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SIMPLIFICATION/COMPLICATION OF THE BASIS OF PRIME 
BOOLEAN IDEAL 

 
 
Prime Boolean ideal has the basis of the form (x1 + e1, ..., xn + en) that consists of 

linear binomials. Its variety consists of the point (e1, ..., en). Complication of the basis 
is changing the simple linear binomials by non-linear polynomials in such a way, that 
the variety of ideal stays fixed. Simplification of the basis is obtaining the basis that 
consists of linear binomials from the complicated one that keeps its variety. 

Since any ideal is a module over the ring of Boolean polynomials, the change of 
the basis is uniquely determined by invertible matrix over the ring. 

Algorithms for invertible simplifying and complicating the basis of Boolean ideal 
that fixes the size of basis are proposed. Algorithm of simplification optimizes the 
choose of pairs of polynomials during the Groebner basis computation, and 
eliminates variables without using resultants. 
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Notations 

Vectors are denoted by bold font (x, f, g) (the case of the row and the column 
vector is clear from context); 

Gn[x], x = (x1, …, xn) is the ring of Boolean polynomials; 
A, B, C, ... are ideals of polynomial ring; 
P is a prime ideal; 
A Å B is the sum of ideals; 
V(A) is the variety (the set of common zeroes) of ideal; 

1x x= +  is the inverse of x; 
DNF is the disjunctive normal form; 
LM(f) is the leading monomial of polynomial f; 
f  is the order of monomials. 



1. Introduction 

Finite Boolean rings are widely used in cryptography. Many cryptographic 
problems such as hash-function inverting and computing the key of block or 
stream cipher under known plaintext/ciphertext take solving systems of Boolean 
equations. The set of variables contains the key bits and the bits of intermediate 
texts. Since a hash function and a ciphertext are easy to compute, the equations are 
sparse (each polynomial depends on relatively small number of variables 
comparatively to total number of variables). 

The ring Gn[x], x = (x1, …, xn), of n-bit Boolean functions was introduced by I. 
Zhegalkin [18]. Solving the system of Boolean equations means the computing the 
common zeroes of sparse polynomials of Gn[x]. These polynomials form the ideal 
in Gn[x] and their common zeroes form the variety of ideal. The problem of 
computing the variety of ideal of sparse polynomials is known as satisfiability 
problem which is NP-complete [1]. 

If there are one or few known plaintext/ciphertext pairs, the encryption key is 
determined uniquely with high probability. If the key (input of hash function) is 
determined uniquely, then the ideal is prime. 

There are few different methods for computing the variety of Boolean ideal. 
The variety can be obtained by eliminating the variables. The common method of 
elimination takes computing of the resultant in polynomial ring [16]. 
Unfortunately, this method takes extremely large memory and since it is 
impractical. 

N. Courtois suggested the extended linearization method for solving the 
overdefined system of square equations [4]. Nonlinear monomials are considered 
as new variables, and the technique of solution is similar roughly to Gaussian 
elimination method. The method is equivalent to Groebner basis method. 

The most popular methods are based on Groebner bases technique1 [7, 8]. 
These methods take the computation of syzygy as linear combination of two 
polynomials over the monoid of monomials such that least monomial are reduced. 
This takes the ordering of monomials and variables. The syzygies are to be 
computed for many pairs of polynomials of the basis and are joined to the basis. 
Since procedure of obtaining the syzygy is not invertible, the size of basis of ideal 
growths during the initial half of computation, and the size of syzygy growths too. 
The dependence of the memory size of the basis is near to exponent. Hence this 
method stays impractical too. Theoretically, this method gives the basis of prime 
ideal in the form (x1 + e1, ..., xn + en) if the solution is (e1, ..., en). 

The Groebner basis computation is hard in practice due to some lacks. 

                                           
1 Initially the Groebner bases were applied for division of polynomials of several variables 

and were not directly connected with solving systems of polynomial equations. Computing 
common zeroes of polynomial ideals is in the area of algebraic geometry. 



1. Computation of many syzygies leads to zero reduction (notice that this is 
possible only if the joining of the syzygy increases the size of the basis of 
ideal). Hence the choose of pairs of polynomials is an important problem. 

2. Number of polynomials of the basis of ideal increases. 
3. The average size of a syzygy increases. 

If we can choose the pairs of polynomials in such a way that the size of the 
basis of ideal stays fixed (i.e. one of the basis polynomials is changed by the 
syzygy), the first two lacks are neglected. 

Quite different method (agreeing and gluing) was proposed in [14]. This 
method deals with the set of zeroes of polynomials and has exponential time and 
memory complexity. 

The characteristic set method [9, 17] uses the ordering of variables and uses the 
ordering of variables. The result of computation is triangle set of polynomials that 
form the basis of ideal: the last polynomial depends on one variable, the last but 
one polynomial depends on the two variables, etc. If the ideal is prime, then 
characteristic set is equivalent to Groebner basis computation. Indeed, if the 
triangle set of polynomials of the basis is obtained, then we can obtain the 
Groebner basis. The last polynomial of triangle system is the required polynomial. 
Substituting he zero of last polynomial in last but one polynomial we obtain the 
zero for next variable, etc. Back, if the basis (x1 + e1, ..., xn + en) is given, then the 
triangle set can be easily obtained. 

