
Zeroizing without zeroes:

Cryptanalyzing multilinear maps without encodings of zero

Preliminary Report

Craig Gentry∗ Shai Halevi∗ Hemanta K. Maji† Amit Sahai‡

Abstract

We extend the recent zeroizing attacks of Cheon et al. on multilinear maps to some settings
where no encodings of zero below the maximal level are available. Some of the new attacks apply
to the CLT scheme (resulting in total break) while others apply to the GGH scheme (resulting
in a weak-DL attack).

Keywords: Cryptanalysis, Multilinear Maps.

∗IBM Research.
†Department of Computer Science, and Center for Encrypted Functionalities, University of California, Los Angeles.

hemanta.maji@gmail.com.
‡Department of Computer Science, and Center for Encrypted Functionalities, University of California, Los Angeles.

amitsahai@gmail.com. Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier Award
1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty
Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through the U.S. O�ce of Naval Research
under Contract N00014-11- 1-0389. The views expressed are those of the author and do not re�ect the o�cial policy
or position of the Department of Defense, the National Science Foundation, or the U.S. Government.



1 Introduction

Recent candidates for approximate multilinear attacks [GGH13a, CLT13] have been shown to su�er
from �zeroizing� attacks, where the presence of encodings of zero at levels below the zero-test
level can be exploited to mount attacks [GGH13a, CHL+14]. Such attacks have been particularly
devastating in the context of the CLT candidate [CHL+14].

However, some of the most prominent applications of multilinear maps, such as obfuscation [GGH+13b],
do not require any encodings of zero below the zero-test level. (This setting is called the �Multilinear
Jigsaw Puzzle� setting in [GGH+13b].) We could therefore optimistically hope that these zeroizing
attacks do not apply to this setting.

In this work we show, however, that such the absence of low-level encoding of zero is not by itself
a good enough defense against such zeroizing attacks. Speci�cally, we extend the recent attacks of
Cheon et al. [CHL+14], and show how to use them even in some settings where no encodings of
zero below the zero-test level are available.

We stress that so far we do not have a working attack on current obfuscation candidates, but our
attacks call for renewed e�ort to either attack these candidates or understand the source of hardness
that underlie their security. In particular in this note we also propose a generic attack model which
is closer to reality (and in particular captures the essence of our GGH-related attacks), we hope
that analysis in this new model would be useful in this e�ort.

2 The Attack in the CLT setting

The setting. We consider a setting of the CLT multilinear maps, where only certain parameters
and encodings are provided to the adversary, and these do not include encodings of zero below the
maximal level.

Let p1, . . . , pn be the secret primes numbers in the CLT scheme and let x0 = p1· · · pn. This modulus
x0 is provided to the adversary, together with a single zero-testing parameter pzt, which is recalled
in greater detail below.

An encoding of (m1, . . . ,mn) at level t according to this scheme, where mi ∈ [0, gi), is represented
by an m ∈ Zx0 such that: m = (rigi +mi)z

−t mod pi, for all i ∈ [n] and ri being small random
integer in the range [−2ρ, 2ρ) and z ∈ Zx0 is a secret parameter. This set of equations is represented
tersely as: m = CRT(pi) (m

′
i), where m

′
i = rigi +mi. We sometime refer informally to mi as �the

content of the i'th slot� in the encoding.

Suppose the maximum level of supported multi-linearity (i.e. the zero-test level) is some κ ∈ [3, n].
Namely, we have a zero-testing parameter pzt =

∑n
i=1 hi · (zκg

−1
i mod pi) · (x0/pi) mod x0.

Encodings needed for attack. Roughly speaking, we consider a setting where for every �slot�
we have some encoding that contains zero in that slot, but we do not have any encoding of zero
(in all the slots simultaneously), and moreover we cannot compute any such encoding below the
zero-test level. Suppose we are provided with the following encodings:

1



1. Let aj ∈ Zx0 , for j ∈ [n], be such that: aj = CRT(pi)

(
a′i,j
z

)
, where:

◦ a′i,j = ra,i,j · gi + âi,j ,

◦ âi,j ∈ [0, gi), and

◦ â1,j = 0 and âi,j = 0, for all i > κ.

That is, aj is level 1 encoding of (0, â2,j , . . . , âκ,j , 0, . . . , 0).

Remark. We note that in our setting, the 0s after aκ,j above are for padding. Our attack
naturally extends to other cases where these 0s are replaced with similar structures.

2. Let bk ∈ Zx0 , for k ∈ [n], be such that: bk = CRT(pi)

(
b′i,k
z

)
, where:

◦ b′i,k = rb,i,k · gi + b̂i,k,

◦ b̂i,k ∈ [0, gi), and

◦ b̂2,k = 0 and b̂i,j = 0, for all i > κ.

