0(u2,r2).

Banks In the following, we group the variables of a property
into pairwise disjoint sets that we call banks. We let I indicate a
bank, and let I range over tuples of banks. Hence, P(I) specifies
a property and a partition of its variables.

For instance, assuming P is compiled from the function
int f(int u[ρu]) we may use banks I 4

= Iu, Ir where Ir
4
= {r}

and Iu
4
= {u0, . . . ,uρu−1}.

We consider compound proofs that share multiple instances
of each bank. Formally, we define these instances by variable
renaming: given a bank I 4

= {u0, . . .uρI−1}, we define a se-
quence of pairwise-disjoint instances It 4

= {ut
0, . . . ,u

t
ρI−1} for

t ≥ 1. (We reserve the use of t = 0 for the instance that assigns
the constant 0 to every variable uk of I.)

We define proof schedules as follows.

Definition 1 (Multi-proof schedule) A schedule σ is a series
of steps (i, t) where i ∈ [m] indicates a property Pi and t is a
tuple of integers, one for each bank of Pi. We define n 4

= |σ | as
the length of the schedule.

A proof for σ consists of (1) a proof π for each step, and (2)
for each bank, the values for the variables for every non-zero
index t that appears in σ.

Intuitively, in each step (i, t) of a schedule, i indicates which
Pi the prover must prove (or the verifier must verify), and each
t ∈ t indicates which values the verifier should use for each bank
I ∈ Ii that parameterize Pi, with t = 0 indicating that all its vari-
ables are set to zero.

2.3 Commit-and-Prove (CP) Systems
Rather than transmit intermediate state to the verifier, a commit-
and-prove scheme [20, 28, 41] allows the prover to generate
short commitments to the state and then prove multiple state-
ments about the committed values.

We give formal cryptographic definitions and proofs in §3,
but abstractly, a CP scheme introduces a (keyed) CommitI(u)

algorithm for committing to the values u in bank I, and a Verify
algorithm that takes a list of commitments to variable values,
and a proof, and outputs a Boolean indicating whether the val-
ues represented by the commitments are consistent with the
proof. As we prove in §3, we can use a CP scheme to verify
an execution following a proof schedule as defined in Defini-
tion 1.

To make this more concrete, we return to our earlier example
(§2.2) of proving P(u,r) 4

= r = f (g( f (u))) via decomposition
into schedule σ. The schedule breaks P into three steps:

P(u1,r2) = ∃r1,u2 : r1 = f (u1)∧u2 = g(r1)∧ r2 = f (u2)

To generate a proof for this schedule the prover could compute
commitments to the intermediate values r1 and u2:

Cr,1← Commitr(r1) Cu,2← Commitu(u2)

along with proofs πi proving that f and g are computed cor-
rectly, and the verifier would check:

Vσ(u1,r2,Cr,1,Cu,2,π0,π1,π2) =
let Cu,1 = Commitu(u1)
let Cr,2 = Commitr(r2)
Verify0(Cu,1,Cr,1,π0) ∧
Verify1(Cu,2,Cr,1,π1) ∧
Verify0(Cu,2,Cr,2,π2)

where Verifyi is a specialization of the verification function that
checks proofs relating to property Pi.

Pinocchio as a CP Scheme We note that Pinocchio can be
viewed as a very restricted commit-and-prove system for a
single QAP Q, in the sense that Pinocchio proves: P(u) 4

=
∃ω.Q(u,ω) where u are function inputs and outputs,2 and ω are
intermediate local variables for the prover. Instead of sending ω

to the verifier, the Pinocchio prover computes and sends a sin-
gle, digest Cω of their values, and a proof π that u,ω is a solution
for Q. As evidence of P(u), the verifier receives (Cω,π) whose
size is independent of Q. If V (u,Cω,π) is true, then the verifier
has the (computational) guarantee that ∃ω : Q(u,ω), and hence
P(u). As a bonus feature, both Cω and π are perfectly hiding,
meaning that they do not convey any information about ω.

2.4 An Efficient CP System from MultiQAPs
To build an efficient, general-purpose commit-and-prove
scheme, we generalize Pinocchio’s QAPs into MultiQAPs.

Quadratic Programs Abstractly, Pinocchio compiles proper-
ties of interest to equations of the form

Q(u) 4
=

∧
r∈[d]

(vr ·u)(wr ·u) = (yr ·u)

where u is a vector of variables that range over some large, fixed
prime field Fp, and where the vectors vr, wr, yr each define

2Pinocchio requires the first input, u0, always be set to 1 so that the QAP
can use affine forms instead of linear ones.
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linear combinations over the variables u. We say that Q has size
ρ
4
= |u | and degree d. Equivalently, Q may be seen as three

d × ρ matrices in Fp, i.e., V 4
= (vr)r∈[d], W 4

= (wr)r∈[d], and
Y 4
= (yr)r∈[d].

Geppetto One of our main contributions is an extension of
Pinocchio that lets us prove any property P scheduled from
(Pi)i∈[m] using a matching sequence of proofs for their quadratic
specifications (Qi)i∈[m].

To this end, we provide a new, generic reduction from sched-
ules using m quadratic programs of degree d to schedules us-
ing a single quadratic program Q? of degree d + |s |, where s
includes all intermediate variables shared between those speci-
fications. By choosing a decomposition from P to (Pi)i∈[m] that
exploits the structure of P, most intermediate variables are local
to one Pi, so we typically achieve |s |<< d.

Overlapping Quadratic Programs To share state between
individual Qi, the MultiQAP Q? supports one or more buses,
each carrying some number of field values. Each sub-QAP can
“tap into” a bus to write or read the bus value. In our crypto-
graphic instantiation, writing to the bus corresponds to generat-
ing a commitment for the corresponding portion of the Multi-
QAP, while reading the bus corresponds to including the com-
mitment in the proof for the sub-QAPs as detailed in our adap-
tation of the Pinocchio protocol in §4.2.

Let I be a series of pairwise-disjoint banks, including some
distinguished shared banks we call buses S⊆ I.

Let Qi(Ii) for i = 0..m− 1 a series of quadratic programs,
each of degree at most d, such that we have Ii ⊆ I for all i and
Ii ∩ I j ⊆ S for all i 6= j. (The first condition guarantees that I
collects all the banks; the second that S collects the buses.)

Let I′i be the tuple of banks obtained from Ii by replacing
each I ∈ S∩ Ii with I′i

4
= {ci | c ∈ I} (using variables ci that do

not occur in I). Let I′ be their concatenation I′0, . . . ,I
′
m−1, and let

I? 4
= I′,S, still a concatenation of pairwise-disjoint banks. Intu-

itively, I? contains one additional local copy I′i of each shared
bus I ∈ S for each Qi that uses it.

Recall that each program is of the form

Qi(Ii) =
∧

r∈[d]
(vi,r ·Ii)(wi,r ·Ii) = (yi,r ·Ii).

where ρi
4
= ∑I∈Ii | I | is the size of Qi. For each r, we let v′r be

the vector concatenation v0,r, . . . ,vm−1,r, and similarly for w′r
and y′r.

We define one quadratic program Q? that ‘overlaps’ the Qis,

Q?(I?) 4
=

∧
r=0..d−1

(v′r ·I′)(w′r ·I′) = (y′r ·I′) ∧
∧

I∈S,c∈I
∑i|I∈Ii ci = c

of degree d +∑I∈S |I| and size ∑I∈I |I|+∑I∈S,i|I∈Ii |I|.
Representing Q? as matrices V,W,Y, we can assemble them

from those of the Qis, diagonal matrices 1?
i with a 1 for every

variable of Qi shared in S and 0s elsewhere, and the identity
matrix 1 of size ∑I∈S |I|.

V 4
=

(
V0 . . . Vm−1 0
0 . . . 0 0

)
Y 4
=

(
Y0 . . . Ym−1 0
1?

0 . . . 1?
m−1 −1

)

with d +∑I∈S | I | rows and ∑i∈[m] ρi +∑I∈S | I | columns. (We
omit W, built as V.)

Pragmatically, our compiler represents Q? implicitly from the
Qis. The degree of Q? is not (much) higher that those of the Qis.

Next, we translate proof schedules σ over (Qi)i=0..m−1 to
proof schedules σ? over Q?. We replace each instance (i, t) ∈ σ

with an instance (0, t?) for Q? where t? is defined as follows:
for banks I ∈ Ii, we use the corresponding index from t; for lo-
cal copies of buses in I′i, we use a fresh index (that is, the bank
instance is used only once in the whole schedule); for all other
banks, we use the special index 0, indicating a constant, all-zero
instance.

Definition 2 (Valid schedule) A schedule is valid if all re-
peated non-zero indexes belong to buses, i.e. all other indexes
are fresh.

Note that σ∗ is valid by construction, but we will give theorems
for arbitrary valid schedules.

Our next lemma states that every property proved by σ over
(Qi)i=0..m−1 can also be proved by σ? over Q?.

Lemma 1 (Overlapping Quadratic Programs) For every
schedule σ over quadratic programs (Qi(Ii))i=0..m−1, we have∧

(i,t)∈σ

Qi(It
i) ⇔

∧
(i,t?)∈σ?

∃ I? t? \ It
i . Q?(I? t?)

where, on the right-hand-side, t? is the translation of t and I? t? \
It

i provides a local copy of each shared bus used in Qi.

Proof. By induction on the length of the schedule. For each
(i, t) ∈ σ, we verify that Qi(It

i)⇔∃I? t? \ It.Q?(I? t?). Following
the definition of Q?,

• Each of the shared-variable equations is just ci = c since
c j = 0 for any j 6= i.

• Each of the inner products (v′r,0) ·I? t? is just vi,r ·It
i since

every coefficient for j 6= i is multiplied by 0 and ci = c for
every shared variable in I′i . (And similarly for v′r and y′r.)

2.5 Verifiable Crypto and Bootstrapping Proofs
In theory, we should be able to verify cryptographic computa-
tions (e.g., a signature verification) just like any other computa-
tion. In practice, as discussed in §1, a naive embedding of cryp-
tographic computations into the field Fp that our MultiQAPs
operate over leads to significant overhead. In §5 we show how
a careful choice of cryptographic primitives and parameters al-
lows us to build a large class of crypto operations (e.g., signing,
verification, encryption) using elliptic curves built “natively” on
Fp. This makes it cheap to, for example, verify computations on
signed data, since the data and the signature both “live” in Fp.

Our most complex application of this technology is proof
bootstrapping [12, 59], which we use to address the main
drawback of CP schemes. With CP schemes, including
our MultiQAP-based scheme, the size of the cryptographic
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Figure 3: Energy-Saving Circuits. Moving the multiplex step can
nullify expensive crypto operations, since at runtime, in one of the two
circuit blocks, every wire inside takes on the value zero.

evidence—and the verifier costs—grow linearly with the num-
ber of commitments and proofs. While often acceptable in prac-
tice, these costs can be reduced to a constant by using another
instance of our CP scheme to outsource the verification of all of
the cryptographic evidence according to a target proof schedule.

More formally, let Vσ?(u0,C,Π) be the property that a sched-
uled CP proof cryptographically verifies, where C and Π are
the vectors of commitments and proofs used in the schedule
σ?. We recursively apply Geppetto to generate a quadratic pro-
gram Qσ? for Vσ? . This yields another, more efficient verifier
V ◦

σ?(u0,C◦,π◦) with a single, constant-sized commitment C◦ to
C, Π, and all intermediate variables used to verify them accord-
ing to σ?, and with a single constant-sized proof π◦ to verify,
now in constant time.

We further observe that V ◦
σ? need not be limited to just veri-

fying the execution of Vσ? , as in traditional bootstrapped proto-
cols [12, 59]. For example, suppose an authority the client trusts
(e.g., the US FDA) cryptographically signs the verification keys
for Vσ? , and we define V ◦

σ? to first verify the signature on the
keys before using them to run Vσ? . If we use Geppetto’s option
to make commitments and proofs perfectly hiding, then the ver-
ifier checks a constant-sized proof and learns that a trusted algo-
rithm (for example, a medical diagnosis) ran correctly over her
data, but she learns nothing about the algorithm. Thus, we can
verifiably outsource computations with proprietary algorithms.