The goal of this paper is suggesting the method of invertible transformation of 
prime Boolean ideal.  It is shown that any invertible transformation of the basis of 
ideal that fixes the size of the basis is determined by the action of invertible matrix. 
Hence for arbitrary system of n Boolean polynomials that have the unique zero (e1, 
..., en), there exists an invertible matrix over the polynomial ring that simplifies 
initial basis to the form (x1 + e1, ..., xn + en). Back, for basis (x1 + e1, ..., xn + en) 
there exists an invertible matrix that complicates the basis in such a way that 
computing of the zero of the transformed ideal seems hard. 

Simplification allows eliminating of the variables without using resultants and 
obtaining the triangular basis similarly to characteristic set method. The proposed 
method is invertible and it admits variations. Also the simplification admits 
optimizing the choose of some polynomial pairs during the Groebner basis 
computation. Complication of the basis can be used in public-key cryptology, for 
example, in hidden field equations and isomorphism of polynomials. 

2. Finite Boolean rings, their ideals and varieties 

Boolean ring consists of idempotent elements that satisfy equality x2 = x [3]. 
Then x3 = x×x2 = x×x = x and by induction xn = x for n ³ 1. 

Boolean ring has characteristic 2 due to equalities 
a + a = (a + a)2 = a2 + 2a2 + a2 = a + a + 2a, 

hence 2a = 0. Boolean ring is commutative due to equalities 



a + b = (a + b)2 = a2 + ab + ba + b2 = a + b + ab + ba, 
hence ab = ba. 

Finite Boolean ring is isomorphic to the ring of subsets of finite set with 
operations of symmetric difference (addition) and intersection (multiplication). If 
the finite set has n elements, then the set of its subsets has 2n elements. Similarly 
the finite Boolean ring is isomorphic to the ring of n-dimensional binary vectors 
with bitwise addition and multiplication. 

Boolean function is the map Å2 ´ ... ´ Å2 ® Å2. 
Define the ring Gn[x] = Å2[x1, …, xn]/(x1

2 + x1, …, xn
2 + xn) of Boolean 

polynomials. Since f2 + f = f(f + 1) = 0 for any f Î Gn[x] each non-constant 
polynomial divides the zero. Since zero divisor cannot be invertible, the unique 
invertible element in Gn[x] is 1. 

There is a bijection between Boolean functions and Boolean polynomials, 
#Gn[x] = 22

n
. 

Ideal of a ring is subset of the ring such that sum of any two elements of the 
ideal is in the ideal, and product of element of the ideal and element of ring is 
element of the ideal.  

According to Hilbert's basis theorem any ideal of polynomial ring has finite 
basis [10]. Hence each ideal of a polynomial ring is a finite-dimensional module 
over this ring, and back, each finite-dimensional module is an ideal. 

The set of common zeroes of a polynomial ideal A form the variety V(A). Ideals 
A, A2, ... have the same variety, so there exists the largest ideal that has given 
variety, it is known as radical. 

The Krull dimension of a ring is the maximal length of increased prime ideals. 
Since the ring Gn[x] has zero divisors, the zero ideal is not prime. Since the ring 
Gn[x] is finite, it is Noetherian and Artinian, and any its prime ideal is maximal [2]. 
Hence the dimension of Gn[x] is 0. The dimension of ideal A Ì Gn[x] is the 
dimension of the ring Gn[x]/A. So all ideals of Gn[x] have dimension 0. 

Ideals of polynomial ring admit commutative and associative operations of 
addition Å, intersection and multiplication. In Noetherian ring any ideal admits 
unique primary decomposition as intersection of primary ideals. In Gn[x] any ideal 
is idempotent, so a primary ideal is prime, similarly any ideal is radical. Hence 
there is bijection between varieties and ideals. 

In Artinian ring the intersection of ideals coincides with its product, hence any 
ideal of Gn[x] has unique factorization as product of different prime ideals. The 
variety of a prime ideal P Ì Gn[x] consists of single point (e1, ..., en), and P is the 
set of polynomials that take zero at this point. If V(P) = (e1, ..., en), then P = (x1 + 
e1, ..., xn + en) = (x1 + e1) Å ... Å (xn + en). The prime ideal P can be also given as 
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product of prime ideals can be considered as a principal one (given by a 
polynomial). Hence there is the bijection between the set of ideals and the set of 
polynomials of Gn[x]. 

Any automorphism of Gn[x] permutes prime ideals and back, any such 
permutation is an automorphism [15]. 

Quotient ring Gn[x]/P is isomorphic to Å2 (has 2 elements). Similarly 
Gn[x]/(P1P2) consists of 4 elements, Gn[x]/(P1P2P3) consists of 8 elements, etc. 
So finite Boolean ring is isomorphic to Gn[x] or to its quotient ring. 

Addition and multiplication of ideals induces corresponding operations for their 
varieties: V(A Å B) = V(A) Ç V(B), V(AB) = V(A) È V(B). If ideals are 
principal, then (f) Å (g) = (f + g + fg), (f)(g) = (fg).  

