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Abstract

Secure multiparty computation (SMC) offers a technique to preserve functionality and data privacy in mobile
applications. Current protocols that make this costly cryptographic construction feasible on mobile devices securely
outsource the bulk of the computation to a cloud provider. However, these outsourcing techniques are built on
specific secure computation assumptions and tools, and applying new SMC ideas to the outsourced setting requires
the protocols to be completely rebuilt and proven secure. In this work, we develop a generic technique for lifting
any secure two-party computation protocol into an outsourced two-party SMC protocol. By augmenting the function
being evaluated with auxiliary consistency checks and input values, we can create an outsourced protocol with low
overhead cost. Our implementation and evaluation show that in the best case, our outsourcing additions execute
within the confidence intervals of two servers running the same computation, and consume approximately the same
bandwidth. In addition, the mobile device itself uses minimal bandwidth over a single round of communication.
This work demonstrates that efficient outsourcing is possible with any underlying SMC scheme, and provides an
outsourcing protocol that is efficient and directly applicable to current and future SMC techniques.

1 Introduction
As the mobile computing market continues to grow, an increasing number of mobile applications are requiring users
to provide personal or context-sensitive information. However, as the recent iCloud breach demonstrates [28], these
application servers cannot necessarily be trusted to maintain the security of the data they possess. To better preserve
privacy and the functionality of mobile applications, secure multiparty computation (SMC) techniques offer protocols
that allow application servers to process user data while it remains encrypted. Unfortunately, while a plethora of SMC
techniques exist, they currently require too much processing power and device memory to be practical on the mobile
platform. Furthermore, the bandwidth and power requirements for these SMC protocols will always be a limiting
requirement for mobile applications even as the computational resources of mobile devices grow.

To bring SMC to the mobile platform in a more efficient way, recent work has focused on developing secure
techniques for outsourcing the most expensive computation. Rather than naively trusting the Cloud to stand in for the
mobile device in a standard SMC protocol, these outsourced protocols seek to use the Cloud for computation without
revealing any input or output values. A number of these protocols have been specifically developed to outsource
garbled circuit protocols [27, 8, 7]. These protocols attempt to optimize the outsourcing operations without increasing
the complexity of the circuit being evaluated. However, because of this optimization goal, they are constructed and
proven secure using specific garbled circuit evaluation techniques. As new techniques for SMC are developed that
modify the garbled circuit construction (or use completely different underlying constructions), it is unclear whether
these specific outsourcing protocols will be able to take advantage of the new developments.

In this work, we develop a technique for outsourcing secure two-party computation for any two-party SMC tech-
nique. Rather than avoiding changes to the function being evaluated, we add a small amount of overhead to the
evaluated function itself. This tradeoff allows for an outsourcing scheme that relies on the underlying two-party proto-
col in a black-box manner, meaning the underlying protocol can be swapped for any other protocol meeting the same
definition of security This makes the task of securely incorporating newly developed SMC techniques trivial. This
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protocol enables mobile devices to participate in any secure two-party SMC protocol with minimal cost to the device
and with nominal overhead to the servers running the computation. Specifically, we make the following contributions:

• Develop a black-box outsourcing protocol: We develop a novel outsourcing technique for lifting any two-
party SMC protocol into the two-party outsourced setting. To do this, we add a small amount of overhead to the
function being evaluated to ensure that none of the inputs are modified by malicious participants. This technique
of augmenting the evaluated circuit has been successfully used in other SMC protocols to balance performance
with security guarantees [22, 32, 44]. In addition, we leverage the non-collusion assumption used throughout the
related work to produce an output consistency check that incurs trivial overhead. While this approach slightly
increases the cost of evaluation, it minimizes the computation and bandwidth required by the mobile device.

• Prove security for any underlying two-party SMC protocol: We provide simulation proofs of security to
demonstrate that our protocol is secure in the malicious threat model. The only requirement of the underlying
two-party SMC protocol is that it satisfy the canonical ideal/real world simulation definition of security against
malicious adversaries [16]. This allows any future SMC protocols that are developed to be used in a plug-&-play
manner with our outsourcing technique.

• Implement and evaluate the overhead cost of the outsourcing operations: Using the garbled circuit two-
party SMC protocol of shelat and Shen [44], we implement our protocol and evaluate the complete overhead
cost of outsourcing. Rather than compare to previous outsourcing schemes, we instead measure the overhead
incurred by augmenting the desired functionality, as well as the input and output preparation and checking. This
measurement of cost better represents the value of the scheme, as a direct comparison to previous outsourcing
protocols would drastically change depending on the underlying two-party SMC protocol implemented in our
scheme. Our results show that for large circuits, black-box outsourcing incurs negligible overhead (i.e., the
confidence intervals for outsourced and server only execution intersect) in evaluation time and in bandwidth
required when compared to evaluating the unmodified function. To demonstrate the practical performance of
our protocol, we develop a mobile-specific facial recognition application and analyze its performance.

This work extends the results presented by Carter et al. [9]. The rest of this work is organized as follows: Section 2
describes related research, Section 3 outlines definitions of security, Section 4 formally defines the protocol, Section 5
provides an overview of security, Section 6 presents formal security proofs, Section 7 describes our implementation
and performance evaluation, Section 8 presents a new mobile-specific application for SMC, Section 9 compares the
overhead of our black box technique to previous work, and Section 10 provides concluding remarks.

2 Related Work
Since it was initially conceived in the early 1980’s [45, 17], secure multiparty computation (SMC) has grown from a
theoretical novelty to a potentially useful and practical cryptographic construction. The FairPlay implementation [36]
provided one of the first schemes for performing secure multiparty computation in practice. Since then, a number
of other protocols and implementations have shown that privacy-preserving computation in the semi-honest threat
model can be performed relatively efficiently [21, 4, 1]. However, this security model is weak in practice, and does
not provide enough security for most real-world situations. To resolve this, recent study has focused on developing
protocols that are secure in the malicious setting. For two-party computation, the garbled circuit construction has seen
a large amount of new development [33, 34, 37, 42, 31, 43, 44] that has drastically reduced the cost of circuit checking
and the associated consistency verification. Because the cut-&-choose construction that is typically applied in this
setting is very costly, recent work has sought to minimize the cost of the cut-&-choose [13, 32, 23] or amortize that
cost over a batch of circuit executions [35, 24]. Besides the garbled circuit technique, other techniques using somewhat
homomorphic encryption [11, 10] and oblivious transfer [40] have shown promise of producing efficient protocols for
secure multiparty computation in the malicious threat model. However, all of these techniques still have significant
overhead cost that makes them infeasible to execute without sizable computational resources.