That is, bk is level 1 encoding of (̂b1,k, 0, b̂3,k, . . . , b̂κ,k, 0, . . . , 0).

3. Let c ∈ Zx0 be such that: c = CRT(pi)

(
c′i
z

)
, where:

◦ c′i = rc,i · gi + ĉi

◦ ĉi ∈ [0, gi), and

◦ ĉ3 = 0 and ĉi = 0, for all i > κ.

That is, c is a level 1 encoding of (ĉ1, ĉ2, 0, ĉ4, . . . , ĉκ, 0, . . . , 0).

4. Let c̃ ∈ Zx0 be such that: c̃ = CRT(pi)

(
c̃′i
z

)
, where:

◦ c̃′i = rc̃,i · gi + ̂̃ci
◦ ̂̃ci ∈ [0, gi), and

◦ ̂̃c3 = 0 and ̂̃ci = 0, for all i > κ.

That is, c is a level 1 encoding of (̂c̃1, ̂̃c2, 0, ̂̃c4, . . . , ̂̃cκ, 0, . . . , 0).
5. Let dt ∈ Zx0 , for 4 6 t 6 κ, be a level 1 encoding of (d̂t,1, . . . , d̂t,t−1, 0, d̂t,t+1, . . . , d̂t,κ, 0, . . . , 0).

As above, we have dt = CRT(pi)

(
d′t,i/z

)
, where d′t,i = rd,t,igi + d̂t,i. We shall not need these

parameters explicitly in our attack description and the proof presented below.

Note that given these encodings, it is not possible to create encodings of zero at any level below κ
using the allowed addition and multiplication operations.

2



The attack. Given, these parameters we present our attach which allows us to factorize x0 and
thereby achieve a total break of CLT. The attack proceeds along the same lines as [CHL+14],
but we set up the attack in a di�erent manner to avoid the need for zero encodings, and our
algebraic manipulations exploit commutativity within the CRT representation to yield a di�erent
�nal factorization of matrices, but in a manner that still allows to carry out the attack. We now
give details of the attack.

We de�ne d := d4· · · dκ, which is a level κ − 3 encoding of a message of form: (d̂1, d̂2, d̂3, 0, . . . , 0).
That is, d = CRT(pi) (d

′
i) where d

′
i = rd,igi + d̂i, d̂i = 0 for all i 6= 3.

Let λj,k := [ajbkd]x0 . Note that λj,k is a level κ−1 encoding of a message of form (0, 0, λ̂j,k, 0, . . . , 0).

Recalling that the zero-testing parameter is pzt =
∑n

i=1 hi · (zκg
−1
i mod pi) · p−i mod x0 (where

p−i = x0/pi), we can compute for all i, k:

w
(c)
j,k := [c · λj,k · pzt]x0 =

n∑
i=1

hi(cλj,kz
κg−1i mod pi)p−i

=
n∑
i=1

c′ia
′
i,jb
′
i,k hid

′
ig
−1
i p−i︸ ︷︷ ︸

=h′i

(mod x0)

Below we denote h′i := [hid
′
ig
−1
i p−i]x0 for i ∈ [n].

Note that in the above equations, h′1, h
′
2 and h′3 contain multiplicative factors of g−11 , g−12 and

g−13 , respectively, but these cancel out with the factors of g1, g2, g3 in a
′
1,j , b

′
2,k, c

′
3, respectively (and

similarly the g−1i factors for i > 3 cancel out with the gi factors in the d′i's). That is, we can re-write
the above equation as:

w
(c)
j,k = (a′1,jg

−1
1 )︸ ︷︷ ︸

=a′′1,j

· (h′1g1)︸ ︷︷ ︸
=h′′1

·c′1b′1,k + a′2,j · (h′2g2)︸ ︷︷ ︸
=h′′2

·c′2 · (b′2,kg−12 )︸ ︷︷ ︸
=b′′2,k

+a′3,j · (h′3g3)︸ ︷︷ ︸
=h′′3

· (c′3g−13 )︸ ︷︷ ︸
=c′′3

·b′3,k

+

n∑
i=4

a′i,jh
′
ic
′
ib
′
i,k (mod x0)

Crucially, the equality w
(c)
j,k = a′′1,jh

′′
1c
′
1b
′
1,k + a′2,jh

′′
2c
′
2b
′′
2,k + a′3,jh

′′
3c
′′
3b
′
3,k +

∑
i>3 a

′
i,jh
′
ic
′
ib
′
i,k holds not

just modulo x0 but also over Z, because both sides are smaller than x0. To see that the right hand
side consists only of small terms, recall that we have

1. a′′1,j = [a′1,jg
−1
1 ]x0 = ra,1,j , for j ∈ [n] (since the aj 's have 0 in their �rst slots).