Unique factorization of an ideal determines the (exact) division of ideals: ideal 
A divides ideal B if V(A) Í V(B). 

If i
i IÎ

= ÕA P , i
i JÎ

= ÕB P  ¾ prime factorizations, then their greatest common 

divisor GCD( , ) i
i I JÎ Ç

= Å = ÕA B A B P . If the right-hand product is empty, then A 

and B are relatively prime and A Å B = (1). For relatively prime principal ideals 
A = (f), B = (g) there exist polynomials h1, h2 such that fh1 + gh2 = 1.  

For example, ideals (f) and (1 + fg) are relatively prime for arbitrary g. Here fg 
+ (1+ fg) = 1. 

Similarly to prime factorization we can represent additive decomposition of an 
ideal as a sum of ideals. Analog of prime ideal is additively irreducible ideal that 
takes zero in all but one points. So if P is prime ideal, then 1= +P P  

(complement to P) is additively irreducible ideal; = ÅAB A B  . So an ideal can 
be uniquely represented as the sum of additively irreducible ideals. 

There is a great number of representations of a prime ideal P Ì Gn[x] as a sum 
of n principal ideals. Each such representation corresponds to a system of n 
polynomials with the same varieties. 

Consider division of ideals: the binary operation that for given ideals A, B 
gives A (mod B) so that inequalities hold 

 ( ) ( (mod )) ( )V V VÍ ÍAB A B A . (1) 

In [15] it is shown that in Gn[x] there are two divisions: the commonly used 
polynomial division in the domain Å2[x1, …, xn]: f = gh, deg(f) = deg(g) + deg(h), 
and algebraic-geometrical (AG) division: f = gh, if V(f) = V(g) È V(h). Similarly 



we can determine the two divisions for ideals. If V(A) Ê V(B), then there exists 
ideal C such that A = BC and V(A) = V(B) È V(C). For example in G2[x, y] ideal 
(x + y) is divided by ideal (x + y + xy) for AG-division: (x + y) = (x + y + xy)(1 + 
xy). In the case of monomials, polynomial exact division and AG exact division 
coincide. 

In the case of AG-division the cardinality of V(A (mod B)) is minimal, 
( (mod )) ( )V V=A B AB . In the case of polynomial division A (mod B) is not 

uniquely determined. For the unique computation of A (mod B) the monomial 
ordering and the computing Groebner basis of B are needed. 

Though AG-division transforms the ring Gn[x] to Euclidean ring, the operation 
A (mod B) usually is hard to compute. But sometimes it admits effective 
computation, for example, if ideal B has monomial basis. To reduce polynomial f 
(mod B) it is sufficient to delete the monomials that are divided by some 
monomial of B. 

Two kinds of division are caused by different considerations of field ideal F = 
(x1

2 + x1, …, xn
2 + xn). In the case of common polynomial division this ideal is 

external with respect to infinite integral domain of polynomials. To compute the 
variety of ideal over Å2 the field ideal F must be joined to the polynomial ideal. In 
the case of AG-division the field ideal F is internal, it determines the ring Gn[x]. 

Computation of Groebner basis of finite Boolean ideal and Courtois's XL 
method use polynomial division. Ideal F here is used for deleting squares from the 
syzygies. Computation of the triangular basis(characteristic set) uses AG-division. 

Theorem 1. In the ring Gn[x] equality holds A Å B = A (mod B) Å B both for 
polynomial division and AG-division. 

Proof. If V(A) Ê V(B), then A Å B = A and using equality (1) we obtain 
Å = ÅAB B A B . Hence we have A Å B = A (mod B) Å B for both divisions. 

If V(A) Í V(B), then A Å B = B and A (mod B) = (0), so A Å B = A (mod 
B) Å B for AG-division. The same is true for polynomial division. 

If V(A) Ç V(B) = Æ, then ( ) ( )V VÊB A , ( ) ( )V V=AB A , =AB A . Hence for 
AG-division we have A Å B = A (mod B) Å B. In the case of polynomial 
division V(A (mod B)) Í V(A), hence A Å B = A (mod B) Å B. 

The general case of ideals A, B can be reduced to three considered above cases 
by additive decomposition of ideal A.  n 



Corollary 1. A1 Å A2 Å … Å Ak = A1  Å A2 (mod A1) Å A3 (mod (A1 Å A2)) 
Å … Å Ak (mod (A1 Å … Ak-1)). 

The proof is carried out by induction. n 

In the ring Gn[x] any polynomial has degree at most 1 for each variable and any 
non-constant polynomial is zero-divisor. Hence "naive" elimination of monomials 
(variables), when the coefficients of leading monomials (variables) are equalized 
by multiplication with some polynomials, leads to appearance of wrong solutions. 
In practice on some step of elimination we obtain equation 0*xi = 0, and xi can be 
arbitrary. 

Other obvious way of solving of the system f1 = 0, ..., fk = 0 that defines prime 
ideal, is the search of principal ideal defined by polynomial 1 + (1 + f1)...(1 + fk) or 
the (non-constant) monomial of minimal degree of it. Direct computation of the 
polynomial has exponential time and memory complexity. Obviously there exists 
some change of variables of kind xi ® 1 + xi, that gives the prime ideal polynomial 
without constant term. Then the solution is (0, ..., 0). But search of such change of 
variables is equivalent to enumeration. 