With smartphone applications retrieving private user data at an increasing rate, secure multiparty computation
could potentially offer a way to maintain privacy and functionality in mobile computing. However, the efficiency
challenges of secure multiparty computation are compounded when considered in the resource-constrained mobile
environment. Previous work has shown that smartphones are generally limited to simple functions in the semi-honest
setting [6, 20]. Demmler et al. [12] showed how to incorporate pre-computation on hardware tokens to improve
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efficiency on mobile devices, but still in the semi-honest setting. In addition to the cost of evaluating these SMC
protocols, Mood et al. [39] and Kreuter et al. [30] demonstrated that even with significant optimization, the task of
compiling circuits on the mobile device can also be quite costly.

Given these limitations, evaluating SMC protocols directly on mobile hardware does not seem to be possible in the
immediate future. Because of this, mobile secure computation research has recently focused on applying techniques
from server-assisted cryptography [3] to move the most costly cryptographic operations off of the mobile device and
onto a more capable cloud server. To achieve this, many authors have focused on developing protocols for outsourcing
secure computation of specific algorithms such as graph algorithms [5], set intersection [29], and linear algebra func-
tions [2]. The first protocol to outsource secure multiparty computation for any function was developed by Kamara et
al. [26, 27]. In this work, the authors established a definition of security that assumes specific parties in the computa-
tion, while malicious, are not allowed to collude. Following on this definition, several other protocols and efficiency
improvements have been developed for the outsourced setting [8, 38, 7]. Unfortunately, all of these protocols are built
on specific secure multiparty computation assumptions and techniques. With new and varying techniques for SMC
being developed at a rapid pace, it is unclear how to apply the outsourcing techniques used in these protocols to new
schemes to allow them to benefit from new efficiency improvements. In this work, we seek to develop a protocol that
can lift any two-party SMC protocol into the outsourced setting with little overhead.

In recent work, Jakobsen et al. [25] develop a framework for outsourcing secure computation that is similar to our
protocol. However, their protocol requires specific properties in the underlying SMC protocol, where our protocol
is designed to be truly generic. Our implementation and empirical performance analysis demonstrate that the added
circuit overhead required by our protocol does not significantly affect the execution time for large circuits, and allows
for truly generic SMC outsourcing. We examine the tradeoffs between these two protocols in Section 9.

3 Definitions of Security
Outsourced two-party SMC protocols are designed to allow two parties of asymmetric computational capability to
engage in a privacy-preserving computation with the assistance of an outsourcing party. We consider the situation
where a mobile device possessing limited computational resources wishes to run an SMC protocol with an application
server or other well-provisioned entity. To allow this, outsourcing protocols move the majority of the costly operations
off of the mobile device and onto a Cloud provider without revealing to the Cloud either party’s input or output to
the computation. These protocols aim to provide security guarantees of privacy and correctness, and also attempt to
minimize the computation required at the mobile device while still maintaining efficiency between the application
server and the Cloud. To meet these goals in the outsourced setting, a number of careful security assumptions must be
made.

3.1 Two-party SMC security
Our black box protocol is based on the execution of a two-party SMC protocol to obliviously compute the result.
We make no assumptions about the techniques used or structure of this underlying protocol except that it meets the
canonical definition of security against malicious adversaries using the ideal/real world paradigm [16]. Informally, this
states that for any adversary participating in the two-party SMC protocol, there exists a simulator in an ideal world with
a trusted third party running the computation where the output in both worlds is computationally indistinguishable. In
this definition, the simulator in the ideal world is given oracle access to the adversary in the real world. Particularly
in the two-party setting, there are a few caveats that must be assumed to make this definition feasible, and must be
considered when designing an outsourced protocol that uses a two-party protocol in a black box manner.

First, it is known that two-party protocols cannot fully prevent early termination. In any execution, one party
will receive their output of computation before the other party does. While certain techniques have been developed
to partially solve this problem, there is no complete solution. While other outsourcing protocols have added in a
fair-release guarantee, this guarantee comes at a cost. Either the protocol must provide additional commitments not
guaranteed in a standard two-party protocol [8, 7], or the protocol must incorporate additional costly MAC operations
to ensure the output is not tampered with [27, 38]. However, our black box protocol shows that if we treat the
outsourced model like a standard two-party execution where fair release is not guaranteed, we can reduce the output
consistency check to a single comparison on the mobile device. This allows the application server to recover its input
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first and potentially disrupt the mobile device’s output, but mirrors the two-party execution guarantees exactly. Thus,
our protocol optimizes execution overhead by not assuming a fair output release.

Second, it is possible that a malicious party can provide arbitrary input to the computation that may or may not
correspond to their “real” input. While we cannot control what another party provides as input to the computation,
this potential behavior must be handled by the definition of security. To handle this, the simulator in the ideal world,
which has oracle access to the adversary in the real world, must not only be able to simulate the adversary’s view of
the protocol. Upon running the adversary with a given input, the simulator must also be able to recover the actual input
used by the adversary. In our proofs of execution, the ideal world will invoke this simulator often as a mechanism to
recover the adversary’s input before initiating computation with the trusted third party. This ensures that the output in
both worlds is indistinguishable.

Given these assumptions, a secure two-party SMC protocol provides two guarantees. The first is privacy, which
means that a malicious adversary cannot learn anything about the other party’s input or output value beyond what
is revealed by his own output value. The second guarantee is correctness. This implies that even in the presence of
a malicious adversary, the output of the protocol will be the correct output of the agreed upon function except with
negligible probability.

For a formal definition of security and further discussion, refer to [16].