Although the general idea of bootstrapping is well-known in
principle [12, 59], its practicality relies on careful cryptographic
choices to support an efficient embedding. Recent work sug-
gested an embedding that supports bootstrapping an unbounded
number of proofs but this generality comes at a significant cost
(§5). In §5, we propose a more pragmatic embedding that sup-
ports only a bounded number of proofs but achieves signifi-
cantly better performance.

2.6 Energy-Saving Circuits
A limitation of existing verifiable computation systems is that
representing a computation as a quadratic program (informally,
a circuit) results in a program whose size reflects the worst-case
computational resources necessary over all possible inputs. For
instance, when branching on a runtime-value, the prover needs
to interpret and prove both branches then join their results. Con-
cretely, the command if(b) {x = y} else {x=2*z} is ef-

fectively compiled as x = 2z + b*(y-2z), as shown generi-
cally in the left side of Figure 3. Similarly, if a loop has a static
bound of N iterations, the prover must perform work for all N,
even if the loop typically exits early. With many branches, the
resulting verifiable-computation tree may be much larger than
any path in the tree, representing a verified program execution.

Ideally, we would like to “turn off” parts of the circuit that
are not needed for a given input, much the same way hardware
circuits can power down parts not currently in use. Geppetto
achieves this by observing that in our cryptographic protocol,
there is no cryptographic cost for QAP variables that evaluate
to zero. Thus, if at compile-time we ensure that all intermedi-
ate variables for the branch evaluate to 0 in branches that are
not taken, then at run-time there is no need to evaluate those
branches at all. The right side of Figure 3 shows an exam-
ple of how we achieve this for branches by applying the con-
dition variable to the inputs of each subcircuit, rather than to
the outputs. Thus, in contrast with prior system, the prover only
does cryptographic work proportional to the path actually taken
through the program. §6.4 explains how our compiler produces
energy-saving circuits, while §7.4 quantifies the significant sav-
ings we recoup via this technique.

3 Defining Proof Composition
We now give formal cryptographic definitions for the concepts
introduced in §2, deferring our concrete protocol to §4.

3.1 Commit-and-Prove Schemes

Since we are interested in succinct proofs, we modify earlier
definitions of commit-and-prove schemes [20, 28, 41] to only
consider computationally bounded adversaries. As a succinct
commitment implies that more than one plaintext maps to a
given commitment value, an unbounded adversary can always
“escape” the commitment’s binding property.

In the following, we refer to representations of variable val-
ues as digests. Each digest C j, may hide the values it represents
via randomness o j. Without hiding, we use a trivial opening
o j = 0 (and may omit it). We require that all digests of bus
values be binding, and hence specifically refer to them as com-
mitments. In contrast, digests used only in a single proof need
not be binding.

As a side note, while Geppetto uses commit-and-prove
schemes to prove properties, such schemes also enable interac-
tive protocols where values are committed before being opened
and/or used to prove statements about them. For instance, they
easily integrate with existing Σ-protocols as employed by pro-
tocols such as anonymous credential systems [6, 19].

Definition 3 (Succinct Commit-and-Prove)
Consider a family of polynomial-time verifiable relations

{R λ}λ∈N on tuples u of a fixed length `.
A succinct commit-and-prove scheme P = (KeyGen =

(KeyGen1,KeyGen2),Commit,Prove,Verify) for {R λ}λ∈N
consists of five polynomial-time algorithms as follows:
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• Key generation is split into two probabilistic algorithms:

τ← KeyGen0(1λ) takes the security parameter λ as input
and produces a trapdoor τ = (τS ,τE ) (independent of R
and consisting of a simulation and extraction component).

(EK,VK)← KeyGen1(τ,R) takes the trapdoor and a rela-
tion R∈R λ as input and produces a public evaluation key
EK and a public verification key VK. To simplify notation,
we assume that EK includes a copy of VK, and that EK
and VK include digest keys EK j and VK j for j ∈ [`].

• C j← Commit(EK j,u j,o j): Given an evaluation key for j,
message u j, and randomness o j, the deterministic commit-
ment algorithm produces a digest C j to u j.

• π← Prove(EK,u,o): Given an evaluation key, messages
u ∈ R, and openings o, the deterministic prove algorithm
returns a succinct proof π; i.e., |π| is poly(λ).

• {0,1} ← Verify(VK j,C j): Given a verification key for j,
the deterministic digest-verification algorithm either re-
jects (0) or accepts (1) the digest C j.

• {0,1} ← Verify(VK,C,π): Given a verification key and `
digests, the deterministic verification algorithm either re-
jects (0) or accepts (1) the proof π.

Proof-verification guarantees apply only when all digests have
been either honestly generated or verified.

Besides correctness, we define the security requirements of
CP schemes.

Definition 4 (Correctness) The commit-and-prove scheme P
is perfectly correct for the `-ary relation family {R λ}λ∈N if for
all R ∈ R λ, all u ∈ R and all o from the randomness space:

Pr[ (EK,VK)← KeyGen(1λ,R) :
Verify(VK j,Commit(EK j,u j,o j)) ] = 1.

Pr[ (EK,VK)← KeyGen(1λ,R);
C j← Commit(EK j,u j,o j) for each j ∈ [`] :
Verify(VK,C,Prove(EK,u,o)) ] = 1.

We require that digests shared across multiple proofs (i.e.,
those representing bus values) be binding, meaning the prover
cannot claim the digest represents one set of values in the first
proof and a different set of values in the second proof. We col-
lect the indexes of their keys in what we call the binding digest
subset S⊂ [`].

Definition 5 (Binding) The commit-and-prove scheme P is
binding for relation family {R λ}λ∈N and binding digest sub-
set S⊂ [`], if for all efficient A and any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);τ = (τS ,τE );

(EK,VK)← KeyGen2(τ,R);(
j,u,o,u′,o′

)
← A(EK,R,τE ) :

u 6= u′∧ j ∈ S∧
Commit(EK j,u,o) = Commit(EK j,u′,o′) ] = negl(λ).

Second, we require that if an adversary creates a set of digests
and a proof that Verify accepts, then the adversary must “know”
a valid witness, in the sense that this witness can be successfully
extracted by “watching” the adversary’s execution. Note that
the trapdoor the extractor receives from KeyGen1 is generated
independently of relation R and hence cannot make it easier for
the extractor to produce its own witnesses.

Definition 6 (Knowledge Soundness) The commit-and-prove
scheme P is knowledge sound for the `-ary relation family
{R λ}λ∈N, if for all efficient A there is an efficient extractor
E taking the random tape of A such that, for any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);τ = (τS ,τE );

(EK,VK)← KeyGen2(τ,R);
(C,π;u,o)← (A(EK,R) ‖ E(EK,R,τE )) :(
∃ j ∈ [`]. Verify(VK j,C j)∧C j 6= Commit(EK j,u j,o j))∨(
Verify(VK,C,π)∧u /∈ R

)
] = negl(λ).

For the case where we do not have commitments, i.e. ` = 2,
and u = u0 is trivial and ω = u1 is non-binding, we also define
ordinary soundness.

Definition 7 (Classical Soundness) The proof scheme P is
sound for the `-ary relation family {R λ}λ∈N, if for all efficient
A and any R ∈ R λ,

Pr[ (EK,VK)← KeyGen(1λ,R);
u,π← (A(EK,R) :
Verify(VK,u,π)∧¬(∃ω : (u,ω) ∈ R) ] = negl(λ).

A commit-and-proof scheme is zero-knowledge if it does not
leak any information besides the truth of the statement.

Definition 8 (Perfect zero-knowledge) A commit-and-prove
scheme P is perfect zero-knowledge if there exists an efficient
simulator S such that for all λ ∈ N,R ∈ Rλ,u ∈ R, all {o j} j∈S
and random {o j} j/∈S from the randomness space, and all
adversaries A , we have

Pr
[
(τ← KeyGen1(1

λ);(EK,VK)← KeyGen2(τ,R);

C j← Commit(EK j,u j,o j) for each j ∈ [`];

π← Prove(σ,u,o,w) : A(EK,τ,C,π) = 1
]

= Pr
[
(τS ,τE ) = τ← KeyGen1(1

λ);(EK,VK)← KeyGen2(τ,R);

C j← Commit(EK j,u j,o j) for each j ∈ S :

π,{C j} j/∈S← S(τS ,{C j} j∈S) : A(EK,τ,C,π) = 1
]
.

We use j /∈ S as a shorthand for j ∈ [`]\S. To make the defi-
nition compositional, we let shared commitments have arbitrary
openings {o j} j∈S. Digests on the other hand have random open-
ings and can be replaced by digests produced by the simulator.
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3.2 Composition by Scheduling
As discussed in §2, intuitively, we can prove a complex state-
ment by proving simple statements about related language in-
stances using shared commitments. We now formalize this in-
tuition by extending knowledge soundness to multiple related
proofs that share digests according to a valid schedule. This
guarantees that the index of shared digests is in S.

Definition 9 (Scheduled Knowledge Soundness) The
commit-and-prove scheme P is scheduled knowledge sound
for the `-relation family {R λ}λ∈N and binding digest subset
S ⊂ [`], if for all efficient A there is an efficient extractor E
taking the random tape of A such that, for any R ∈ R λ,

Pr[ τ← KeyGen1(1
λ);

(EK,VK)← KeyGen2(τ,R);
(σ,C,Π;u,o)← (A(EK,R) ‖ E(EK,R,τ)) :
∀C j t ∈ C. (Verify(VK j,C j t)⇒C j t = Commit(EK j,u j t ,o j t))∧

∀i ∈ 0..|σ |−1. σ is valid∧ (Verify(VK,Cσ(i),πi))⇒ uσ(i) ∈ R

] = 1−negl(λ).

Theorem 1 (Scheduled Knowledge Soundness) If a CP P is
knowledge sound and binding for some relation family and
binding digest subset, then it is scheduled knowledge sound for
the same family and subset.

Proof of Theorem 1 (Scheduled soundness): Consider an
adversary A against the scheduled knowledge soundness of the
proof system. A takes EK as input. We define n adversaries
A1, . . . ,An such that Ai takes EK as input and behaves like A
except that it discards all sub-proofs except πi. We construct
our proof as a sequence of games.

Game 1 is the scheduled knowledge soundness game.

Game 2 is the same as Game 1, except that we run all of the ex-
tractors E1, . . . ,En for A1, . . . ,An, whose existence is guaranteed
by knowledge soundness, in parallel with A and on the same in-
put and random tape. Game 2 aborts without A winning if for
some πi, Verify(VK,Cσ(i),πi) and all Verify(VK j,C j t) accept,
but the Ei output witnesses u and randomness o such that either
uσ(i) /∈ R or C j t 6= Commit(EK j,u j t ,o j t) for some C j t ∈ C.

Lemma The difference in the success probabilities of A between
Game 1 and Game 2 is negligible, based on the knowledge
soundness of P .

Game 3 is the same as Game 2, except that it aborts without A
winning if for some i,i′, and j ∈ S, we have u j t 6= u′j t . (Recall
that all digests that appear twice in σ have to be commitments
and thus in S according to scheduled knowledge soundness.)

Lemma The difference in the success probabilities of A between
Game 2 and Game 3 is negligible by the binding property of the
commitment scheme.

The reduction runs the extractors and returns the collision to
break the binding property. It relies on the adversary, and thus
the reduction, receiving τE as input in the binding game.

In Game 3, A’s probability of success is 0, since for every proof
A returns, we can recover a witness such that uσ(i) ∈ R.

Instead of applying different schedules to a given CP scheme
P , we may fix a schedule σ to produce another CP scheme Pσ

with fixed, compound proofs. Let σ be a schedule of length n.
Each proof schedule defines a relation u ∈ Rσ defined by the
conjunction of uσ(i) ∈ R, i ∈ [n]. We construct the knowledge-
sound commit-and-proof scheme for relation Rσ based on a
scheduled knowledge-sound commit-and-prove scheme for R,
as follows, with digest indexes now ranging over j, t instead of
j, and with essentially the same keys.

• KeyGenσ(1λ,Rσ): the schedule in Rσ must correspond to
the fixed schedule σ; then simply call KeyGen(1λ,R) and
return EK j and VK j for all EK j t and VK j t .