The most popular method of solving system of Boolean equations is the 
Groebner basis computation. 

3. Monomial and binomial ideals 

Define monomial ideal of Gn[x] as ideal, which basis can be given by 
monomials, and binomial ideal, which basis can be given by binomials. Notice that 
recognition monomial or binomial ideal is nontrivial problem [6]. 

Monomial ideal without linear elements cannot be prime. For example, ideal of 
Gn[x] generated by all monomials of degree 2 has n + 1 zeroes in points (0, ..., 0), 
(1, 0, ..., 0), (0, 1, 0, ..., 0), (0, ..., 0, 1). 

No monomials are relatively prime. For example common divisor of monomials 
x1, x2x3 is nonzero ideal (x1 + x2x3 + x1x2x3). 

Theorem 2. Ideal has monomial basis iff the Boolean function that determines 
the principal ideal can be represented by disjunctive normal form (DNF) where no 
conjunction contains an inversion.  

Proof. Let (m1, ..., mk) is the basis of monomial ideal. Any monomial is 
conjunction without inversions. The Boolean function that gives the principal ideal 
takes zero iff each conjunction takes zero. Hence the principal ideal is given by 
Boolean function m1 Ú ... Ú mk. Back, let Boolean function is the DNF without 
inversions. Any conjunction is monomial, and the Boolean function determines 
monomial ideal. n 

Any prime ideal is binomial by definition. 



Binomial ideal ha important property: all syzygies of the basis elements are 
binomials. So the Groebner basis can be computed relatively easy, and the system 
of Boolean binomial equations has effective solution. 

Horn DNF is the disjunction of conjunctions where each conjunction contains at 
least one inverse variable [3]. 

Theorem 3. An ideal is binomial iff it is generated by Horn DNF. 
Proof. Let the basis of ideal is given by binomials (m1 + n2, m2 + n2, ..., mk + nk), 

and mi, ni are monomials. Then binomial 
1 2 1 2

... ...
r si i i j j jx x x x x x+  is the Horn DNF of 

kind 

1 2 1 2 1 2 1 2
... ( ... ) ... ( ... )

r s s ri i i j j j j j j i i ix x x x x x x x x x x xÚ Ú Ú Ú Ú Ú Ú . 

Sum of binomials in the sense of ideal addition also give Horn DNF. 
Back, let 

1 21 2 ...
ri i r im x m x m xÚ Ú Ú  is Horn DNF, where mi are monomials. 

Then (1 )
j j jj i j i i i im x m x m m x= + = +  is binomial. So any Horn DNF determines 

corresponding binomial ideal. n 

Satisfiability problem for Horn DNF has effective solution [3]. 

4. Transformation of the basis of Boolean ideal 

Let the length of the input x and the output y of random binary map y = F(x) is 
n. Estimate the probability that for given output y* there exists unique input under 
the condition that such input exists. 

There are N = 2n possible inputs and outputs. The map F is defined by the string 
of N output n-bit words for all possible N inputs, so there are NN possible maps. 
The number of inputs for given y* is the number of words y* in the string. The 
number of strings without y* is (N - 1)N. The probability that random map has no 
input x such that y*= F(x) is ((N - 1)/N)N = e-1, e = 2.71828. The number of maps 
that have at least one solution is ((e - 1)/e)NN. 

Estimate the number of maps that have unique solution y* = F(x). If the word y* 
is in the first position of the string, there are (N - 1)N-1 such strings. Similarly there 
are (N - 1)N-1 strings that have y* in the second position, etc. So there are N(N - 
1)N-1 » (N - 1)N strings that contain only one word y*. Hence the probability of 
event that a random map F has unique solution of equation y* = F(x) under the 
condition that at least one solution exists, is  

1 1 0.582
1 1

NN e
N e e
-æ ö = =ç ÷ - -è ø

. 

We can consider the hash function or the block cipher with given input as the 
random map. Usually it is required to compute the input of hash function (to 
compute the key) under the condition that desired input (the key) exists. Hence the 



obtained estimation gives the probability that polynomial ideal defined by Boolean 
polynomials that describe the hash function transformation or the block cipher 
encryption is prime.  

4.1. The fixed size of the basis 

Ideal of Gn[x] has finite basis and by definition is the module over Gn[x], and 
back, any module over Gn[x] is the ideal. The bases of the ideal and of the module 
coincide. Hence changing the basis of ideal that fixes the size of the basis can be 
determined as invertible matrix over Gn[x] [5]. 

An automorphism of Gn[x] permutes prime ideals and hence usually changes 
the ideal. But multiplication by invertible matrix L fixes the ideal.  

Theorem 4. Two bases f = (f1, ..., fk) and g = (g1, ..., gk) generate the same ideal 
in Gn[x] iff there exists invertible matrix L of size k over Gn[x] such that f = Lg. 
Then g = L-1f. 