3.2 Collusion assumptions
Previous work in outsourcing secure multiparty computation makes careful assumptions about who in the computation
is allowed to collude. Kamara et al. [27] discuss at length the theoretical justification for these assumptions. Essen-
tially, to achieve an n-party outsourcing protocol with better complexity than a two-party SMC protocol, it must be
assumed that the Cloud (i.e., the server aiding computation but not providing input to the function) cannot collude with
any other party. Other outsourcing protocols have sought ways to relax this restriction without significantly increasing
the complexity of the function being evaluated [8, 7]. However, all of these protocols still assume that the application
server and the Cloud cannot collude. We follow this assumption in our black box construction. As stated by Kamara
et al., the existence of an outsourcing protocol where this particular collusion is allowed would imply an efficient
two-party SMC scheme where one party performs work that is sub-linear with respect to the size of the function being
evaluated. While there are techniques for such a two-party SMC protocol [15, 18], it is unclear that they can be applied
to create such an outsourced protocol.

3.3 Outsourced Security Definition
We follow the security definition first established by Kamara et al. [27] but specified for the two-party scenario as in
the work of Carter et al. [8, 7]. We slightly alter the definition to allow for the possibility of early termination by one
of the parties, possibly preventing the other party from receiving output. We provide a summary of the definition here,
and refer the reader to previous work for a complete discussion of the definition.

The real world setting is made up of three parties. Two of these parties provide input to the computation, while
the third party takes on computational load for one of the two input parties. All three parties provide auxiliary random
inputs to the protocol. Some subset of the three parties A = (A1, A2, A3) can behave maliciously, but we assume that
the application server and the Cloud cannot collude. For the ith honest party, OUTi is defined as its output, and for
the ith corrupted party, OUTi is its view of the protocol. Then we define the ith partial output as:

REAL(i)(k, x; r) = {OUTj : j ∈ H} ∪OUTi

Here, k is the security parameter, x is all inputs to the computed function, r is the auxiliary randomness, and H is the
set of all honest parties.

The ideal world setting is made up of the same parties with the same inputs as the real world with the addition of a
trusted third party that receives all parties’ inputs, computes the desired function, and returns the output to all parties
except the outsourced party that is not providing inputs to the function. Any party may abort the computation early or
refuse to send input, in which case the trusted party sends no output. As in the standard two-party definition [16], it
is possible for one party, upon receiving output from the trusted third party, to terminate the protocol, preventing the
other party from receiving its output. For the ith honest party, OUTi is defined as its output received from the trusted
party, and for the ith corrupted party, OUTi is an arbitrary output value. Then we define the ith partial output in the
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Figure 1: The complete black box outsourcing protocol. Note that the mobile device performs very little work com-
pared to the application server and the Cloud, which execute a two-party SMC (2PC) protocol.

presence of independent malicious simulators S = (S1, S2, S3) as:

IDEAL(i)(k, x; r) = {OUTj : j ∈ H} ∪OUTi

Here, k, x, r, and H are defined as above. In this real/ideal world setting, outsourced security is defined as follows:

Definition 1. An outsourcing protocol securely computes the function f if there exists a set of probabilistic polynomial-
time (PPT) simulators {Sim1, Sim2, Sim3} such that for all PPT adversaries (A1, A2, A3), inputs x, and for all
i ∈ {1, 2, 3}:

{REAL(i)(k, x; r)}k∈N
c
≈ {IDEAL(i)(k, x; r)}k∈N

Where S = (S1, S2, S3), Si = Simi(Ai), and r is uniformly random.

4 Protocol
In this section, we formally define our black box outsourcing protocol. For a graphical representation, see Figure 1.

4.1 Participants
• SERVER: the application or web server participating in a secure computation with the mobile device. This party

provides input to the function being evaluated.
• MOBILE: the mobile device accessing SERVER to jointly compute some result. This party also provides input

to the function being evaluated.
• CLOUD a Cloud computation provider tasked with assisting MOBILE in the expensive operations of the secure

computation. This party executes a two-party SMC protocol in a black-box manner with SERVER, but does not
provide an input to the function being evaluated.
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Figure 2: The process of augmenting a circuit for outsourcing. The original circuit is boxed in red. Essentially, we
require that the mobile device’s input be verified using a MAC and decrypted using a one-time pad before it is input
into the function. After the result is computed, it must be re-encrypted using a one-time pad and delivered to both
parties to guarantee that the mobile device will detect if either party tampers with the result.

4.2 Overview
The outsourcing protocol can be informally broken down as follows: first, the mobile device prepares its input by
encrypting it and producing a MAC tag for verifying the input is not tampered with before it is entered into the
computation. Since the application server and Cloud are assumed not to collude, one party receives the encrypted input,
and the other party receives the decryption key. Both of these values are input into the secure two-party computation,
and are verified within the secure two-party protocol using the associated MAC tags (see Figure 2). If the check fails,
the protocol outputs a failure message. Otherwise, the second phase of the protocol, the actual evaluation of the SMC
program, takes place. The third and final phase encrypts and outputs the mobile device’s result to both parties, who in
turn deliver these results back to the mobile device. Intuitively, since our security model assumes that the application
server and the Cloud are never simultaneously malicious, at least one of these two will return the correct result to the
mobile device. From this, the mobile will detect any tampering from the malicious party by a discrepancy in these
returned values, eliminating the need for an output MAC. If no tampering is detected, the mobile device then decrypts
the output of computation.

4.3 Protocol
Common Input: All parties agree on a computational security parameter k, a message authentication code (MAC)
scheme (Gen(),Mac(), V er()), and a malicious secure two-party computation protocol 2PC(). All parties agree on
a two-output function f(x, y)→ fm, fs that is to be evaluated.

Private Input: MOBILE inputs x while SERVER inputs y. We denote the bit length of a value as |x| and concatenation
as x||y.

Output: SERVER receives fs and MOBILE receives fm.