• Commitσ(EK j t ,u j t ,o j t): return C j t ← Commit(EK j,u j t ,
o j t), and similarly for Verifyσ(VK j t ,C j t).

• Proveσ(EK,u,o): For each t∈σ, compute π←Prove(EK,
ut,ot). Let (πi)i∈[n] collect the resulting proofs. Return
(πi)i∈[n].

• Verifyσ(VK,C,(πi)i∈[n]) where n = |σ |. For each i ∈ [n],
assert Verify(VK,Cσ(i),πi). Return 1 if all assertions suc-
ceed, 0 otherwise.

Theorem 2 (Scheduled CPs) If P is a scheduled knowledge-
sound commit-and-prove scheme for {R λ}λ∈N, then Pσ is a
knowledge-sound proof system for {{Rσ}R∈R λ

}λ∈N.

The reduction from breaking soundness of Pσ to breaking
scheduled soundness of P simply appends the fixed schedule
to the output of the adversary.

Moreover, if P is binding for some commitments, then Pσ

is also binding for them, hence scheduled knowledge-sound.
Finally, if P is perfectly zero-knowledge then Pσ is perfectly
zero-knowledge.

3.3 Combining Digests and Bootstrapping
As discussed in §2.5, the goal of proof bootstrapping [12, 59] is
to compute a succinct proof whose length does not depend on
the schedule length.

As a scheduled CPs may have many more commitments than
proofs it is important for bootstrapping to also reduce the size
of commitments. We achieve this by partitioning commitments
into a smaller number of virtual banks. This is again a commit-
and-proof scheme in which commitments are represented by
tuples of commitments. In the bootstrapped CP each of these
partitions will be represented by a single compact commitment.

For instance we may consider two virtual banks and write u0
for the subset of messages tagged as public, and u1 for the oth-
ers, minimizing the number of commitments in the final proof.
(Intuitively, u0 includes messages passed in the clear and used
to recompute commitments.)

We give the details of such a CP adapting the usual proof-of-
a-proof bootstrapping construction to CPs P and P ′:
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Protocol 1 (CP bootstrapping)

• KeyGen◦(1λ,R):
EK,VK ← KeyGen(1λ,R); EK′,VK′ ← KeyGen(1λ,REK)
where

(C,π) ∈ REK ⇔
`−1∧
j=0

Verify(VK j,C j)∧Verify(VK,C,π).

Let EK◦j = (EK′j,EK j) and VK◦j = VK′j and output keys
EK◦ = (EK,EK′) and VK◦ = VK′.

• Commit◦(EK◦j ,u j,o j):

Return C′j← Commit(EK′j,Commit(EK j,u j,o j),0).

• Prove◦((EK,EK′),u,o): Let C j ← Commit(EK j,u j,o j),
and Cπ← Commit(EK′`,π,0).

Let π← Prove(EK,u,o); π′← Prove(EK′,(C,π),(0,0)).

Return π◦ = (π′,Cπ).

• Verify◦(VK′j,C
′): Verify′(VK′j,C

′).

• Verify◦(VK′,C′,(π′,Cπ)):

Return Verify(VK′`,Cπ)∧Verify(VK′,(C′,Cπ),π
′).

Theorem 3 (Bootstrapped CPs) If the CP schemes P and
P ′ are knowledge-sound for {Rλ}λ∈N and {R′

λ
}λ∈N, respec-

tively, then P ◦ as described in Protocol 1 is knowledge sound
for {Rλ}λ∈N.

Moreover, if P and P ′ are binding for some commitments,
then P ◦ is also binding for them, hence scheduled knowledge-
sound. Finally, if P and P ′ are perfectly zero-knowledge then
P ◦ is perfectly zero-knowledge.

This describes a single level of bootstrapping, but as the
result is again a commit-and-prove scheme, unbounded boot-
strapping is covered as well.

Proof of Theorem 3 (CP bootstrapping soundness): Con-
sider an adversary A◦ against the knowledge soundness of the
constructed proof system. A◦ takes EK◦ as input. We define
an adversary A ′ that takes EK′ and REK as its input. A ′ ob-
tains EK from REK and behaves like A◦ except that it moves Cπ

from the proof to the commitments. We construct our proof as
a sequence of games.

Game 1 is the original knowledge soundness game.

Game 2 is the same as Game 1, except that we run the ex-
tractors E ′ for A ′, whose existence is guaranteed by knowl-
edge soundness, in parallel with A◦ and on the same input
and random tape as A′. Game 2 aborts without A◦ winning
if Verify(VK′,(C′,Cπ),π

′) accepts, but E ′ does not output a wit-
ness C,π such that (C,π) /∈ REK .

Lemma. The difference in the success probabilities of A◦ be-
tween Game 1 and Game 2 is negligible, based on the knowl-
edge soundness of P ′.

Let E◦ be the extractor built from both E ′ and E for P and P ′
respectively. In Game 2 the success probability of A◦ is negli-
gible, as REK guarantees that Verify(VK,C,π) accepts, and be-
cause P is a knowledge sound proof system for the relation Rλ.

In the bootstrapping theorem we avoid controversial auxil-
iary input [13], contrary to [23]. The missing information for
running A ′ is be obtained from the relation REK being proven.

4 Geppetto’s CP Protocol
We now construct an efficient commit-and-prove protocol for
a relation R for the MultiQAP Q? derived from multiple QAPs
Qi, as described in §2.4.

4.1 MultiQAPs as Polynomials
We use Pinocchio’s technique (which originated with Gennaro
et al. [33]) to lift quadratic programs to polynomials.

For a d×ρ matrix V , we define polynomials vk(x) by polyno-
mial interpolation over d roots, such that for k ∈ [ρ]: vk(r) =Vrk
for all r ∈ [d], and similarly for polynomials wk(x) and yk(x).
Finally, we define the polynomial d(x) which has all r ∈ [d] as
roots. We say that the polynomial MultiQAP is satisfied by u if
d(x) divides p(x), where:

p(x) =
(
∑

ρ

k=0 uk · vk(x)
)
·
(
∑

ρ

k=0 uk ·wk(x)
)
−
(
∑

ρ

k=0 uk · yk(x)
)
.

We use MultiQAPs to prove statements about shared state.
To achieve this, the polynomials corresponding to shared values
(i.e., bus values in S) need to fulfill an additional condition.

Definition 10 (Commitment Compatible MultiQAP)
Consider a polynomial MultiQAP Q and a partitioning
J = {I0, . . . , I`−1} of [ρ]. Q is commitment compatible for bind-
ing subset S if the polynomials in each set {yk(x)}k∈I j , j ∈ S,
are linearly independent, meaning that no linear combination
of them cancels all coefficients, and all polynomials in the set
{vk(x),wk(x)} j∈S,k∈I j are 0.

By inspection, our MultiQAP construction in §2.4 is commit-
ment compatible.

4.2 Commit-and-Prove Scheme for MultiQAPs
Geppetto’s protocol inherits techniques from Pinocchio [51],
the key differences are starting with MultiQAPs instead of
QAPs, and splitting the prover’s efforts into separate commit-
and-prove steps.

We present our protocol in terms of a generic quadratic en-
coding E [33]. In our implementation, we use an encoding
based on bilinear groups. Specifically, let e be a non-trivial bi-
linear map [16] e : G1×G2→ GT and let g1, g2 be generators
of G1 and G2 respectively. To simplify notation we define the
encoding E(x) to be either gx

1 or gx
2 depending on whether it

appears on the left or the right side of a product ∗.
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Protocol 2 (Geppetto)

• τ ← KeyGen1(1λ): Choose s,{αv, j,αw, j,αy, j} j∈[`],rv,

rw
R← F. Construct τ as (τS ,τE )= (s,{αv, j,αw, j,αy, j} j∈[`],

rv,rw),(rv,rw).

• (EK,VK)← KeyGen2(τ,RQ): Choose {γ j,β j} j∈[`]
R← F.

Set ry = rv · rw. To simplify notation, define Ev(x) = E(rvx)
(and similarly for Ew and Ey). For the commitment-
compatible MultiQAP Q = (ρ,d, `,J ,V ,W ,Y ,d(x)) with
binding subset S corresponding to RQ, construct the public
evaluation key EK as:

(EK j) j∈[`], (E(si))i∈[d] ,

where the commitment keys EK j are

( Ev(vk(s)), Ew(wk(s)), Ey(yk(s))

Ev(αv, jvk(s)), Ew(αw, jwk(s)), Ey(αy, jyk(s)),

E(β j(rvvk(s)+ rwwk(s)+ ryyk(s))) )k∈I j

Ev(d(s)), Ew(d(s)) Ey(d(s)),

Ev(αv, jd(s)), Ew(αw, jd(s)) Ey(αy, jd(s)),

Ev(β jd(s)), Ew(β jd(s)), Ey(β jd(s)) .

Construct the public verification key VK as:

(VK j)i∈[`], E(1), Ey(d(s)) ,

where

VK j = E(αv, j),E(αw, j),E(αy, j),E(γ j),E(β jγ j) .

Additionally VK includes commitment keys EK j for com-
mitments that are recomputed at the verifier. Since EK and
VK are public, the split into prover and verifier keys is
primarily designed to minimize the verifier’s storage over-
head.

• C← Commit(EK j,u j,o j):

The values in EK j allow us to define an extractable and
perfectly hiding but not in all cases binding digest.

Let (ck)k∈I j = u j.

For buses j ∈ S, compute a commitment as:

Ey(y( j)(s)),Ev(αy, jy( j)(s)),E(β j(ryy( j)(s))) ;

and for j /∈ S, compute a non-binding digest as:

Ev(v( j)(s)), Ew(w( j)(s)), Ey(y( j)(s)),
Ev(αv, jv( j)(s)), Ew(αw, jw( j)(s)), Ey(αy, jy( j)(s)),
E(β j(rvv( j)(s)+ rww( j)(s)+ ryy( j)(s))) .

where o j = (ov,ow,oy), and v( j)(s) = ∑k∈I j ckvk(s) +
ovd(s) (and similarly for w( j)(s) and y( j)(s)). For commit-
ments v( j)(s),v( j)(s),ov,ow are all 0. Note that all of these
terms can be computed using the values in EK j, thanks to
the linear homomorphism of the encoding E.

• π← Prove(EK,u,o): Let c = u0, . . . ,u`−1. Parse o j as
(o j,v,o j,w,o j,y) and use the coefficients c to calculate:
v(x) = ∑k∈[ρ] ckvk(x) + ∑ j∈[`] o j,vd(x), and similarly for
w(x), and y(x).

Just as in a standard QAP proof, calculate h(x) such
that h(x)d(x) = v(x)w(x)− y(x), i.e., the polynomial that
proves that d(x) divides v(x)w(x)− y(x). Calculate the
proof as π← E(h(s)) using the E(si) terms in EK.

• {0,1}← Verify(VK j,C j): Verify the digest C j by checking

Ev(v( j)(s))∗E(αv, j) = Ev(αv, jv( j)(s))∗E(1)

Ew(w( j)(s))∗E(αw, j) = Ew(αw, jw( j)(s))∗E(1)

Ey(y( j)(s))∗E(αy, j) = Ey(αy, jy( j)(s))∗E(1)

and

E
(

β j(rvv( j)(s)+ rww( j)(s)+ ryy( j)(s))
)
∗E(γ j) =(

Ev(v( j)(s))+Ey(y( j)(s))
)
∗E(β jγ j)+E(β jγ j)∗Ew(w( j)(s)).

(Note that we do not require αv, j and αw, j checks for com-
mitments and can simplify the β j checks.)

• {0,1} ← Verify(VK,C0, . . . ,C`−1,π): The verifier then
combines the terms from the commitments to perform the
divisibility check on the proof term E(h(s)) in π:(

∑ j∈[`] Ev(v( j)(s))
)
∗
(

∑ j∈[`] Ew(w( j)(s))
)

−
(

∑ j∈[`] Ey(y( j)(s))
)
∗E(1) = E(h(s))∗Ey(d(s)) .

As described, the protocol supports non-interactive zero-
knowledge proofs, in addition to verifiable computation. For
applications that only desire VC, the multiples of d(s) in the
EK may be omitted, as can the use of commitment randomiza-
tions o in the digest steps.