Proof. Any ideal is the module over Gn[x] and any module is the ideal, the bases 
of the module and the ideal coincide. If f is the basis of the module (ideal) and L is 
invertible matrix over Gn[x] then g = Lf is also the basis of the module (ideal) and 
the transformation is given by matrix L. Inverse transformation L-1 gives f = L-1g. 

Back, let f, g are the bases of the ideal. Since the basis if ideal is the basis of the 
module, then f, g are the module bases. Then there exists invertible matrix L such 
that f = Lg.  

Proof that multiplication by L fixes the ideal. Indeed, let f = Lg. Then by 
definition fi Î (g1, ..., gk) and hence (f1, ..., fk) Í (g1, ..., gk). On the other hand g = 
L-1f and (f1, ..., fk) Ê (g1, ..., gk). So (g1, ..., gk) = (f1, ..., fk). n 

The theorem 4 is true for any k. If k = 1, then the onliest invertible matrix is the 
constant 1. So principal ideal is determined uniquely. 

Let f is the basis of prime Boolean ideal P that has variety (e1, ..., en) and f = 
(f1, ..., fn). Then the basis of P can be written in simplified form g = (x1 + e1, ..., xn 
+ en) and there exists an invertible matrix L such that g = Lf. Hence the problem of 
simplification of the basis of prime Boolean ideal is closely related with the 
problem of representing matrix L as product L = Lk...L2L1 such that fi = Li...L1f is 
less then fi-1 (in some sense). 

The common technique takes minimization of leading monomial (in Groebner 
basis algorithms) or the number of variables (in characteristic set algorithms). 

In [12] it is shown that for any set of relatively prime polynomials (f1, ..., fk) 
there exists an invertible matrix with first row (f1, ..., fk). 

Sometimes during the computation the Groebner basis one computes syzygy of 
two polynomials and tries to change one of the initial polynomials by the syzygy. 



This is equivalent to multiplication the initial 2-element basis by matrix 

( )0
a bL d= , a, b, d Î Gn[x]. Matrix L is invertible iff a = d = 1. So usually the 

element of the basis cannot be changed by the syzygy. This leads to increasing the 
size of the intermediate basis. 

Number of invertible matrices 2*2 is very large. Many of them can be obtained 

as products of matrices ( )1
0 1h

hS =  for arbitrary h and ( )0 1
1 0T = , i.e. 

1
1 1
...

m m

e
h h hT S TS TS

-
 for e1 Î {0, 1}. Matrices S, T satisfy following equalities: 

SgSh = Sg+h = ShSg,  Sh
-1 = Sh,  T-1 = T, 

2 1
2 1 2

1

1
1h h
h h hS TS h

+æ ö= ç ÷
è ø

,  
3 2 1

2 3 1 3 1 2 3
2 1 2

1
1h h h

h h h h h h hS TS TS h h h
+ + +æ ö= ç ÷+è ø

, 

 ( ) ( )h
a b a ch b dhS c d c d

+ += ,  ( ) ( )h
a b a b ahSc d c d ch

+= + , (2) 

( ) ( )a b c dT c d a b= ,  ( ) ( )a b b aTc d d c= . 

Invertible matrices with constant elements form group of order 6. 
Define monomial matrix as a square matrix whose elements are monomials. 

The equalities above show that product of monomial matrices usually is not a 
monomial one. Usual computation of syzygies takes monomial matrices. 

4.1.1. Application for Groebner basis computing 

It is known that the complexity of Groebner basis computation strongly depends 
on the sequence of polynomial pairs that give a syzygy [6]. The influence of the 
choose on the complexity is caused by different reasons. One of the reasons is the 
incrementing of the size of the ideal basis. Hence we can distinguish unsuccessful 
choose of pair of polynomials that increases the size of the basis, and successful 
choose fixes the size of the basis.  

Using matrix Sh one can obtain easily some pairs that simplifies the polynomial 
system (in the sense of Groebner basis) and hence determine the optimization of 
Groebner basis computation. 

Computation of Groebner basis takes the linear ordering of monomials. Each 
polynomial f has a leading monomial LM(f). Similarly a set of polynomial has a 
leading monomial. 

Let f1, f2 are polynomials of the basis of an ideal basis such that LM(f1) º 0 
(mod LM(f2)) and.2 Then 1 2LM( ) LM( )f ff . Let monomial h is determined by 
equation LM(f1) = h*LM(f2). Then multiplication of (f1, f2) by the monomial matrix 

                                           
2 Remember that exact division of monomials coincides both for polynomial division and for 

AG-division. 



Sh deletes the LM(f1) and the size of ideal does not increase. In this case the 
reduction of intermediate syzygies can be rejected. Here LM( ) LM( )hSf ff . 

Algorithm 1. Optimizing the sequence of pairs of polynomials during Groebner 
basis computation. 

Input. Ideal basis (f1, ..., fk) and monomial order. 
Output: Ideal basis (f1, ..., fk) with reduced leading monomials in some 

polynomials. 
Method. 

1. Order the polynomials (f1, ..., fk) according to monomial order. 
2. For i = 1 to k, j = i + 1 to k define a pair (fi, fj) such that LM(fi) is divided by 

LM(fj). 
3. Compute monomial h from equation LM(fi) = h*LM(fj). 
4. Change fi ® fi + hfj, that deletes the leading monomial, test that 

LM( ) LM( )i j if hf f+ p . 
5. If no such pairs (fi, fj) exist, stop.  n 

Algorithm 1 computes f ® Shf for appropriate pairs f = (fi, fj). This algorithm 
can be applied after any computation of a syzygy. 