1. Input preparation: MOBILE generates a one-time pad kfm where |kfm| = |fm|. Mobile then generates two
MAC keys vs = Gen(k) and vc = Gen(k). Finally, MOBILE generates a one-time pad km where |km| =
|x|+ |kfm|.
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Input : CLOUD inputs km, vs, tc and SERVER inputs y, a, vc, ts
Output: CLOUD receives om and SERVER receives os||om
if V er(a||vc, ts, vs) 6= 1 then

return ⊥
else if V er(km||vs, tc, vc) 6= 1 then

return ⊥
else

x, kfm = a⊕ km
fm, fs = f(x, y)
os = fs(x, y)
om = fm(x, y)⊕ kfm

end
Algorithm 1: The augmented function

2. Input delivery: MOBILE encrypts its input as a = (x||kfm)⊕km. It then generates two tags ts = Mac(a||vc, vs)
and tc = Mac(km||vs, vc). MOBILE delivers a, vc, and ts to SERVER and km, vs, and tc to CLOUD.

3. Augmenting the target function (Algorithm 1): All parties agree on the following augmented function
g(y, a, vc, ts; km, vs, tc) to be run as a two-party SMC computation:

(a) If V er(a||vc, ts, vs) 6= 1 or V er(km||vs, tc, vc) 6= 1 output ⊥.

(b) Set x||kfm = a⊕ km

(c) Run the desired function fs, fm = f(x, y)

(d) Set output values os = fs and om = fm ⊕ kfm

(e) Output os||om to SERVER and om to CLOUD

4. Two-party computation: SERVER and CLOUD execute a secure two-party computation protocol 2PC(g(); y, a, vc, ts; km, vs, tc)
evaluating the augmented function.

5. Output verification: CLOUD delivers its output from the two-party computation, om to MOBILE. SERVER also
delivers the second half of its output o′m to MOBILE. MOBILE verifies that om = o′m.

6. Output recovery: SERVER receives output fs = os and MOBILE receives output fm = om ⊕ kfm

5 Security
Our black box outsourcing protocol is secure under the following theorem satisfying the security definition from
Section 3:

Theorem 1. The black box outsourced two-party protocol securely computes a function f(x, y) in the following two
corruption scenarios: (1) Any one party is malicious and non-cooperative with respect to the rest of the parties; (2)
The Cloud and the mobile device are malicious and colluding, while the application server is semi-honest.

Note that these scenarios correspond exactly with the corruption scenarios in [7], and that the previous protocols
described in [27] and [8] are only secure in corruption scenario (1). We outline sketches of the security proof here,
with a complete proof in Section 6.

5.1 Malicious Cloud or Application Server
The main idea behind the security in these two settings is that for whichever party is corrupted, we can rely on the
other party to behave semi-honestly. Based on the security of the underlying two-party protocol, this ensures both
that the augmented functionality is correctly evaluated and that the mobile device will receive unmodified output from
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one of the parties. Thus, the MAC on the input and the comparison of the output values prevents either party from
modifying the Mobile device’s private values. Furthermore, unlike the dual execution model by Huang et al. [22]
where the output comparison leaks one bit of input, our output comparison is composed of two copies of the mobile
output produced from a single, malicious-secure execution of the augmented circuit. Because of this, any discrepancy
in the comparison only reveals that either the Cloud or Application Server tampered with the output prior to delivering
it to the mobile device.

In the ideal world, the simulator works roughly as follows: begin the black box protocol with random inputs.
Then, invoke the simulator for the underlying two-party scheme S2PC to recover the input of the malicious party and
delivers that input to the trusted third party. Finally, S2PC simulates the output f(x, y). After running all consistency
verifications, the simulator either sends an early termination signal to the trusted third party or completes the protocol
normally.

5.2 Malicious Mobile Device
Because the mobile device simply provides MAC tagged input and receives its output after executing the two-party
protocol, there is very little it can do to corrupt the computation besides providing invalid inputs that would simply
cause the computation to terminate early. The simulator in this scenario accepts the mobile device’s prepared inputs.
Given both the Cloud and the Application Server’s halves of the mobile device’s input, the simulator can recover the
necessary input by decrypting the one-time pad. If either of the MAC tags does not verify or if the mobile device
terminates early, the simulator also terminates. Otherwise, it invokes the trusted third party to receive f(x, y) and
returns the result to the mobile device.

5.3 Malicious Mobile Device and Cloud
In this scenario, the security of our black box protocol simply reduces to the security of the underlying two-party
scheme. The simulator in the ideal world accepts the input from the Mobile Device, then invokes the simulator of
the underlying two-party SMC scheme S2PC to recover the values input by the Cloud. Using these values combined
with the values provided by the Mobile Device, the simulator can recover the Mobile input. If any of the verification
checks within the augmented functionality fail, the simulator terminates. Otherwise, it delivers the recovered input to
the trusted third party, and finishes S2PC delivering the output of computation correctly formatted using the one-time
pads recovered from the Cloud’s input by S2PC .

6 Proof of Security
Here we provide the formal simulation proof of security for Theorem 1.

6.1 Malicious MOBILE M∗

In the scenario where M∗ can adopt an arbitrary malicious strategy, we construct a simulator SM that, operating in
the ideal world, can simulate M∗s view of a real-world protocol execution and can recover M∗s input for delivery to
the trusted third party. We construct this simulator and prove it secure with the following hybrid of experiments.

Hyb1(M)(k, x; r): This experiment is identical to REAL(M)(k, x; r) except that the experiment uses the combination
of M∗s encrypted input a and km to recover the real input x∗. It verifies the MAC tags ts and tc and aborts if either
check fails.

Lemma 1. REAL(M)(k, x; r)
c
≈ Hyb1(M)(k, x; r)

Proof. Since the experiment is controlling both CLOUD and SERVER, it can simply decrypt the input x∗ using the key
km. In addition, since the experiment holds both the verification keys, the protocol will terminate in both experiments
if the MAC tags are incorrectly constructed.

Hyb2(M)(k, x; r): This experiment is identical to Hyb1(M)(k, x; r) except that the experiment passes x∗ to the trusted
third party, and returns the result f(x∗, y)⊕ k∗fm to M∗, where k∗fm is recovered in the previous hybrid.
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Lemma 2. Hyb1(M)(k, x; r)
c
≈ Hyb2(M)(k, x; r)

Proof. Because both experiments use the input x∗ for computing the result, the output of the function in both worlds
is indistinguishable. Furthermore, the recovered output key allows the experiment to present the result to M∗ exactly
as it would be in a real world execution.