Theorem 4 Protocol 2 has binding commitments, as defined by
Definition 5 under the d-SDH assumption.

Theorem 5 Protocol 2 is a knowledge-sound commit-and-
prove scheme, as defined by Definition 6.

Theorem 6 Protocol 2 is a perfectly zero-knowledge commit-
and-prove scheme, as defined by Definition 8.

Like the protocol, the proofs inherit techniques from Pinoc-
chio’s proof. Before presenting the proofs, we recall its crypto-
graphic assumptions.

4.3 Asymptotic Cryptographic Assumptions
To prove the security of Geppetto’s protocol (§4), we make the
same hardness assumptions as Pinocchio [51], summarized be-
low.

Let λ be a security parameter, q = poly(λ), and let A be a
non-uniform probabilistic polynomial time adversary. For each
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λ, let G(1λ) output a description Gλ = (p,G1,G2,GT ,e,Fp̃) of
a cyclic bilinear group [16] of increasing order p defined over
a base field of characteristic p̃, where e : G1×G2→ GT is the
usual pairing (bilinear map) function. For (g1,g2) = g ∈ G1×
G2 we write gx to denote (gx

1,g
x
2). We write G∗ for G\{1}.

Assumption 1 (q-PKE [37]) The q-power knowledge of expo-
nent assumption holds for G if for all A there exists a proba-
bilistic polynomial time extractor χA such that for all benign
state generators S 3

Pr[ Gλ← G(1λ) ; g←G∗1×G∗2 ; α,s← Z∗p ;

σ← (Gλ,g,gs, . . . ,gsq
,gα,gαs, . . . ,gαsq

)

z← S(Gλ,g,gs, . . . ,gsq
) ;

(c, ĉ ; a0, . . . ,aq)← (A ‖ χA)(σ,z) :

ĉ = cα∧ c 6= ∏
q
i=0 gaisi

1 ] = negl(λ)

Note that (y;z)← (A ‖ χA)(x) signifies that on input x, A out-
puts y, and that χA , given the same input x and A’s randomness,
produces z.

Assumption 2 (q-PDH [37]) The q-power Diffie-Hellman (q-
PDH) assumption holds for G if for all A we have

Pr[ Gλ← G(1λ) ; g←G∗1×G∗2 ; s← Z∗p ;

σ← (Gλ,g,gs, . . . ,gsq
,gsq+2

, . . . ,gs2q
) ;

y← A(σ) : y = gsq+1

1 ] = negl(λ).

Assumption 3 (q-SDH [15, 31]) The q-strong Diffie-Hellman
(q-SDH) assumption holds for G if for all A:

Pr[ (Gλ← G(1λ) ; g←G∗1×G∗2 ; s← Z∗p ;σ← (Gλ,g,g
s, . . . ,gsq

) ;

y← A(σ) : y = e(g1,g2)
1

s+c ,c ∈ Z∗p] = negl(λ).

4.4 Proofs of Security
Proof of Theorem 4 (Binding): We use the E(si) values
given as input to the d-SDH assumption to generate EK and
VK. An adversary that breaks the binding property produces
u = (ck)k∈I j , o, u′ = (c′k)k∈I j , o′, u 6= u′, such that ϕ(s) =
∑k∈I j ckyk(s)+od(s)−∑k∈I j c′kyk(s)−o′d(s) = 0, i.e. s is a root
of ϕ(s), and by factoring ϕ(x), a reduction can easily find s and
thus break d-SDH.

Proof of Theorem 5 (Knowledge Soundness): Consider
an efficient adversary A who succeeds in the knowledge-
soundness game in Definition 6. Given A , we need to show
that there exists an algorithm E that, given the same random-
ness, input, and auxiliary information as A , and the additional
trapdoor τE , produces the witnesses and openings A uses in its
commitments and proof.

We will show that E exists if extractors χv, j, χw, j, χy, j, j ∈ [`]
exist. We do this by constructing E from these constituent ex-
tractors. They in turn exist under the d-PKE assumption, when-
ever A exists, as we can construct the corresponding adversaries
Av, j, Aw, j, and Ay, j from A .

3The use of a state generator was suggested by Jens Groth.

To give more detail, we show how to construct Av, j, j ∈ [`]
from A . Suppose A outputs commitments C0, . . . ,C`−1 and
proof π = H, where each C j = (Vj,V ′j ,Wj,W ′j ,Yj,Y ′j ,Z j), j ∈ [`].
Each adversary Av, j takes {E(si)}i∈[0..d], {E(αv, jsi)}i∈[0..d] as its
main input and (EK \ ({Ev(vk(s))∪Ev(αv, jvk(s))}k∈I j),rv,VK \
(E(αv, j))) as its z input. Note that for the assumption α = αv, j,
and that z is independent of α and thus computable by the
state generator S . Av, j runs A after extending z to the full
EK and VK by using its main input and rv to recomputing
({Ev(vk(s))∪Ev(αv, jvk(s))}k∈I j), but outputs only (Vj,V ′j). We
construct adversaries Aw, j and Ay, j in a similar fashion.

Since verification succeeds, we know that Vj ∗Ev(αv, j) =V ′j ∗
Ev(1). Under the d-PKE assumption, we thus know that for
every Av, j there exists an extractor χv, j (taking the same inputs)
that produces the coefficients of a polynomial Vj(x), such that
Ev(Vj(s)) = Vj. And similarly with respect to Wj(x) for Aw, j
and Yj(x) for Ay, j.

Given the constituent extractors χv, j, χw, j, χy, j, E computes
{E(αv, jsi)}i∈[0..d], {E(αw, jsi)}i∈[0..d], and {E(αy, jsi)}i∈[0..d] us-
ing rv and rw and splits EK into σ and z to call them on their
correct inputs.

We now consider several games to bound the success proba-
bility of the main extractor E .

• Game 1 is the same as the original knowledge soundness
game, except that we abort without A winning if for veri-
fying commitments χv, j, χw, j, χy, j, j ∈ [`] do not succeed
in producing polynomials Vj(x) such that Vj 6= Ev(Vj(s))
(and similarly for Wj(x) and Yj(x)).

Lemma 2 The difference in the success probability of
A between the original knowledge soundness game and
Game 1 is bounded (via a union bound) by the sum of the
failure probabilities of χv, j, χw, j, χy, j, j ∈ [`].

• Game 2 is like Game 1, except that it sets H(x) =
(V (x)W (x) − Y (x))/d(x), where V (x) = ∑ j∈[`]Vj(x),
where Vj(x) is the polynomial extracted by χv, j (and sim-
ilarly for W (x) and Y (x)). Game 2 aborts without A win-
ning if H(x) has a non-trivial denominator.

Lemma 3 The difference in the success probability of A
between Game 1 and Game 2 is bounded by the success
probability of an attacker B1 breaking the 2q-SDH as-
sumption, and is thus negligible.

• Game 3 is like Game 2, except that it aborts without
A winning, if one of the commitment polynomial triples
R j(x) = (V ′j(x),W

′
j(x),Y

′
j(x)), where V ′j(x) = Vj(x) mod

d(x) (and similarly for W ′j and Y ′j ), is not in the lin-
ear subspace S j, generated by the polynomial triples
{(vk(x),wk(x),yk(x))}k∈I j , where the linear operations are
done element-wise.

Lemma 4 The difference in the success probability of A
between Game 2 and Game 3 is bounded by the success
probability of an attacker B2 breaking the q-PDH assump-
tion, and is thus negligible.
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In Game 3, A has zero success probability.

For this, we show that the aborts in Game 2 and 3 are the
only two cases in which the proof verifies but the extracted
witness is invalid. We assume that neither case 1 nor case
2 holds; i.e., H(x) has no non-trivial denominator, and each
of the R j(x) is in the linear subspace S j. We will show that
V (x)′ = V (x) mod d(x), W ′(x) = W (x) mod d(x), and Y ′(x) =
Y (x) mod d(x) are a MultiQAP solution; i.e., they can be writ-
ten as linear combinations of {vk(x)k∈[0..ρ]}, {wk(x)k∈[0..ρ]} and
{yk(x)k∈[0..ρ]} using the same coefficients c as required by the
commit-and-prove relation R?, and V ′(x)W ′(x)−Y ′(x) is divis-
ible by d(x).

Since for each j, (V ′j(x),W
′
j(x),Y

′
j(x)), is in the linear sub-

space, generated by the tuples {(vk(x),wk(x),yk(x))}k∈I j , we
can write V ′j(x) = ∑k∈Ii ckvk(x), W ′j(x) = ∑k∈Ii ckwk(x), Y ′j(x) =
∑k∈Ii ckyk(x). We thus have that V ′(x), W ′(x), and Y ′(x) in-
deed can be written as the same linear combination {ck}k∈[0..ρ]
of their polynomial sets, as required in a MultiQAP.

As V ′j(x) = Vj(x) mod d(x), we also have that
Vj(x) = V ′j(x)+ o j,vd(x) for some o j,v, and similarly for Wj(x)
and Yj(x). Therefore, V (x) = ∑ j∈[`],k∈I j ckvk(x)+∑ j o j,vd(x),
W (x) = ∑ j∈[`],k∈I j ckwk(x) + ∑ j o j,wd(x), and Y (x) =

∑ j∈[`],k∈I j ckyk(x) + ∑ j o j,yd(x). Since H(x) has no non-
trivial denominator, it follows that d(x) evenly divides
V (x)W (x)−Y (x) and thus also V ′(x)W ′(x)−Y ′(x).

The commitment opening values are defined as o j =
(ov, j,ow, j,oy, j), for j ∈ [`]. Hence V ′(x), W ′(x), and
Y ′(x) constitute a MultiQAP solution c for the commit-
and-prove relation R, and hence valid witness and openings
u0, . . . ,u`−1,o0, . . . ,o`−1.

Lemma 3 follows directly from the definitions of extractors
χ·, j. The proofs of Lemmas 3 and 4 follow the security proof
of PGHR [51] and are omitted for lack of space. The main
difference is that we range over multiple uniform banks, instead
of the special purpose banks of Pinocchio.

Proof of Lemmas 3 and 4: Given A and E such that Game
2 or Game 3 aborts for a verifying proof, we construct two al-
gorithms B1 and B2 that break the 2q-SDH or q-PDH assump-
tion respectively where q = 4d + 4. The proof is adapted from
PGHR [51]. Like them, we describe B1 and B2 interleaved,
sharing large parts of the exposition. B2 is given q-PDH chal-
lenge instance E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q). B1 is
given the same challenge, except for an extra E(sq+1) which
will remain unused.

Both B1 and B2 generate a MultiQAP evaluation key and a
verification key for the relation R and provide them to A , using
the same structure as in Protocol 2. The only difference is that
they choose r′v and r′w at random and implicitly set rv = r′vsd+1,
rw = r′ws2(d+1), letting r′y = r′vr′w.

Regarding the β j terms, write the final term in the commit-
ment for index j as:

E(β j(rvv( j)(s)+ rww( j)(s)+ ryy( j)(s)))

= E(β j(r′vsd+1v( j)(s)+ r′ws2(d+1)w( j)(s)+ r′ys3(d+1)y( j)(s))) (1)

That is, inside the encoding, β j is multiplied with a certain
polynomial that is evaluated at s. B1 and B2 also generate
β j as a polynomial evaluated at s. In particular, they sets
β j = sq−(4d+3)β

poly
j (s), where β

poly
j (x) is a polynomial of de-

gree at most 3d + 3 sampled uniformly at random such that
β

poly
j (x) · (rvvk(x) + rwxd+1wk(x) + ryx2(d+1)yk(x)) has a zero

coefficient in front of x3d+3 for all k. We know that such a
polynomial β

poly
j (x) exists by Lemma 10 of GGPR [33]. By

inspection, when we now write out β j in terms of s, we see
that the exponent in Equation 1 has a zero in front of sq+1, and
also that the powers of s only go up to degree q+3d +3 ≤ 2q.
Therefore, B1 and B2 can efficiently generate the terms in the
evaluation key that contain β j using the elements given in their
respective challenges. B1 and B2 can clearly perform the same
steps for all j ∈ [`] and hence compute all of the β j terms.