Usually a syzygy of two polynomials f1, f2 is computed in such a way that the 
sum h1LM(f1) + h2LM(f2) = 0 for appropriate monomials h1, h2. But this is not 
necessary indeed, it is sufficient to obtain LM(h1f1) + LM(h2f2) = 0.3 After 
multiplication by monomial h, two monomials of hfi can coincide, hence their sum 
becomes zero. This allows to modify algorithm 1 that probably eliminates the 
LM(f1) and does not increase the number of basis polynomials. 

Algorithm 2. Optimizing the sequence of pairs of polynomials during Groebner 
basis computation. 

Input. Ideal basis (f1, ..., fk) and monomial order. 
Output: Ideal basis (f1, ..., fk) with reduced leading monomials in some 

polynomials. 
Method. 

1. Order the polynomials (f1, ..., fk) according to monomial order. 
2. For i = 1 to k, j = i + 1 to k define a pair (fi, fj) such that j i ihf f f+ p  for some 

LM( )ih fp  including h = LM(fi). 
3. Change fi ® fi + hfj, that deletes the leading monomial. 
4. If no such pairs (fi, fj) exist, stop.  n 

                                           
3  Notice that generally hLM(f) and LM(hf) are different in the Boolean ring. 



If the degree of fi is near to the number of variables of fi, fj, then the sum of 
some monomials of hfj become zero. If h = LM(fi), this technique decreases the 
length of the fi + LM(fi)fj comparatively to the length of fi and to algorithm 1. 

Example 1. Elimination of the leading monomial without increasing the size of 
the ideal basis and the size of polynomial f1. 

Let f1 = x1x2x3 + x1x3 + x2; f2 = x1x2x4 + x1x2 + x1 + x3x4 + 1. We use the order: 
1i ix x +f , 1i imx mx +f  for monomial m. LM(f1) = x1x2x3, LM(f2) = x1x2x4, LM(f1) ¹ 0 

(mod LM(f2)), 1 2LM( ) LM( )f ff . Let ( )11 LM( )
0 1

fL = . Then first element of new 

basis f1 + hf2 = x1x3 + x2 is more short then the polynomial f1. We get new basis (f1 
+ hf2, f2), the leading monomial of the first polynomial is deleted and 

1 2 1LM( ) LM( )f hf f+ p . n 

Invertible 2*2 matrix with all nonzero elements is defined by the next theorem. 

Theorem 5. Invertible matrix ( )a bL с d=  with all nonzero elements is uniquely 

defined by the quadriple of arbitrary elements a, d, g1, g2 Î Gn[x], where b = 1 + 
adg1, c = 1 + ad + adg1 + adg1g2. 

Proof. Matrix L is invertible if ad + bc = 1, so polynomial ad is the complement 
to polynomial bc. Then a, d can be arbitrary, but (b) Ê (1 + ad), (c) Ê (1 + ad), and 
(bc) = (1 + ad). Those conditions can be rewritten as 

b = 1 + adg1,  
c = (1 + ad)(1 + g1 + g1g2) = 1 + ad + adg1 + adg1g2. 

Then bc = 1 + ad for arbitrary g1, g2. Elements of L are determined uniquely. 
Notice that the inverse statement is not true: for given matrix L elements g1, g2 
generally are not unique. If g2 = 0, then g1 = (1 + b)/(ad) (it is a polynomial in the 
sense of AG-division). In this case if the quadriple (a, d, g1, 0) for given L exists 
(i.e. if c = 1 + ad + adg1), it is unique. 

In the conditions of the theorem the inverse matrix is ( )1 d bL с a
- = . n 

The invertible matrix L with given first row exists iff ideals (a) and (b) are 
relatively prime. Indeed, if a = a1h, b = b1h, then ad + bc = h(a1d + b1c), and matrix 
L cannot be invertible. If ideals (a), (b) are relatively prime, then we can choose 
arbitrary polynomial d relatively prime to b, and corresponding polynomial c, 
relatively prime to ad that gives the matrix. 

Let f = (f1, f2) and LM(f) = max(LM(f1), LM(f2)). Consider the general case 
when multiplication by invertible matrix L decreases the leading monomial of the 
basis: LM( ) LM( )Lf fp . As it is shown above, if LM(f1) ¹ 0 (mod LM(f2)), then 
matrix L has no zero elements and is not a monomial one. It is sufficient to 
consider the case when LM(f1), LM(f2) have no common variables. 



Theorem 6. Let the monomials LM(f1), LM(f2) have no common variables, 
LM(fi) = GCD(LM(f1, f2))hi, and h1, h2 are relatively prime. Then 

GCD(LM(f1), LM(f2)) = LM(f1) + LM(f2) + LM(f1)LM(f2), 

1
1 2 1 2

1 2

LM( ) 1 LM( ) LM( )LM( )
GCD(LM( ), LM( ))

fh f f f
f f

= = + + , 

2
2 1 1 2

1 2

LM( ) 1 LM( ) LM( )LM( )
GCD(LM( ), LM( ))

fh f f f
f f

= = + + . 