Lemma 3. Hyb2(M)(k, x; r) runs in polynomial time.

Proof. This lemma follows trivially since a real world execution of the protocol runs in polynomial time and each
intermediate hybrid adds only constant time operations.

We conclude the proof by letting SM execute Hyb2(M)(k, x; r). SM runs M∗ and controls CLOUD and SERVER.
SM terminates the ideal world execution if any consistency checks fail or if M∗ terminates at any point, and outputs
whatever M∗ outputs at the end of the simulation. From Lemma 1-3, SM proves Theorem 1 when MOBILE is
malicious.

6.2 Malicious SERVER S∗

In the scenario where S∗ can adopt an arbitrary malicious strategy, we construct a simulator SS that, operating in the
ideal world, can simulate S∗s view of a real-world protocol execution and can recover S∗s input for delivery to the
trusted third party. We construct this simulator and prove it secure with the following hybrid of experiments.

Hyb1(S)(k, x; r): This experiment is identical to REAL(S)(k, x; r) except that the experiment prepares the MOBILE
input according to the two-party protocol simulator S2PC instead of using the real MOBILE input. It then prepares the
new input according to the protocol and delivers the encrypted input and MAC tags to S∗.

Lemma 4. REAL(S)(k, x; r)
c
≈ Hyb1(S)(k, x; r)

Proof. Since the input is blinded by a one-time pad in both experiments, they are statistically indistinguishable.

Hyb2(S)(k, x; r): This experiment is identical to Hyb1(S)(k, x; r) except that the experiment invokes the simulator of
the two-party SMC protocol S2PC instead of running the actual protocol. S2PC is used to recover S∗s actual input y∗.
After recovering the full input, If S∗ tampers with MOBILE’S input, S2PC simulates⊥ and the experiment terminates.
Otherwise, the experiment delivers y∗ to the trusted third party and simulates the output f(x, y∗) concatenated with a
random string orm.

Lemma 5. Hyb1(S)(k, x; r)
c
≈ Hyb2(S)(k, x; r)

Proof. Based on the security definition of the underlying two-party SMC protocol, we know that a simulator exists
that can simulate the protocol in a computationally indistinguishable way, as well as recover the input used by S∗.
Based on the correctness guarantee of the two-party SMC protocol in conjunction with the unforgettability guarantee
of the MAC protocol, it is computationally infeasible for S∗ to modify MOBILE’S portion of the input. Finally, in
both experiments the MOBILE output of the computation is blinded by a one-time pad, making the random output
statistically indistinguishable from the real output.

Hyb3(S)(k, x; r): This experiment is identical to Hyb2(S)(k, x; r) except that the experiment prevents the trusted
third party from delivering input to the other party if S∗ modifies the MOBILE output orm before returning it.

Lemma 6. Hyb2(S)(k, x; r)
c
≈ Hyb3(S)(k, x; r)

Proof. Based on the correctness guarantee of the two-party SMC scheme and the fact that CLOUD is semi-honest in
this scenario, then S∗ will be caught in either experiment, and early termination will be the result.

Lemma 7. Hyb3(S)(k, x; r) runs in polynomial time.

Proof. This lemma follows trivially since a real world execution of the protocol runs in polynomial time, the simulator
S2PC runs in polynomial time, and all other intermediate hybrid adds only constant time operations.

We conclude the proof by letting SS execute Hyb3(S)(k, x; r). SS runs S∗ and controls CLOUD and MOBILE.
SS terminates the ideal world execution if any consistency checks fail or if S∗ terminates at any point, and outputs
whatever S∗ outputs at the end of the simulation. From Lemma 4-7, SS proves Theorem 1 when SERVER is malicious.

9



6.3 Malicious CLOUD C∗

In the scenario where C∗ can adopt an arbitrary malicious strategy, we construct a simulator SC that, operating in the
ideal world, can simulate C∗s view of a real-world protocol execution and can recover C∗s auxiliary input for delivery
to the trusted third party. We construct this simulator and prove it secure with the following hybrid of experiments.

Hyb1(C)(k, x; r): This experiment is identical to REAL(C)(k, x; r) except that the experiment invokes the two-party
SMC simulator S2PC , providing random inputs for SERVER and recovering C∗s real input. Finally, simulate a random
result or at the end of the two-party computation.

Lemma 8. REAL(C)(k, x; r)
c
≈ Hyb1(C)(k, x; r)

Proof. Based on the security definition of the underlying two-party SMC protocol, we know that the simulator S2PC

can indistinguishably simulate the two-party execution and recover MOBILE’S MAC tagged one-time pad as input by
C∗. Because in both experiments the output of the circuit is blinded by a one-time pad, the outputs in both cases are
statistically indistinguishable.

Hyb2(C)(k, x; r): This experiment is identical to Hyb1(C)(k, x; r) except that if the experiment finds from the recov-
ered input that C∗ modified the random key km, the experiment terminates.

Lemma 9. Hyb1(C)(k, x; r)
c
≈ Hyb2(C)(k, x; r)

Proof. Based on the correctness guarantee of the two-party SMC scheme and the unforgettability of the MAC scheme,
any change to km will cause the circuit to output ⊥, and will cause MOBILE to terminate except for a negligible
probability. Thus, termination in both experiments in computationally indistinguishable.

Hyb3(C)(k, x; r): This experiment is identical to Hyb2(C)(k, x; r) except that if the experiment aborts if C∗ modifies
the output string or.

Lemma 10. Hyb2(C)(k, x; r)
c
≈ Hyb3(C)(k, x; r)

Proof. Because SERVER is semi-honest and will not tamper with MOBILE’S output, in both hybrids C∗ will be caught
for tampering with the output and result in an abort of the protocol.

Lemma 11. Hyb3(C)(k, x; r) runs in polynomial time.

Proof. This lemma follows trivially since a real world execution of the protocol runs in polynomial time, the simulator
S2PC runs in polynomial time, and all other intermediate hybrid adds only constant time operations.