Regarding γ j, B1 and B2 generate γ̄ j uniformly at random
from F and sets γ j = γ̄ jsq+2. B1 and B2 can generate E(γ j)
efficiently from their challenges, since E(sq+2) is given. Also,
β jγ j = sq−(4d+3) ·βpoly

j (s)γ̄ jsq+2 does not have a term sq+1 and
has degree at most q− (4d +3)+ (3d +3)+ (q+2)≤ 2q, and
so B1 and B2 can generate E(β jγ j) from the elements in its
challenge.

Similarly none of the other elements in the keys contain a
term sq+1 in the exponent, since all of the polynomials vk(x),
wk(x) and yk(x) are of degree d and q≥ 4d +4. Hence, B1 and
B2 can generate them using the terms from their challenges.

Thus, the evaluation and verification keys generated by B1
and B2 have a distribution statistically identical to the real
scheme.

Given EK and VK, A can run the Commit, Compute, and
Verify algorithms on its own.

Since the proof verifies correctly, we have that V ′j ∗Ev(1) =
Vj ∗Ev(αv, j). As a result, for each commitment, B1 and B2 can
run the d-PKE extractors χv, j, χw, j, χy, j used by E to recover a
polynomial Vj(x) of degree at most d such that Vj = Ev(Vj(s)).

Similarly, they recover Wj(x) and Yj(x) such that Wj =
Ew(Wj(s)) and Yj = Ey(Yj(s)). Then, they set H(x) =
V (x)W (x)−Y (x)/d(x), where V (x) = ∑ j∈[`]Vj(x) (and simi-
larly for W (x) and Y (x)).

Since the proof verifies, but either Game 2 or Game 3 aborts
there are two possible cases depending on which game aborted:
(1) H(x) has a non-trivial denominator, or (2) One of the com-
mitment polynomials triples (V ′j(x),W

′
j(x),Y

′
j(x)), is not in the

linear subspace, generated by {(vk(x),wk(x),yk(x))}k∈I j .
In Case 1, d(x) does not divide p(x) := V (x)W (x)−Y (x).

Let (x− r) be a polynomial that divides d(x) but not p(x), and
let T (x) = d(x)/(x− r). Let d(x) = gcd(d(x), p(x)). Since
d(x) and p(x) have degrees at most d and 2d respectively,
B1 can use the extended Euclidean algorithm for polynomi-
als to find polynomials a(x) and b(x) of degrees 2d − 1 and
d − 1 respectively such that a(x)d(x) + b(x)p(x) = d(x). Set
A(x) = a(x) · (T (x)/d(x)) and B(x) = b(x) · (T (x)/d(x)); these
polynomials have no denominator since d(x) divides T (x).
Then A(x)d(x)+B(x)p(x) = T (x). Dividing by d(x), we have
A(x)+B(x)H(x) = 1/(x− r). Since A(x) and B(x) have degree
at most 2d−1≤ q, B1 can use the terms in its challenge to com-
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pute E(A(s))+E(B(s)) ·E(H) = E(1/(s− r)), and thus solve
2q-SDH.

In Case 2, for at least one of the digests j ∈ [`], there does
not exist {ck}k∈I j such that V ′j(x) = ∑k∈I j ckvk(x), W ′j(x) =
∑k∈I j ckwk(x), and Y ′j(x) = ∑k∈I j ckyk(x).

Since V ′j(x), W ′j(x) and Y ′j(x) have degree d, and since the
linear subspaces {r′vxd+1+i|i ∈ [0,d]}, {r′wx2(d+1)+i|i ∈ [0,d]},
and {r′wx3(d+1)+i|i ∈ [0,d]} are disjoint (except at the origin),
this also means that R j(x) = r′vxd+1V ′j(x) + r′wx2(d+1)W ′j(x) +
r′yx3(d+1)Y ′j(x) is not in the linear subspace, S j, generated
by the polynomials {rk(x) = r′vxd+1vk(x) + r′wx2(d+1)wk(x) +
r′yx3(d+1)yk(x)}k∈I j .

By Lemma 10 [33], we have that with high prob-
ability xq−(4d+3) · βpoly

j (x) · (r′vxd+1V ′j(x) + r′wx2(d+1)W ′j(x) +
r′yx3(d+1)Y ′j(x)) has a non-zero coefficient for the term xq+1.
Thus, B2 can subtract off all elements of the form E(si)

where i 6= q+ 1 from Z j = E(sq−(4d+3)β
poly
j (s)(r′vsd+1Vj(s)+

r′ws2(d+1)Wj(s) + r′ys3(d+1)Yj(s))) to obtain E(sq+1). This
breaks the q-PDH assumption.

Lemma 5 (Restating of Lemma 10 [33]) Let F [x]d denote
polynomials over field F of degree at most d. Let F [x]¬d denote
polynomials over F that have a zero coefficient for xd . For some
q, let U ⊂ F [x]q, and let span(U) denote the polynomials that
can be generated as linear combinations of the polynomials in
U. Let a(x) ∈ F [x]q+1 be generated uniformly at random sub-
ject to the constraint that {a(x) · u(x) : u(x) ∈U} ⊂ F [x]¬q+1.
Let s ∈ F \{0}. Then, for all algorithms A ,

Pr[u∗(x)← A(U,s,a(s)) : u∗(x) /∈ span(U)

∧ a(x) ·u∗(x) ∈ F [x]¬q+1]≤ 1/|F | .

Proof of Theorem 6 (Zero Knowledge): We first define the
simulator ({C j} j/∈S,π) ← S(τS ,{C j} j∈S): We have that each
C j = (0,0,0,0,Yj,Y ′j ,Z j), j ∈ S. Sample δ j,v, δ j,w,δ j,y for j /∈ S.

Compute C j =(Ev(δ j,v),Ev(αv, jδ j,v),Ew(δ j,w),Ew(αw, jδ j,w),
Ey(δ j,y),Ey(αy, jδ j,y),E(β j(rvδv, j + rwδw, j + ryδy, j))), for j /∈ S.

Let

h =
(∑ j/∈S δv, j)∗ (∑ j/∈S δw, j)−∑ j/∈S δy, j

d(s)
.

Return ({C j} j/∈S,π = E(h)−d(s)−1
∑ j∈S Yj).

Perfect ZK follows from both the real and the simulated com-
mitments {C j} j/∈S being uniformly at random subject to the con-
straints of commitment verification. Once they are fixed, the
verification equation of the proof uniquely determines π.

5 Verifiable Crypto Computations
Background Pinocchio, along with the systems built atop it,
instantiates its cryptographic protocol using pairing-friendly el-
liptic curves. Such curves ensure good performance and com-
pact keys and proofs. An elliptic curve E defines a group of
prime order p′ where each element in the group is an (x,y)
point, with x and y drawn from a second field Fp of large prime

characteristic p. When Pinocchio is instantiated with such a
curve, the QAPs (and hence all computations) are defined over
Fp′ , and hence code that compiles naturally to operations on Fp′

is cheap.

Approach At a high-level, we choose the curve E we use to
instantiate Geppetto such that the group order “naturally sup-
ports” operations on a second curve Ẽ, which we can use for
any crypto scheme built on Ẽ, e.g., anything from signing with
ECDSA to the latest attribute-based encryption scheme.

In more detail, suppose we want to verify ECDSA signatures
over an elliptic curve Ẽ built from points chosen from Fq. If
we instantiate Geppetto using a pairing-friendly elliptic curve
E with a group of prime order p′ = q, then operations on points
from Ẽ embed naturally into our QAPs, meaning that basic op-
erations like adding two points cost only a handful of crypto-
graphic operations, rather than hundreds or thousands required
if p′ did not align with q.

Bootstrapping As described in §2.5, proof bootstrapping is
a particularly compelling example of verifying cryptographic
operations, since it allows us to condense a long series of proofs
and commitments into a single proof and commitment.

Remarkably, Ben-Sasson et al. [10] recently discovered a pair
of MNT curves [49] E and Ẽ that are pairing friendly and, more
importantly, not only can Ẽ be embedded in E, but E can be
embedded in Ẽ. While Ben-Sasson et al. use these curves to
bootstrap the verification of individual CPU instructions, Gep-
petto can use them to achieve unbounded bootstrapping of entire
QAPs. Specifically, we could instantiate two versions of Gep-
petto, one built on E that condenses proofs consisting of points
from Ẽ and another built on Ẽ that condenses proofs consisting
of points from E.

Unfortunately, there are several drawbacks to using the
curves Ben-Sasson et al. found. First, they were only able to
find a pair of curves that provide 80 bits of security. Find-
ing cycles of curves for the more standard 128-bit setting ap-
pears non-trivial, since just finding 80-bit curves required over
610,000 core-hours of computation. Second, the MNT curve
family is not the most efficient family at higher security levels,
and achieving a cycle requires larger-than-usual fields, creating
additional inefficiency [10].

To estimate the costs of using MNT curves at the 128-bit level
used by Pinocchio, we coded up all of the relevant curve opera-
tions in Magma [17] and counted the group operations required.
We made very optimistic assumptions about the optimal imple-
mentation of the curves, e.g., by assuming that the operations
employ all available EC tricks within the pairing computation,
even though the actual curves may not allow for them. Even
under these assumptions, our measurements indicate that key
and proof generation, as well as IO verification, for Geppetto’s
first batch of proofs would be 34-77x slower than a standard
Pinocchio-style proof, while the constant pairing-based portion
of proof verification would be 11x slower; subsequent batches
would cost even more, due to technical challenges in the way
the curves fit together [10].
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As a pragmatic alternative, we propose and implement
bounded bootstrapping. Specifically, we instantiate one version
of Geppetto with the same highly efficient BN curve [7] em-
ployed by Pinocchio. We use the BN curve to generate a col-
lection of commitments and proofs for our MultiQAP-based CP
scheme. We then construct a second curve capable of efficiently
embedding the BN curve operations. When instantiated with
the second curve, Geppetto can efficiently verify crypto opera-
tions on the BN curve. Thus, we can, for example, verify signa-
tures on the verification key built on the BN curve and then use
that key to verify the BN commitments and proofs. However,
the BN curve cannot efficiently embed the second curve, and so
when generating keys, the client must commit to the maximum
number of BN proofs that will be verified. Fortunately, our use
of energy-saving circuits saves the prover effort if it ends up us-
ing fewer proofs. Our measurements suggest that this pragmatic
approach saves us several orders of magnitude in performance.

Details We construct bilinear systems, GIN and GOUT . To
achieve this at the 128-bit security level, we instantiate GIN us-
ing a Barreto-Naehrig (BN) elliptic curve [7], and then construct
GOUT accordingly with the Cocks-Pinch method [24]. Roughly,
the latter constructs a pairing-friendly curve by outputting a fi-
nite field corresponding to a given, prescribed group order. We
fix the prime p from the BN parameterization as the group or-
der, so that the output of the Cocks-Pinch algorithm is the prime
p̃ (as well as the other parameters required in the description of
GOUT ). The following lemma makes this explicit in a special
case that is of most interest in the current work.

Lemma 6 Let x∈Z be such that p= 36x4+36x3+24x2+6x+
1 and p′ = 36x4 +36x3 +18x2 +6x+1 are prime. If

p̃ = 5184x8+10368x7 +12204x6 +8856x5 +4536x4

+1548x3 +363x2 +48x+4 (2)

is also prime, then there exists both an elliptic curve E/Fp of
order #E(Fp) = p′ with embedding degree k = 12 (with respect
to p′), and an elliptic curve Ẽ/Fp̃, such that its order #Ẽ(Fp̃) is
a multiple of p and Ẽ has embedding degree k̃ = 6 (w.r.t. p).

Appendix A contains a proof and more construction details.

6 Implementation
The Geppetto system includes a library that expresses compila-
tion blocks and buses, a compiler that evaluates C programs via
LLVM, and libraries that support bootstrapped computation.

We first explain our programming model by example, then
describe the design and selected features of our compiler, and
finally discuss C libraries and programming patterns.

6.1 Programming Model
A Geppetto programmer controls the structure of compound
proofs and shared buses that connect them, explicitly control-
ling cost and amortization. This structure is expressed via li-
brary invocations, not compiler extensions.