Proof follows from the direct computation. n 

If the monomials LM(f1), LM(f2) have common variables, then we represent 
them as products of common variables and the monomials without common 
variables. Hence the greatest common divisor is to be multiplied by the product of 
common variables. But h1, h2 do not change if the leading monomials have 
common variables.  

Further in theorem 7 it is shown that h1, h2 are relatively prime to each other 

and to f1, f2. Hence we can obtain the invertible matrix ( )a bL с d= , a = h2, b = h1. 

Choose arbitrary d relatively prime to b and compute c using theorem 5. Then the 
leading monomials of af1 + bf2 will be rejected. But vector Lf can be more then the 
initial vector f (in the sense of monomial ordering). Computing such pairs seems to 
be hard. 

4.1.2. Application for eliminating of variables 

Invertible transformation of the basis of prime ideal allows eliminating of 
variables without incrementing the size of the basis and without using resultants. 
This method is similar to computation of the characteristic set according to [8, 11] 
but it has additional degrees of freedom. 

Theorem 7. For ideals A, B Ì Gn[x] next equalities hold: A = GCD(A, B)A1, 
B = GCD(A, B)B1, where ideals A1, B1 are relatively prime to each other and to 
GCD(A, B), if AG-division is used. 

Proof. Due to unique prime factorization there exists GCD(A, B) as product of 
all common prime ideal in prime factorization of A, B. Then A = GCD(A, B)A1, 
B = GCD(A, B)B1. If ideals A1, B1 are not relatively prime, they have common 
prime divisor, that is impossible. Since any ideal is squarefree, A1 and B1 are 
relatively prime to GCD(A, B). n 



Now we can present algorithm that eliminates a variable and fixes the size of 
the basis. This algorithm is near to algorithm proposed in [11], but differs in 
methods and possesses additional freedom degrees. 

Algorithm 3. Elimination of variable x for two polynomials, both containing x.  
Input. Polynomial f1 = f10 + xf11, f2 = f20 + xf21. 

Output: Matrix ( )a b
с d  and polynomials F1, F2, where F1 does not depend on x. 

Method. 
1. Factor (f11), (f21) as product of prime ideals.  
2. Compute GCD(f11, f21). 
3. Compute relatively prime polynomials (under AG-division)  

h1 = f11/GCD(f11, f21), h2 = f21/GCD(f11, f21). 
4. Set a = h2, b = h1 and compute prime factorization of ideal (b). 
5. Using factorization p. 4, choose arbitrary polynomial d relatively prime to b. 
6. Choose a polynomial g1 so that inequality holds V(1 + b) \ V(ad) Í V(g1) Í V(1 

+ b) (that gives b = 1 + adg1). Choose arbitrary polynomial g2 and compute the 
polynomial c = 1 + ad(1 + g1 + g1g2). 

7. Compute ( )1 1
2 2

F fa b
F c d f

æ ö æ ö=ç ÷ ç ÷
è ø è ø

. n 

Appropriate choosing of auxiliary polynomials g1, g2 allows simplifying 
element F2 of the output basis F in some proper sense (minimizing its length or 
degree, deleting the unnecessary monomials, etc.).\ 

This algorithm can be also explained in the language of linear algebra. Notice 

that ( )10 111
2 20 21

1f ff
f f f x

æ öæ ö =ç ÷ ç ÷
è ø è ø

, ( ) ( )10 111
2 20 21

1f fF a b
F c d f f x

æ öæ ö =ç ÷ ç ÷
è ø è ø

. Variable x is eliminated 

if the right-up element in matrix ( ) 10 11
20 21

f fa b
c d f f

æ öç ÷
è ø

 is zero: af11 = bf21.  

Example 2. Elimination of a variable. 
Let f1 = 1 + x1 + x4 + x1x2 + x2x3, f2 = x2x4 + x1x4 + x1x2x3, f = (f1, f2). Eliminate 

variable x1. Then f1 = f10 + f11x1 = (1 + x4 + x2x3) + x1(1 + x2), f2 = f20 + f21x1 = x2x4 + 
x1(x4 + x2x3).  

Polynomials f11, f21 have next prime factorization in the ring with variables x2, 
x3, x4: (f11) = P(1, 0, 0)P(1, 0, 1)P(1, 1, 0)P(1, 1, 1); (f21) = P(0, 0, 0)P(1, 0, 
0)P(0, 1, 0)P(1, 1, 1), where P(e2, e3, e4) has the zero at point (e2, e3, e4).  

Compute GCD(f11, f21) = P(1, 0, 0)P(1, 1, 1) = (1 + x2(1 + x3)(1 + x4))(1 + 
x2x3x4) = 1 + x2 + x2x3 + x2x4. 

Compute factorization of f11, f21 as product of relatively prime divisors: 
 f11 = (1+ x2 + x2x3 + x2x4)(1 + x2x3 + x2x4); f21 = (1 + x2 + x2x3 + x2x4)(x2 + x4 + x2x4), 
second divisors of f11, f21 are relatively prime.  