We conclude the proof by letting SC execute Hyb3(C)(k, x; r). SC runs C∗ and controls SERVER and MOBILE.
SC terminates the ideal world execution if any consistency checks fail or if C∗ terminates at any point, and outputs
whatever C∗ outputs at the end of the simulation. From Lemma 8-11, SC proves Theorem 1 when CLOUD is malicious.

6.4 Malicious MOBILE and CLOUD MC∗

In the final scenario, the colluding parties MC∗ can adopt an arbitrary malicious strategy against SERVER. The sim-
ulator SMC that proves security in this scenario is essentially the two-party SMC simulator S2PC with one small
change. Rather than completely recovering MC∗s input from the simulator, the experiment must combine the mali-
cious MOBILE input a∗||v∗s ||t∗s with the input recovered by S2PC to learn the real input x∗ that is to be delivered to
the trusted third party. Once this real input is retrieved, it simulates the result f(x∗, y) exactly as S2PC does. Since
the added operations are constant time and S2PC runs in polynomial time, we have that SMC proves Theorem 1 when
both MOBILE and CLOUD are malicious and colluding. Note that, as in the underlying two-party SMC scheme, this
scenario does not guarantee that the output will be released fairly to SERVER. However, it does guarantee privacy and
correctness of the output.
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Program Name SS13 Total BB Total Increase SS13 Non-XOR BB Non-XOR Increase

Dijkstra10 259,232 456,326 1.8x 118,357 179,641 1.5x

Dijkstra20 1,653,542 1,949,820 1.2x 757,197 849,445 1.1x

Dijkstra50 22,109,732 22,605,018 1.0x 10,170,407 10,324,317 1.0x

MatrixMult3x3 424,748 1,020,196 2.4x 161,237 345,417 2.1x

MatrixMult5x5 1,968,452 3,360,956 1.7x 746,977 1,176,981 1.6x

MatrixMult8x8 8,069,506 11,354,394 1.4x 3,060,802 4,075,082 1.3x

MatrixMult16x16 64,570,969 77,423,481 1.2x 24,494,338 28,458,635 1.2x

RSA128 116,083,727 116,463,648 1.0x 41,082,205 41,208,553 1.0x

Table 1: A comparison of the original function size to the augmented outsourcing circuit. As the size of the original
circuit grows, the increase in gates incurred by our outsourcing technique becomes vanishingly small.

7 Performance Evaluation
To demonstrate the practical efficiency of our black box outsourcing protocol, we implemented the protocol and ex-
amined the actual overhead incurred by the overhead operations. We initially considered comparing our black box
protocol to existing implementations of outsourcing protocols [27, 8, 7]. However, these existing protocols are built
on fixed underlying SMC techniques. As new protocols for two-party SMC are developed, the plug-and-play nature of
our protocol allows for these new techniques to be applied, which would provide a different comparison for each un-
derlying protocol. Instead, we chose to compare the overhead execution costs of our black box protocol to performing
the same computation in the underlying two-party protocol. Because the mobile device computation requires seconds
or less to execute, we focus our attention on the cost at the two executing servers. This performance analysis demon-
strates two key benefits of our protocol. First, it gives a rough overhead cost for an entire class of two-party SMC
protocols (in our case, garbled circuit protocols). Second, it allows us to demonstrate that our outsourcing technique
allows a mobile device with restricted computational capability to participate in a privacy-preserving computation in
approximately the same amount of time as the same computation performed between two servers. Essentially, we
show that our protocol provides a mobile version of any two-party SMC protocol with nominal overhead cost to the
servers. This is a novel evaluation methodology not used to evaluate previous black box SMC constructions, and
provides a more intuitive estimate for performance when applying a new underlying SMC construction.

7.1 System Design
Our implementation of the black box outsourcing protocol uses the two-party garbled circuit protocol developed by
shelat and Shen [44] as the underlying two-party SMC protocol. We selected this protocol because it is among the
most recently developed garbled circuit protocols and it has the most stable public release. We emphasize that it is
possible to implement our outsourcing on any two-party SMC protocol, such as the recent protocols developed to
reduce the cost of cut-&-choose [23, 32]. We implement our MAC within the augmented circuit using AES in cipher-
block chaining mode (CBC-MAC), as the AES circuit is well-studied in the context of garbled circuit execution. This
MAC implementation adds an invocation of AES per 128-bit block of input. Using the compiler developed by Kreuter
et al. [31], the overhead non-XOR gate count in the augmented circuit based on input size is ( |x|15686128 ) for input x. We
provide exact gate counts with overhead measurements for each tested application in Table 1. Our code will be made
available upon publication.

7.1.1 Testbed

Our experiments were run on a single server equipped with 64 cores and 1 TB of RAM. For each execution, the
application server and cloud were run as 32 processes communicating using the Message Passing Interface (MPI)
framework. The mobile device used was a Samsung Galaxy Nexus with a 1.2 GHz dual-core ARM Cortex-A9 pro-
cessor and 1 GB of RAM, running Android version 4.0. The mobile device communicated with the test server over an
802.11n wireless connection in an isolated network environment. We ran each experiment 10 times and averaged the
results, providing 95% confidence intervals in all figures.
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Symmetric Asymmetric Communication (bits)

9 0 2(|x|+ 2k) + 4(|om|)

Table 2: The total operations and bandwidth required at the mobile device. Recall that |x| is the length of the mobile
input in bits, k is the security parameter, and |om| is the length of the mobile output in bits. When measured with the
total protocol execution time, these operations are lost in the confidence intervals.
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Figure 3: Dijkstra execution time in seconds for k = 80. Note that for the largest input size, the execution overhead
of outsourcing is almost non-existent.

7.1.2 Test applications

We selected a representative set of test applications from previous literature [7, 31, 44, 30] to examine the performance
of our protocol over varying circuit and input sizes. We use all applications as implemented by Kreuter et al. [31]
except for Dijkstra’s algorithm, which was implemented by Carter et al. [8].

1. Dijkstra: this application accepts a weighted graph from one party and two node indices from the other party
(i.e., start and end nodes), and calculates the shortest path through the graph from the start to the end node. We
consider n-node graphs with 16 bit edge weights, 8 bit node identifiers, and a maximum degree of 4 for each
node. We chose this problem as a representative application for the mobile platform.