From the verifier’s viewpoint, Geppetto’s C programming
model is reminiscent of remote procedure calls (RPCs). The
programmer marks some function calls as outsourced, indicat-
ing that the verifier should remote the calls to an untrusted
machine, then verify the results with the accompanying cryp-
tographic evidence. This structure provides a clear opera-
tional specification of the verified computation, even for com-
plex proof schedules: when the main program completes, its
outputs and return values must be equivalent to executing the
entire program on a single trusted machine. A Geppetto pro-
gram sample.c defines its outsourced functions and buses as
follows:

#include "geppetto.h" // Geppetto banks and proofs

void compute(bigdata *db, vector *in, vector *out) ...

BUS(DATA, bigdata) // we define 3 buses

BUS(QUERY, vector)

BUS(RESULT, vector)

RESULT job(DATA db, QUERY in) {

bigdata M;

vector query, result;

load_DATA(db,&M); load_QUERY(in,&query);

compute(&M, &query, &result);

return (save_RESULT(&result));

}

int main() {

bigdata M;

vector query[N], result[N];

...

DATA db = save_DATA(&M); // commit DATA just once

for (i=0; i<N; i++) {

QUERY q = save_QUERY(&query[i]);

RESULT r = OUTSOURCE(job, db, q);

load_RESULT(r,&result[i]);

}

}

The program defines some application code (elided), notably
compute() that operates on a matrix and a vector of integers.

The programmer intends to fix the matrix across instance of
compute(), and vary the vector. To this end, sample.c de-
clares three buses for verifiable outsourced computation. Here,
BUS(QUERY, vector) defines the QUERY bus datatype and ac-
cessor functions like load_QUERY analogous to RPC marshal-
ing functions. Each bus can be assigned only once, and must
be assigned before being loaded.

Compiled natively outside Geppetto, geppetto.h provides
trivial definitions that implement QUERY as an in-memory buffer
and OUTSOURCE as a local call.

During compilation, Geppetto interprets sample.c, using
symbolic values for unknown inputs, to generate a verification
key. In prove mode, Geppetto interprets sample.c with con-
crete values to produce the bus value commitments and proofs
of each outsourced call. In verify mode, Geppetto produces a
version of the program that replaces bus loads and outsource
calls with cryptographic verifications; this version can be na-
tively compiled with clang -DVERIFY sample.c. In every
mode, the execution flow of main determines the schedule of
calls to outsourced functions.
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In verify mode, verification keys are initially loaded from
files, buses are supplemented with cryptographic functions for
verifying commitments, and OUTSOURCE(job, db, q) is im-
plemented with:

RESULT verify_job(DATA b0, QUERY b1) {

commitment cs[4];

cs[0] = b0->c; // reuse commitment produced by save_DATA

cs[1] = b1->c; // reuse commitment produced by save_QUERY

RESULT b2 = load_recommit_RESULT();

cs[2] = b2->c;

load_verify_commit(&STATE.vk, &cs[3], C_job_LOCALS);

cProof pi;

load_cProof("job", &pi, outsource_id, RUN_TIME);

verify_proof(&STATE.vk, &pi, 4, cs);

return b2;

}

Just like job, verify_job takes two buses and returns a bus.
The input buses propagate trusted commitments from the caller;
in particular, the bigdata commitment is shared across all
calls. The function loads the remote’s proposed value for the
output bus, verifies the bus’ commitment evidence, and verifies
the computation proof. If any verification fails, the program
exits with an error.

6.1.1 MultiQAP Patterns

Geppetto provides additional support for two common commit-
and-prove patterns.

Sequential Loops Many large computations consist of a
‘main loop’ with a code body that updates loop variables at
every iteration, and also reads (but does not modify) outer vari-
ables.

Geppetto provides a generic C template for outsourcing each
iteration of such loops, with a bus for the outer variables, whose
cost is amortized across all loop iterations.

What about the loop variables? Recall that our commit-and-
prove scheme requires that each bank be assigned at most once
in every proof. Thus, we use two buses for the loop variables,
alternating between odd and even iterations of the loop, and we
compile the loop body twice, once reading the even loop vari-
ables and writing the odd loop variables, and once the other
way round. Hence, our generic template has three banks, two
outsourced functions, and a refined loop that alternates calls be-
tween the two.

MapReduce Geppetto also provides a few generic templates
for parallel loops (as outlined in §6.1) and MapReduce compu-
tations. Similar to sequential loops, we use a series of buses
to succinctly share potentially many variables between mappers
and reducers.

Automated QAP Partitioning Geppetto’s libraries enable
programmer-directed QAP partitioning. We experimented with
automatically partitioning monolithic QAPs, expressed find-
ing hyper-graph cuts. We had some success efficiently finding
approximate cuts in graphs up to 200,000 equations with the
METIS tool . However, the programmer-directed approach is

more flexible and better exploits regular structure such as loop
iterations.

6.2 Symbolic Interpretation via LLVM
This section provides details on the construction of the Geppetto
compiler. It elides QAP techniques already described in [51].

General-Purpose LLVM Front-End As a front-end com-
piler, we use clang [44], a fast full-fledged C compiler with rich
syntax, standard semantics, and optimizations. Geppetto com-
pilation to quadratic programs starts with a low-level, typed,
integer-centric program representation. We run clang -O2 -S

-DQAP -emit-llvm sample.c -o sample.s, where -DQAP
declares but not defines Geppetto primitive types and functions.

Compiling to circuits benefits from aggressive inlining and
partial evaluation. We disable other, unhelpful clang optimiza-
tions, such as its replacement of y∗8 (free in QAPs) with y<< 3
(which incurs bit splitting). Using clang should also facili-
tate extension to other LLVM-supported languages; that may
require adding support for more of LLVM’s instruction set.

Interpreting LLVM Bitcode Instead of directly emitting a
circuit, Geppetto compiles and evaluates programs by symbolic
interpretation of LLVM code. Our interpreter relies on a shal-
low embedding into F#, relying on the F# control stack and
heap. Function calls are implemented by calls to an F# call,
function, and mallocs are integer-array creations. Compile-time
values are known to the interpreter, and used to specialize the
equations we produce. Run-time values are treated symboli-
cally, represented by an abstract domain, and generally involve
allocating QAP equations.

Interpretation is cheap relative to cryptography, so we re-
interpret the program to generate concrete values and verifica-
tion evidence in ‘prove’ mode. Thus there are two related inter-
preters that differ in their interpretation of integer values.

Symbolic Interpretation (1): Compilation Geppetto sepa-
rately interprets each outsourced function. As a side-effect of
their operations, variables and equations are added to the func-
tion’s QAP. For instance, multiplying two unknown integers
adds a variable and an equation. Global caches identify and
eliminate common subexpressions.

We represent unknown integers as a triple of (i) a linear com-
binations of QAP variables; (ii) a source semantics: either some
LLVM intn integer (e.g. int, short, char) or a field element (for
embedded cryptography); and (iii) a range. Our compile-time
abstract integers precisely tracks possible intervals as ranges in
Z. This precision detects field overflows, and enables us defer
truncation (truncating a 35 bit value to its 32 bit C representa-
tion). It also minimizes binary decompositions; these cost one
equation per potentially active bit, and are important for fast
exponentiations during bootstrapping.

After compilation, the MultiQAP is one QAP per function,
plus ‘linking’ information for the buses they share. Thus,
compilation traverses the function QAPs while keeping the
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buses virtual, enumerating their coefficients only to generate the
crypto keys.

Symbolic Interpretation (2): Evaluation In ‘prove’ mode,
we use another, faster instance of our interpreter, and we now
interpret the whole program, not just its outsourced code. De-
pending on the program control flow, one outsourced functions
may be interpreted many times with different ‘run-time’ val-
ues. The evaluator still distinguishes between ‘compile-time’
and ‘run-time’ values, although it has values for both. Values
of variables or equations allocated at compile time are stored
as witnesses that comprise cryptographic digests. Evaluating
some QAP optimizations requires ‘interpretation hints’ passed
from the compiler. For example, before XORing a variable with
a constant, a hint tells the evaluator whether binary decomposi-
tion is needed and how many bits of witness are required.

The evaluator also intercepts outsource and bank functions,
producing commitments and proofs accordingly. Upon com-
pletion, the prover has collected exactly the evidence expected
by the verifier.

Cryptography (FFLib) All cryptographic operations are im-
plemented in a separate high-performance C++ library, with ef-
ficient support for many base fields and elliptic curves. In
addition to default curves that achieve 128-bit security, it also
supports toy curves for testing and debugging. Since as much
as 75% of the total runtime is spent multiplying and exponen-
tiating elliptic curve points, we optimize these operations using
standard pre-computation and batching techniques [51]. Our
C++ library also implements an efficient d logd algorithm for
the prover’s polynomial division.

Primitive Libraries Whenever possible, we reflect (and even
implement) primitive features of the interpreter as C types and
functions. Pragmatically, it keeps our code base small, and lets
us rely on standard (non-cryptographic) tools for testing and
debugging purposes—for instance by comparing printfs be-
tween native clang runs and interpreted runs of the same code.

We provide a basic IO library. When loading from a file, a
flag indicates whether this is a ‘compile-time’ or a ‘run-time’
file. Values from compile-time files are baked into the com-
piled QAP. For run-time files, the compiler interpreter allocates
fresh local QAP variables, and the evaluation interpreter loads
the file’s contents as run-time values. Thus the file represents
private, untrusted inputs provided by the prover.

As another example, for many programs, QAP sizes intri-
cately depend on compile-time values; the interpreter provides
a primitive function int nRoot() that returns the degree of
the QAP being generated (or proved), thereby letting C pro-
grammers debug the cryptographic performance of their code
and even control the partitioning of their code between several
QAPs of comparable degrees—for instance by unrolling a loop
until 4 million equations have been generated.

6.3 Cryptographic Libraries and Bootstrapping
Geppetto has specific support to enable compilation of pro-

grams that evaluate verifications to enable bootstrapping and
other flexible applications of nested evaluation.

Field arithmetic and cryptography To support bootstrap-
ping, we provide libraries that implement primitive field oper-
ations including addition, multiplication, division, and binary
decomposition. These enable fast embedding of cryptography
that benefits from 254-bit words. The field type is also imple-
mented natively so that it works with both clang and Geppetto.

Our file IO library supports loading C structs that mix ma-
chine integers and field elements. As shown in the code of
verify_job, we use it to load cryptographic evidence as ‘run-
time’ data, and similarly for all other pieces of evidence. By
choosing to load the verification keys at ‘compile-time’ or ‘run-
time’, we select a different trade-off between performance and
flexiblity (see §7.3).

QAP-Friendly Elliptic Curves Cryptography We devel-
oped a plain, QAP-friendly C implementation of the elliptic-
curve algorithms for §5, including optimal ate pairings.

As in prior work [10], we use affine coordinates (2 field el-
ements) instead of projective ones (3 field elements). Native
implementations use projective coordinates to avoid a field divi-
sion when adding two points; since we verify the computation,
however, a field division is just as fast as a field multiplication.

For fast multiplication, the native algorithm has two cases at
each iteration of the loop, due to the special treatment of infinite
points in addition. To avoid these expensive branches, we add
an initial summand and remove it at the end.

Bounded Bootstrapping Continuing with our example
in §6.1, assume we wish to compress the N proofs by boot-
strapping, by writing a function that aggregates the result vec-
tors. To this end, we include another, similar but distinct copy
of our Geppetto library which lets us define ‘level 2’ or ‘outer’
banks and outsourced functions. We can then program with two
nested levels of verifiable computations, with the outer top-level
calling ‘level 2’ outsourced functions, which in turn call inner
‘level 1’ outsourced functions according to their own schedules.
(Hence, we also support proof schedules, commitment re-use,
and MultiQAP programming at ‘level 2’.) As before, we obtain
our verification specification by using a trivial implementation
of banks as local buffers and ignoring OUTSOURCE annotations.

For compiling, we first run the Geppetto compiler with the
trivial definition of ‘level 2’ banks and OUTSOURCE, and the
primitive Geppetto definitions for ‘level 1’. This generates keys
and code for outsourcing all ‘level 1’ functions. We then run the
Geppetto compiler with the primitive Geppetto definitions for
‘level 2’, and with the -DVERIFY flag for ‘level 1’, thereby in-
cluding, e.g., the code of verify_job instead of job, as well as
our supporting cryptographic libraries for all ‘level 1’ elliptic-
curve verification steps.