For elimination of x1 we must have af11 + bf21 = 0, where a, b are relatively 
prime. Let a = x2 + x4 + x2x4, b = 1 + x2x3 + x2x4 (these are the second divisors of 
f11, f21). Choose d = x2 (d can be arbitrary but relatively prime to b), then ad = x2. 
Compute g = P(1, 0, 0)P(1, 1, 1) = 1 + x2 + x2x3 + x2x4, c = 1 + x2 + x2x3 + x2x4. We 
obtain the next matrix 

2 4 2 4 2 3 2 4
2 2 3 2 4 2

1
1

x x x x x x x xL x x x x x x
+ + + +æ ö= ç ÷+ + +è ø

. 

Then 2 2 3 2 4 2 3 41
2 1 2 4 1 2 1 2 3 1 2 41

x x x x x x x xfL f x x x x x x x x x x x
+ + +æ öæ ö= =ç ÷ ç ÷+ + + + + +è ø è ø

F . The variable x1 is 

eliminated from the first polynomial of the basis. 

Inverse matrix is 1 2 2 3 2 4
2 2 3 2 4 2 4 2 4

1
1

x x x x xL x x x x x x x x x
- + +æ ö= ç ÷+ + + + +è ø

 and L-1F = f. n 

Notice that algorithm 3 gives additional degree of freedom (choosing of 
polynomials d, g1, g2). This allows optimizing of polynomial F2. 

In order to obtain the triangular basis in the case of n equations of n variables it 
is desirable (but not necessary) to order the variables.  

We choose arbitrary equation as the first basic one. This equation must contain 
the variable that will be eliminated first. 

Next we consider n - 1 pairs of equations, where the first one is the first basic 
equation, and apply algorithm 3 to each pair. This gives n - 1 polynomials without 
first variable. Similarly we eliminate second variable, etc. If the ideal is prime, then 
the last equation must be of kind x + e = 0, and we obtain the solution for last 
variable. Substituting this value to last but one equation we obtain the solution for 
last but one variable, etc. 

So computing the basis of prime ideal that consists of linear binomials takes 
O(n2) applications of algorithm 3. In order to get polynomial complexity of the 
solution computing, each application of algorithm 3 must have polynomial 
complexity. 

Since the initial basis is sparse, the complexity of algorithm 3 for eliminating 
initial few variables can be polynomial. Also final part of triangular basis can be 
computed comparatively easy. But the large part of polynomials of the triangular 
basis "in the middle part" of computation may have very large length.  

The farther reduction of complexity can be obtained if we initially compute the 
monomial (binomial, trinomial) ideal àº and consider elements of triangular basis 
as residues modulo àº. The reduction of a polynomial modulo monomial ideal is 
very easy — it is sufficient to delete the monomials that are divided by the 
monomials of the ideal. Similarly one can reduce a polynomial modulo binomial or 
trinomial ideal. In this case initial (probably prime) ideal P is represented as a sum 
P = àº Å (P (mod àº)). The solution is searched initially for ideal (P (mod àº)), 



that may not be prime, and then it is lifted to ideal P by joining polynomials of àº 
to the basis. 

In [15] it is shown that reduction of the random polynomial modulo monomial 
approximation of the ideal of AES S-box decreases the length of the polynomial 
about 30%. The average degree of a polynomial is decreased too. 

4.2. Changing the size of the basis 

The size of the basis can be reduced by deleting linearly dependent elements or 
by joining some polynomials in one principal ideal. 

Increasing the size of the basis can be obtained by additive decomposition of 
some polynomials of the basis as sum of two or more principal ideals. The number 
of such additional decompositions usually is very large. 

5. Complication of ideal 

Consider the problem that is the inverse to problem of solving equations.  
Assume we have an ideal, for example prime ideal of the form P = (x1 + e1, ..., 

xn + en) or other ideal that has a basis of short polynomials. How can we 
complicate it so that the point of variety is hard to compute?  

The answer is given by theorem 4: it is sufficient to choose invertible matrix 
and to multiply the basis as vector by the matrix. 

It is known that invertible matrix can be factored as product of upper and lower 
triangular matrices and permutation matrix [1]. It is known also that both upper 
and lower triangular matrices (aij) with property aii = 1 for all i are invertible. This 
gives the algorithm that complicates the ideal. 

Choose at random upper and lower invertible triangular matrices and 
permutation matrix. Compute the basis of ideal by those matrices and obtain the 
transformed basis. 

Invertible matrix L of size n has O(n2) elements, but the basis transformation is 
defined by O(n) equations. Hence there are many invertible matrices L that satisfy 
equality Lf = g for given f, g. 

Usually in symmetric cryptography the basis g = (x1 + e1, ..., xn + en) and the 
basis f is a sparse one — it corresponds to encryption equations. More precisely, 
each polynomial of f corresponds to some encryption round, hence it depends on 
input and output variables for given round and on key bits. In this case t is useful to 
consider matrix L as a block one. Similarly decomposition of matrix L should be 
considered for block matrices. 

Such complicated prime ideal can be used in public key cryptosystems, for 
example in cryptosystem based on hidden field equations and isomorphism of 
polynomials [13]. 
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