2. Matrix Multiplication: this application accepts a matrix from both parties and outputs the matrix product. We
consider this application for input size n, where each matrix is an n × n matrix of 32-bit integers. This test
application demonstrates protocol behavior for increasing input sizes.

3. RSA: this application accepts a modulus N and an exponent e from one party, and a message x from the other
party, and computes the modular exponentiation xe mod N . We consider input values where each value is 128
bits in length. While this is certainly too short for secure practical use, the size of the circuit provides a good
benchmark for evaluating extremely large circuits.

7.2 Execution Time
With the mobile operations reduced to a minimal set, shown in Table 2, our experiments showed a diminishing cost
of server overhead as the size of the test application increased. Considering Dijkstra’s algorithm in Figure 3 shows
that for a graph of 10 nodes, the outsourcing operations incur a 2.1x slowdown from running the protocol between
two servers. However, as the number of graph nodes increases to 50, the confidence intervals for outsourced and
server-only execution overlap, indicating a virtually non-existent overhead cost. When we compare these results to the
gate counts shown in Table 1, we see that as the gate count for the underlying protocol increases, the additive cost of
running the input MAC and output duplication amortize over the total execution time. This is to be expected from our
predicted overhead of 15686 non-XOR gates for each CBC-MAC block in the input. However, since the mobile input
for Dijkstra’s algorithm is of a fixed size, we observe that increasing the application server input size does not add to
the outsourcing overhead, showing the black box protocol to be more efficient for large circuit sizes with small mobile
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Figure 4: Matrix multiplication execution time in seconds for k = 80. Note that the execution overhead still diminishes
even as the mobile input size increases.

Program Name SS13 BB Increase
Dijkstra10 16 ± 1% 33 ± 1% 2.1x

Dijkstra20 77 ± 1% 100 ± 1% 1.3x

Dijkstra50 940 ± 2% 980 ± 2% 1.0x

MatrixMult3x3 28.6 ± 0.8% 73.2 ± 0.5% 2.6x

MatrixMult5x5 110 ± 2% 200 ± 2% 1.9x

MatrixMult8x8 400 ± 2% 627 ± 0.9% 1.6x

MatrixMult16x16 2900 ± 1% 3800 ± 2% 1.3x

RSA128 4700 ± 2% 4900 ± 3% 1.0x

Table 3: Comparing SS13 and Black Box runtime. All times in seconds. Note that as the circuit size increases, the
increase in execution time caused by outsourcing becomes insignificant.

input.
When we consider a growing mobile input size, we observe the overhead cost of the MAC operation performed

on the mobile input. In the matrix multiplication test program, we observed a 2.6x slowdown for the smallest input
size of a 3× 3 matrix (Figure 4). As in the previous experiment, this overhead diminished to a 1.3x slowdown for the
largest input size, but diminished at a slower rate when compared to the circuit size. This is a result of additional AES
invocations to handle the increasing mobile input size. However, the reduction in overhead shows that even as input
sizes increase, the circuit size is still the main factor in amortizing overhead.

In our final experiment, we considered a massive circuit representing one of the most complex garbled circuit
programs evaluated to date. When comparing the outsourced execution to a standard two-party execution, the overhead
incurred by the outsourcing operations is almost non-existent, as shown in Table 3. This experiment confirms the trends
of diminishing overhead cost observed in the previous two experiments. From this and previous work, we know that
evaluating large circuits from mobile devices is not possible without outsourcing the bulk of computation. Given that
many real-world applications will require on the order of billions of gates to evaluate, this experiment shows that our
black box outsourcing technique allows mobile devices to participate in secure two-party computation at roughly the
same efficiency as two server-class machines executing the same computation.

7.3 Communication Cost
Because transmitting data from a mobile device is costly in terms of time and power usage, we attempted to minimize
the amount of bandwidth required from the mobile device. Thus, the bandwidth used by the mobile device for any
given application can be represented as a simple formula, shown in Table 2. Because this bandwidth is nearly minimal
and easily calculated for any test program, we focused our experimentation on examining the bandwidth overhead
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Program Name SS13 BB Increase
Dijkstra10 2.44 x 109 3.87 x 109 1.6x

Dijkstra20 1.52 x 1010 1.73 x 1010 1.1x

Dijkstra50 2.02 x 1011 2.05 x 1011 1.0x

MatrixMult3x3 3.43 x 109 7.66 x 109 2.2x

MatrixMult5x5 1.57 x 1010 2.56 x 1010 1.6x

MatrixMult8x8 6.43 x 1010 8.73 x 1010 1.4x

MatrixMult16x16 5.11 x 1011 6.01 x 1011 1.2x

RSA128 8.69 x 1011 8.72 x 1011 1.0x

Table 4: Comparing SS13 and Black Box bandwidth usage between the parties performing the generation and evalua-
tion of the garbled circuit. All bandwidth in bytes. Note that the size of the original circuit dominates the bandwidth
required between the two servers. As this circuit grows in size, the overhead bandwidth required for outsourcing is
amortized.

Image 
Processing

Black Box 
SMC

Result

Figure 5: An example of the facial recognition application.

incurred between the application server and the Cloud.
As in the case of execution time, Table 4 shows an inverse relation between circuit size and overhead cost. Before

running the experiment, we predicted that the bandwidth overhead would approximately match the overhead in circuit
size shown in Table 1. The experiments confirmed that the actual bandwidth overhead was equal to or slightly larger
than the overhead in non-XOR gates in the circuit. The reason for this correlation is twofold. First, the free-XOR
technique used in the shelat-Shen protocol allows XOR gates to be represented without sending any data over the
network. Thus, adding additional XOR gates does not incur bandwidth cost. Second, in cases where the actual
overhead is slightly larger than the circuit size overhead, we determined that the added cost was a result of additional
oblivious transfers. These operations require the transmission of large algebraic group elements, so the test circuits
which incurred increased overhead from the growth of the mobile input showed a slightly larger bandwidth overhead as
well. Ultimately, as in the case of execution time, our experiments demonstrate that the black box outsourcing scheme
incurs minimal bandwidth usage at the mobile device with diminishing bandwidth overhead between the application
server and the Cloud.