For proving, we run the Geppetto prover first at level 1 (pro-
ducing evidence for its outsourced calls) then at level 2 (loading
that evidence from untrusted, ‘run-time’ files).
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For verifying, we simply compile the source program with
the -DVERIFY flag for level 2.

Although our compiler formally supports additional levels
of bootstrapping, all runs of Geppetto at level 2 must use the
‘outer’ curve presented in §5, and we do not currently provide
cryptographic support for higher levels.

6.4 Branching and Energy-Saving

Continuing from the discussion in §6.1.1, we explain how Gep-
petto implements ‘energy-saving’ QAP encodings.

When evaluating a program, there is no proof cost involved
for QAP variables that evaluate to zero: formally, we add a
polynomial contribution multiplied by 0, and we multiply com-
mitments by 1 (a key element exponentiated by 0). Thus, if at
compile-time we ensure that all intermediate variables for the
branch evaluate to 0 in branches that are not taken, then at run-
time there is no need to evaluate those branches at all.

For example, consider the code fragment if(b) t = f(x).
At compile-time, if b is known, we just interpret the test, and
compile the call to f only if b is true. If b is unknown, we in-
terpret this fragment as t = f(b*x) + (1 - b)*t and, cru-
cially, we compile the call to f conditionally on the guard b,
with the following invariant: if b is 0 and f’s inputs are all 0,
then its result must be zero, and zero must be a correct assign-
ment for all its intermediate variables. Additionally, any store

in f is conditionally handled, using similar multiplications by
b. Note that the addition of (1 - b)*t is generally required
to ensure that, if the branch is not taken, then the value of t is
unchanged.

More generally, we extend our ‘compile-time’ interpreter so
that its main evaluation function takes an additional parame-
ter: its guard, g, with range 0..1. The guard is initially 1, but
it can also be unknown (typically one of the QAP variables).
Except for branches, the guard is left unchanged by the in-
terpreter. Whenever the interpreter accesses a register with a
less restrictive guard, it multiplies it by g before using it. (We
cache these multiplications.) When branching on an unknown
boolean, say b, both branches are evaluated with guards g ∗ b
and g∗ (1−b), respectively. When joining, we sum the results
of the corresponding branches, as explained next.

The single-static-assignment discipline of LLVM and its ex-
plicit handling of joins help us implement this feature. In our
example, the code actually passed from clang to Geppetto is

entry:

%tobool = icmp eq i32 %b, 0

br i1 %tobool, label %if.end, label %if.then

if.then:

%result = ...

br label %if.end

if.end:

%t = phi i32 [ %result, %if.then ], [ %t, %entry ] ...

where the compile-time function phi selects which register to
use for the resulting value of t after the join. At compile-time,
as we symbolically execute all branches, we simply interpret
the phi function as a weighted sum instead of a selector.

Op BN Base BN Twist CP Base CP Twist
Fixed Base Exp 21.3µs 86.4µs 160.0µs 160.0µs
Multi Exp (254 bit) 55.5µs 238.9µs 450.0µs 449.6µs
Pairing 0.7ms 4.9ms
Field Add 43.6ns 43.9ns
Field Mul 289.2ns 290.4ns

Figure 4: Microbenchmarks. Breakdown of the main sources of per-
formance overhead in the larger protocol. Each value is the average
of 90 trials. Standard deviations are less than 4%.

At run-time, our representation of b tells us whether it was
known at compile-time or not; we use that information to pro-
vide 0 witnesses for any branch not actually taken.

7 Evaluation
Below, we evaluate the effect of Geppetto’s optimizations on
prover performance. We run our experiments on an HP Z420
desktop, using a single core of a 3.6 GHz Intel Xeon E5-1620
with 16 GB of RAM.

7.1 Microbenchmarks
To calibrate our results, we briefly summarize the cost of our
cryptographic primitives in Figure 4. We generally use a
Barreto-Naehrig (BN) curve for generating commitments and
proofs, and we use the Cocks-Pinch (CP) curve to handle em-
bedded cryptographic computations like bootstrapping. The
BN curve is asymmetric, meaning one source group (base) is
cheaper than the other (twist). Geppetto’s protocol is designed
to keep most of the work on the base group.

The CP curve is slower than the BN for two reasons. First, it
was chosen to support bounded bootstrapping, so it uses larger
field elements than the BN curve (see §5). Second, the BN code
has been extensively optimized, including hand-tuned assembly
code, while the CP code is newly written C. Based on operation
counts from Magma [17], the CP curve should be within 2-4x
of BN curve, and indeed comparing the CP curve’s performance
with a similar C version of the BN curve confirms this.

7.2 MultiQAPs
We compare the use of MultiQAPs for shared state with the
use of hashing in prior work such as Pantry [18]. At a mi-
cro level, Pantry’s results suggest that hashing an element of
state increases the degree of the QAP by ∼11.25/byte. In con-
trast, with MultiQAPs, a full field element only increases the
degree by one, so with Geppetto, the degree only increases by
∼0.03/byte, a savings of 375×. Even if we want to operate on
32-bit values, instead of full field elements, Geppetto only costs
0.25/byte, a savings of 45x. Since the QAP degree directly im-
pacts proof time, as well as the size of and time to generate
the keys, such savings translate into concrete performance im-
provements. Experiments to quantify these improvements are
ongoing work.
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A naive alternative to MultiQAPs and hashing is to build one
gigantic Pinocchio QAP, so that the shared state becomes sim-
ply internal circuit wires. However, our experiments quickly
showed the futility of this approach; assuming only 10 mappers,
this approach would require a QAP with a degree of 10M+,
while the Pinocchio prover keels over (i.e., begins swapping)
before it can reach 3M.

7.3 Verifying Crypto and Bootstrapping
In §5, we claimed that embedding cryptographic operations
without matching field sizes was exorbitantly expensive. To
validate this claim, we combined data from a basic ECC pairing
operation coded in Magma with cost models from Pinocchio
for various operations such as bit splitting. Our calculations es-
timate that the pairing alone would require a QAP with degree
of 44 million.

Fortunately, our choice of matching curves in §5 brings this
cost down into the realm of feasibility. For example, a pair-
ing only requires a QAP of degree 14K, an improvement of
3100× vs. the naı̈ve approach, while an exponentiation, i.e., gx,
increases the degree by ∼60 per bit in x.

Furthermore, as discussed in §5, our curves improve on the
performance of previous bootstrapping curves [10] by 34-77x,
at the expense of unbounded bootstrapping.

7.3.1 Bootstrapping

From the verifier’s perspective, bootstrapping is quite attractive,
since she only receives (and only verifies) one constant-sized,
512-bit proof, and one constant-sized, 448-byte commitment.

Without bootstrapping, the only way for the prover to gen-
erate such concise proofs would be via one massive Pinocchio-
style QAP, which our results above (§2.4) show is infeasible.
Nonetheless, bootstrapping does come at cost. While bootstrap-
ping, the “outer” QAP’s degree grows with each commitment or
proof that it must verify. We summarize these costs below as-
suming that the verification keys are known at compile-time.

• For each recomputed commitment, we increase the degree
by 2K for each 32-bit integer value committed.

• For each bus commitment verification, we pay 33.8K (in-
cluding the pairings needed for the bus alpha and beta
checks).

• For each full commitment verification, we pay 79.6K (in-
cluding 3 full alpha checks and a full beta check).

• For each proof verification, we pay 28.2K.

With keys unknown at compile-time, we pay instead 89.8K and
30.6K for full commitment and proof verification, respectively.

We also observe that the prover’s cryptographic cost for
“outer” proofs and commitments is typically higher than for
work on the “inner” instance, even for QAPs of the same size.
One reason is that the outer CP curve is less efficient than the in-
ner BN curve (§7.1). A second reason is that many of the values
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Figure 5: Energy-Saving Circuits. The energy-saving multiplexer
allows us to include an optional circuit that has low cost when unused.

the prover commits to for the inner instance arise from the pro-
gram being verified, and hence they are often 1, 32, or 64 bits.
In contrast, the outer curve verifies elliptic curve operations and
hence many values are full-fledged 254-bit values.

While these costs are not yet practical, they are low enough
that we can employ bootstrapping to scale the prover to previ-
ously unreachable computations. For example, with our exist-
ing implementation, we could bootstrap up to 14 “inner” proofs
sharing 16 buses; applying this to, say, the matrix exponenti-
ation example allows us to produce a constant-size proof for
a computation with a useful (i.e., not counting bootstrapping
costs) QAP degree of over 50 M, an order of magnitude larger
than previously reported verifications. This experiment also al-
lows us to measure an effective “clock rate” for our prover.
When evaluating the computation, the prover executes 24M
LLVM instructions and generates a proof in 152 minutes, giv-
ing us a clock rate of 2.6 KHz. While low, this is five orders
of magnitude faster than the unbounded bootstrapping in previ-
ous work [10], which reported a clock rate of 26 milliHz with
a lower security level, though that work offers more generality
than Geppetto.

7.4 Energy-Saving Circuits

As a targeted microbenchmark to evaluate the benefits of
energy-saving circuits (§2.6), in Figure 5, we compare a static
compile-time condition to a runtime condition. The left group
shows a static computation with a single matrix multiplication
and a static computation containing five multiplications that
takes proportionally longer. On the right, a single computa-
tion supports up to five multiplications, but is organized using
energy-saving circuits to make the one-multiplication case inex-
pensive. Using this circuit to compute one matrix multiply costs
68% more than the static version (rather than 5×), and costs a
negligible 1% in the five-multiply case.

7.5 Compiler

Some previous verifiable computations systems do not include a
compiler [25, 58], while those that do [11, 18, 51] have typically
compiled small examples with less than 100 lines of C code.
In contrast, Geppetto’s compiler handles large cryptographic li-
braries, with the largest clocking in at 4,159 SLOC [62] of com-
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plex cryptographic code supporting elliptic curve operations, in-
cluding pairing.

8 Related Work

Verifiable Computation As discussed in §1, many previous
systems for verifying outsourced computation make undesirable
assumptions about the computation or the prover(s). Recently
however, several lines of work have refined and implemented
protocols for verifiable computation that make at most crypto-
graphic assumptions [10, 51, 55, 58]. These systems offer dif-
ferent tradeoffs between generality, efficiency, interactivity, and
zero-knowledge, but they share a common goal of achieving
strong guarantees with practical efficiency.

However, these systems typically verify a single program at
a time, leading to performance issues for state shared across
computations (see §2.1). A classic way to condense state is to
commit to it via a hash [9, 14, 33, 47]. When specifying the
IO to a program P, the verifier only gives the hash value h =
H(u). The prover supplies the full data values and, as part of
the verifiable computation, hashes the data and proves that the
hash matches the one supplied by the verifier.

A recent system, Pantry [18], implements collision-resistant
hashing on top of the existing QAP-based Pinocchio [51] and
Zaatar protocols [55] and uses it both for IO specification and
for the intermediate state in MapReduce computations. With
Geppetto, the intermediate state produced by the mappers and
consumed by the reducers is represented simply as a MultiQAP
bus. Hence, each value on the bus only increases the QAP’s
degree by 1, and crypto operations are only needed when the
values are written.

As an orthogonal contribution, Pantry uses hashes to build a
memory abstraction based on Merkle trees [47], though subse-
quent work [11, 61] suggests that memory routing networks [9]
generally perform better. Regardless, these techniques for dy-
namic memory accesses are orthogonal to Geppetto, and as re-
cent work demonstrates [61], can be integrated quite naturally
with Geppetto for computations that need them.

As discussed in §5, Ben-Sasson et al. [10] propose to use suit-
ably related elliptic curves for unbounded bootstrapping. Gep-
petto can leverage unbounded bootstrapping, but it also supports
bounded bootstrapping for better performance. Ben-Sasson et
al. bootstrap the verification of individual CPU instructions us-
ing handwritten circuits, whereas Geppetto uses compiled cryp-
tographic libraries to bootstrap high-level operations (e.g., pro-
cedure calls) following our belief that C should be compiled, not
interpreted. Compilation plus bounded bootstrapping leads to
five orders of magnitude faster performance, though both tech-
niques sacrifice generality compared with unbounded interpre-
tation.