8 Application: Facial Recognition
The growing number of mobile applications available present a wealth of potential for applying privacy-preserving
computation techniques to the mobile platform. Carter et al. [8] demonstrated one potential application with their
privacy-preserving navigation app, and Mood et al. [38] presented a friend-finding application. We present a third
mobile-specific application: facial recognition. In this setting, a secret operative or law enforcement agent carrying a
mobile device needs to analyze a photo of a suspected criminal using an international crime database (see Figure 5).
The database, managed by an international organization, would compare the photo to their database in a privacy-
preserving manner, returning a match if the suspect appears in the database. In this scenario, the agent must keep the
query data private to prevent insiders from learning who is being tracked, and the international organization must keep
the database private from agents associated with any particular nation.

To implement this application, we use the facial recognition techniques developed for the Scifi protocol of Osadchy
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Program Name Time

FaceRec10 87.1 ± 0.9%

FaceRec100 170 ± 2%

FaceRec1000 1000 ± 2%

Table 5: Runtime results showing the time it takes to determine what the input face is when a database of 10, 100, or
1000 faces is used. Time indicates the total runtime of the garbled circuit part of the computation. All time in seconds.
These results demonstrate how outsourcing allows an application designed for desktop-class machines to be efficiently
executed from the mobile platform.

et al. [41]. They develop a technique for two servers to perform efficient facial recognition using discrete parameters,
which can more easily be manipulated in secure computation protocols. They combine machine learning techniques
in a preprocessing phase with a secure online phase that compares the hamming distance of photos represented as bit
strings. To demonstrate our application, we implement the online comparison phase of this protocol in our black box
outsourcing protocol (the Fthreshold function in their work). The mobile device provides a 928 bit representation of a
photo, while the application server provides a database of representations containing 10, 100, and 1000 faces.

Our results show that given a database of 10 faces, the outsourced protocol can run the online phase in approxi-
mately 87 seconds (see Table 5). As the size of the facial database increases, the execution time for comparing across
the entire database grows. This growing cost is a result of the large cost of representing the facial database as gar-
bled input. Provided with a two-party SMC protocol that more efficiently computes over large data sets, our black
box protocol could be used to move this application from feasible to practical. This demonstrates that an application
designed and implemented to run between two servers can be feasibly executed from a mobile device. As new, more
heavyweight applications are developed, our technique for outsourcing allows any of those applications to be executed
from a mobile device with comparable efficiency to the server platform.

9 Comparison to Previous Techniques
While our implementation and evaluation in the previous section represents the first empirical analysis of black box
outsourcing, two other protocols have been proposed in the literature, which we term KMR [27] and JNO [25]. We
evaluate the tradeoffs between each technique in this section.

9.1 KMR
While the main focus of their work is the fixed outsourcing protocol Salus [27], Kamara et al. sketch a black box
technique for outsourcing any two-party computation protocol. Essentially, their protocol encodes each bit of the
MOBILE input as a bit string of length k for some computational security parameter k. This encoded input, along
with the mappings for reversing this encoding, is secret shared between SERVER and CLOUD, and then restored using
only XOR gates inside the circuit. A similar encoding technique is used to maintain both privacy and integrity of
the output from the circuit. This technique has the advantage of adding only XOR gates to the circuit, which can be
transmitted and evaluated cheaply using many SMC techniques. However, it also requires that the mobile input and
output be expanded by a factor of k. By contrast, our evaluation demonstrates that the overhead caused by adding
AND gates to the computation is minimal, and the MOBILE bandwidth use is kept to O(|x|) with a small constant
multiple. This is particularly advantageous on smartphones, where data usage is often restricted by slow network
speeds or provider-imposed bandwidth caps.

9.2 JNO
Developed concurrently to our protocol, Jakobsen et al. [25] presented a framework for outsourcing SMC protocols
across any number of “worker” servers. Their protocol follows a similar procedure to our own, but they describe a
novel MAC construction that allows the MOBILE input to be checked using only inexpensive linear operations in the
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circuit. Essentially, their technique requires that the MAC key be committed at the start of the protocol, then opened
once the rest of the input values are committed to the computation. Once the key is opened, it can be multiplied as a
known constant with the MOBILE input, which is secret shared according to the underlying SMC protocol. A simple
multiplicative MAC can then be verified before computation continues. The advantage of this scheme is that it does not
incur the k factor expansion of KMR while still adding only linear operations to the underlying circuit (e.g., XOR for
boolean circuits). The tradeoff is that the underlying SMC protocol must allow for reactive computation (i.e., private
values can be opened in the middle of computation). While this property is common in secret-sharing SMC protocols,
it is difficult to achieve with garbled circuits. The generic technique for making garbled circuits into a reactive SMC
protocol requires additional, MAC operations inside the circuit [19]. More efficient reactive garbled circuit protocols
exist [14, 38], but require special constructions that cannot be combined with all garbled circuit protocols in a generic
way. Our protocol allows for true black box outsourcing of any SMC protocol (reactive or non-reactive), and our
empirical performance evaluation demonstrates that the overhead of adding AND operations to the circuit is minimal
when the circuit size is large. This setting is preferable for computation that is more efficiently evaluated using garbled
circuits than arithmetic secret-sharing SMC schemes.

10 Conclusion
The growing popularity of the mobile platform is creating a strong need for privacy-preserving computation in mobile
applications. However, as most SMC techniques currently require significant processing and bandwidth resources,
secure outsourcing protocols have been developed to assist mobile devices in performing the most expensive crypto-
graphic operations associated with these protocols. In this work, we develop a technique for outsourcing any two-party
SMC protocol in a black box manner. Our protocol securely offloads the cost of the SMC protocol to the Cloud, provid-
ing maximal efficiency to the mobile device while maintaining strong security guarantees. Our performance evaluation
shows that as the complexity of the program being evaluated increases, the cost of outsourcing diminishes. As a result,
we enable execution of any SMC protocol from a mobile device at approximately the same efficiency as running the
protocol between two servers.
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