Interpreting CPU instructions means that Ben-Sasson et al.
natively avoid the redundancy of executing both branches of
an if-else branch in the source program, but the interpretation
circuit itself is repeated for every instruction and contains cir-
cuit elements that are not active for every instruction, and hence
would benefit from Geppetto’s energy-saving circuit’s ability to

power down unused portions of the CPU verifier. Similarly, pro-
grams interpreted in this framework can benefit from Geppetto’s
MultiQAP-based approach to state.

Commit-and-Prove To our knowledge, commit-and-prove
(CP) schemes are first mentioned by Kilian [41]. Canetti et
al. [20] define CP schemes in the UC model and realize such
schemes in the FZK-hybrid model. Escala and Groth [28] de-
sign CP schemes from Groth-Sahai proofs [38].

Zero Knowledge Several systems compile high-level func-
tions to zero-knowledge (ZK) proofs [1, 5, 46]. Compilers
from Almeida et al. [1] and Meiklejohn et al. [46] build on Σ-
protocols [26], while the work of Backes et al. [5] uses Groth-
Sahai ZK proofs [38]. For the subset of functionality these sys-
tems support, they are likely to outperform Geppetto at least for
the prover, but none offer the degree of efficient generality and
concise proofs that Geppetto provides.

9 Conclusions
Geppetto employs four independent but carefully intertwined
techniques: MultiQAPs, QAPable cryptography, bounded boot-
strapping, and energy-saving circuits. We increase the effi-
ciency of the prover by orders of magnitude, and we improve the
versatility of its proofs, e.g., by enabling the verification of hid-
den computations. Geppetto’s scalable compiler exposes this
power and flexibility to developers, bringing verifiable compu-
tation one step closer to practicality.
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[26] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding
protocols. In Proc. of CRYPTO, 1994.

[27] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno.
Pinocchio coin: Building Zerocoin from a succinct
pairing-based proof system. In ACM PETShop, 2013.

[28] A. Escala and J. Groth. Fine-tuning groth-sahai proofs.
Cryptology ePrint Archive, Report 2004/155, Oct. 2013.

[29] D. Freeman, M. Scott, and E. Teske. A taxonomy of
pairing-friendly elliptic curves. J. Cryptology, 23(2):224–
280, 2010.

[30] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. ACM Trans. on Comp.
Sys., 20(1), Feb. 2002.

[31] R. Gennaro. Multi-trapdoor commitments and their ap-
plications to proofs of knowledge secure under concurrent
man-in-the-middle attacks. In CRYPTO, 2004.

[32] R. Gennaro, C. Gentry, and B. Parno. Non-interactive ver-
ifiable computing: Outsourcing computation to untrusted
workers. In Proceedings of IACR CRYPTO, 2010.

[33] R. Gennaro, C. Gentry, B. Parno, and M. Raykova.
Quadratic span programs and succinct NIZKs without
PCPs. In EUROCRYPT, 2013.

[34] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Del-
egating computation: Interactive proofs for muggles. In
STOC, 2008.

[35] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM J. Comput.,
18(1), 1989.

[36] P. Golle and I. Mironov. Uncheatable distributed compu-
tations. In Proc. of CT-RSA, 2001.

[37] J. Groth. Short pairing-based non-interactive zero-
knowledge arguments. In ASIACRYPT, 2010.

[38] J. Groth and A. Sahai. Efficient non-interactive proof sys-
tems for bilinear groups. In Proc. of EUROCRYPT, 2008.

[39] K. Ireland and M. I. Rosen. A classical introduction to
modern number theory, volume 1982. Springer, 1982.

[40] G. O. Karame, M. Strasser, and S. Capkun. Secure remote
execution of sequential computations. In Intl. Conf. on
Information and Communications Security, 2009.

20



[41] J. Kilian. Uses of Randomness in Algorithms and Proto-
cols. PhD thesis, MIT, Apr. 1989.

[42] J. Kilian. A note on efficient zero-knowledge proofs and
arguments (extended abstract). In STOC, 1992.

[43] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F.
Sayed, E. Shi, and N. Triandopoulos. TrueSet: Nearly
practical verifiable set computations. In Proc. of USENIX
Security, 2014.

[44] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis and transformation. In Sym-
posium on Code Generation and Optimization, Mar 2004.

[45] R. B. Lee, P. Kwan, J. P. McGregor, J. Dwoskin, and
Z. Wang. Architecture for protecting critical secrets in
microprocessors. In ISCA, 2005.

[46] S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and
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A Elliptic Curve details
We construct bilinear systems, GIN and GOUT . Let GIN =
(p′,G1,G2,GT ,e,Fp): that is, G1, G2 and GT are groups of
prime order p′, all defined over fields of large prime charac-
teristic p, such that there exists an efficiently computable bi-
linear map e : G1 ×G2 → GT . Analogously, define GOUT =
(p,G̃1,G̃2,G̃T , ẽ,Fp̃). Bounded bootstrapping requires that the
group order in the definition of GOUT is equal to the prime char-
acteristic in the definition of GIN .

Proof of Lemma 6: E/Fp is a BN curve [7], therefore k = 12.
We construct Ẽ by following the four steps in [29, Th. 4.1], with
inputs the (parameterized) subgroup order p and the embedding
degree k = 6. For Step 1, we always have 6 | p−1, and therefore
(−3/p) = 1 as follows: when p≡ 1 mod 12, (−1/p) = 1 from
p ≡ 1 mod 4 and (3/p) = 1 from [39, §5, Theorem 2]; when
p ≡ 7 mod 12, (−1/p) = −1 from p ≡ 3 mod 4 and (3/p) =
−1 from [39, §5, Theorem 2]. For Step 2, a primitive 6th root of
unity in (Z/pZ)× is parameterized as ζ6(x) =−18x3−18x2−
9x− 1 [50, Lemma 2.10], so we can take t ′(x) = ζ6(x)+ 1 =
−18x3 − 18x2 − 9x. For Step 3,

√
−3 ∈ (Z/pZ)× is param-

eterized by
√
−3 = ±(36x3 + 36x2 + 18x + 3), from which

y′ = (t ′− 2)/
√
−3 depends on the sign in

√
−3; the choice of√

−3 = 36x3 + 36x2 + 18x + 3 gives y′ = 6x3 + 6x2 + 3x. In
Step 4, we are free to choose any t ∈ Z congruent to t ′ mod p,
and likewise for y ∈ Z congruent to y′ mod p, provided that 4 |
(t2−3y2). Setting t(x) = 2p(x)+ t ′(x) and y(x) = 2p(x)+y′(x)
into p̃(x) = (t(x)2−3y(x)2)/4 gives (2). Finally, to see the di-
visibility condition on #Ẽ, we write the trace of Frobenius as
t(x) = 2p(x)+ t ′(x) = 72x4 +54x3 +30x2 +3x+2, from which
it follows that #Ẽ(Fp̃(x)) = p̃(x)+1− t(x) = 3 · (48x4 +48x3 +

33x2 +9x+1) · p(x).

Taking x = −(262 + 255 + 1) in Lemma 6 gives rise to p
and p′ as 254-bit primes, and p̃ as a 509-bit prime. The
curve E/Fp : y2 = x3 + 2 has prime order p′ and the curve
Ẽ/Fp̃ : y2 = x3 + 21 has composite order h · p, where h =
3 · (48x4 + 48x3 + 33x2 + 9x+ 1). Both curves E and Ẽ sup-
port a maximal degree-6 twist which offers several efficiency
benefits: the twist of E is E ′/Fp2 : y2 = x3 +(1−u), u2 = −1,
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that of Ẽ is Ẽ ′/Fp̃ : y2 = x3 +63. The groups in GIN and GOUT
are defined as:

G1 = E(Fp), G2 = E ′(Fp2)[p′], GT = µp′ ⊂ Fp12 ,

G̃1 = Ẽ(Fp̃)[p], G̃2 = Ẽ ′(Fp̃)[p], G̃T = µp ⊂ Fp̃6 . (3)

where E[`] denotes the `-torsion elements on the curve E, and µ`
denotes the `th roots of unity in a finite field. Note that the four
elliptic curve groups, G1, G2, G̃1 and G̃2, have prime orders
of 254 bits, and that GT and G̃T are contained in finite fields of
over 3000 bits. Thus, all of the groups in (3) meet the respective
requirements of the 128-bit security level [29, §1.1].

To complete the description of GIN and GOUT , it remains to
detail the respective pairings e and ẽ. Since both E and Ẽ are
ordinary curves, both pairings are asymmetric and are instanti-
ated using the optimal ate pairing [60]. The curve E is the BN
curve used in several “speed record” papers (cf. [2]), so we re-
fer there for a description of an optimized implementation of e.
Lemma 7 below describes the pairing ẽ.

The specific construction given here provides a way to con-
struct a pair of curves with the desired properties depending
on a single parameter from a parameterized family of pairs of
curves. We note that, in general, the Cocks-Pinch approach
can be applied to a specific desired group order, not necessarily
in parameterized form. This means that starting from a given
group order, one can use the Cocks-Pinch approach to construct
a sequence of curves E(i), defined over prime fields Fpi , respec-
tively, such that pi divides #E(i+1)(Fpi+1).

The Cocks-Pinch algorithm implies that this method doubles
the bit length of the base field prime for each layer, i.e., the bit
length of pi+1 is roughly twice the bit length of pi. Assuming an
implementation with Karatsuba multiplication, one would ex-
pect the cost of base field arithmetic in Fpi+1 to be 3 times that
in Fpi . Due to the large bit sizes, it is possible to reduce the
embedding degree with each further step successively, possibly
to the minimal value 1, and still maintain 128-bit security.

A pairing for GOUT The following Lemma describes the pair-
ing ẽ on the Cocks-Pinch curve Ẽ in detail. As usual, let fm,Q be
a function with divisor ( fm,Q) = m(Q)− ([m]Q)− (m− 1)(O),
`Q,R be a function with divisor (`Q,R) = (Q) + (R) + (−(Q+
R))− 3(O), and vQ be a function with divisor (vQ) = (vQ) +
(v−Q)−2(O).

Lemma 7 Let Ẽ/F p̃ be a Cocks-Pinch curve parameterized as
in Lemma 6. For P ∈ G̃1 and Q ∈ G̃2, the function

ẽ(Q,P) =

(
f p̃
6x2+2x+1,Q(P) · f2x,Q(P) ·

`[(6x2+2x+1)p̃]Q,[2x]Q(P)

v[(6x2+2x+1)p̃+2x]Q(P)

)(p̃6−1)/p

(4)

defines a bilinear pairing on G̃2× G̃1. Moreover, asides from
the final exponentiation by (p̃6−1)/p, the pairing can be com-
puted using log2(6x2)+ ε basic Miller iterations and (at most)
an additional 2log2(3x) multiplications in F p̃6 .

Proof of Lemma 7: Recall that Ẽ has embedding degree k̃ =
6 with respect to the prime subgroup of order p(x) = 36x4 +
36x3 +24x2 +18x+1. Following [60, §3.3], we work with the
2-dimensional lattice L , spanned by 〈p(x),0〉 and 〈−p̃(x),1〉.
Equation (4) follows from applying [60, Eq. 5] to the short
vector in 〈2x,6x2+2x+1〉 in L . To compute ẽ, we note that the
computation of f6x2+2x+1,Q(P) can make use of f2x,Q(P), since
(in terms of divisors) we have

( f6x2,Q) = ( f2x,Q)
3x · ( f3x,[2x]Q), (5)

and

( f6x2+2x+1,Q) =

(
f6x2,Q · f2x,Q ·

`[6x2]Q,[2x]Q

v[6x2+2x]Q
·
`[6x2+2x]Q,Q

v[6x2+2x+1]Q

)
.

(6)

For (5), it takes log2(2x) basic Miller iterations to compute
f2x,Q and another log2(3x) iterations to subsequently compute
f3x,[2x]Q, giving log2(6x2) basic Miller iterations. The one ad-
ditional iteration required for f3,[2x2]Q is included in the ε term,
along with the two “one-off” line functions in (6), and the other
“one-off” multiplications throughout. Finally, the exponentia-
tion by 3x in (5) incurs at most and additional 2 log2(3x) multi-
plications.
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