2. b′′2,k = [b′2,kg
−1
2 ]x0 = rb,2,k, for k ∈ [n] (since the bk's have 0 in their second slots).

3. c′′3 = [c′3g
−1
3 ]x0 = rc,3 (since c's has 0 in its third slot).

4. h′′3 = [h′igi]x0 = hid
′
ip−1 for i ∈ {1, 2, 3} (by de�nition of h′i).

5. For 3 < i 6 n, we have h′i = hird,ip−i (since d has zeros inall the slots 4 and up).

3



Let C(c) := diag(c′1, c
′
2, c
′′
3, c
′
4, . . . , c

′
n). Let H := diag(h′′1, h

′′
2, h
′′
3, h
′
4, . . . , h

′
n). Now, we de�ne the ma-

trix W (c) =
(
w

(c)
j,k

)
j,k∈[n]

. Then, we can write the following matrix equations over Z:

W (c) =

a
′′
1,1 a′2,1 a′n,1
...

. . .

a′′1,n a′2,n a′n,n


︸ ︷︷ ︸

=A

×C(c) ×H ×


b′1,1 · · · b′1,n
b′′2,1 · · · b′′2,n
b′3,1 b′3,n

. . .

b′n,1 b′n,n


︸ ︷︷ ︸

=B

We can use the same procedure to obtain a similar matrix W (c̃), and we have the matrix equations
W (c̃) = A × C(c̃) × H × B, also over Z. With high probability over the randomness, both W (c)

and W (c̃) are invertible over Q. We now compute the matrix W = W (c)W (c̃)−1 over Q and its
eigenvalues. We have:

W = (AC(c)HB)× (AC(c̃)HB)−1

= A× C(c) × (C(c̃))−1 ×A−1 = A×

c
′
1/c̃
′
1 0

. . .

0 c′n/c̃
′
n

×A−1,
so the eigenvalues of W are all the rational numbers c′n/c̃

′
n (which are distinct whp). Let αi/βi =

c′i/c̃
′
i be a simpli�ed fraction (i.e. where αi, βi are relatively prime), then on one hand we have

βici − αic̃i = 0, and on the other hand for all i 6= i we have βici′ − αic̃i′ 6= 0 (mod pi′) whp. Hence
βic − αic̃ will have non-trivial gcd with x0, namely pi. Running over all eigenvalues of W we can
recover all the prime factors of x0.

3 The Attack in the GGH setting

Given the GGH �weak discrete logarithm� attacks [GGH13a], previous works (e.g., [GGH+13b])
employ some counter-measures to avoid providing encodings of zero. In this section we point out
that these countermeasures may be insu�cient in some cases.

3.1 Counter-Measures to Zeroing Attacks

To avoid providing encoding of zero in the public parameters, it was suggested in some previous
work to replace the �bare encoding� of the values of interest by encoding matrices related to these
values (e.g. have the desired value as an eigenvalue). For concreteness, in this note we consider the
�ordered setting� in which the public parameters include an encoding of various values and we know
ahead of time the order in which these values can be multiplied.1 The attack below easily extends
to other settings (in fact it may become a little easier).

1This is the case, for example, in the application for branching-program obfuscation, where these values of interest
are the randomized matrices.

4



In more detail, we will assume a GGH-like scheme with plaintext space R/gR for some ring R
and element g ∈ R, and ciphertext space Rq for some integer q. We encode elements relative to
subsets of [k] = {1, . . . , k}, and use [k] itself as our zero-test level. Suppose that our application
calls for publishing encoding of elements relative to the singleton sets {i} ⊂ [k] and only needs
to multiply elements in the natural order (with encoding relative to {1} on the left, followed by
encodings relative to {2}, {3}, etc.). Further, suppose that we need to re-randomize encodings (at
least) relative to the singletons {1} and {2}, so we would like to provide encodings of zero relative
to these singletons.

Trying to protect against �zeroizing attacks,� we could consider the following solution: we choose a
random small vector s∗ ∈ Rn and invertible matrices T0, T1, . . . , Tk ∈ Rn×nq (for some n). We then
encode α ∈ R/gR relative to {i} by choosing a random small matrix A∗ such that s∗ × A∗ = αs∗

(mod gR), and publishing the matrix

A{i} =
[
Ti−1 ×A∗ × T−1i

]
q
.

For the purpose of zero-test we choose another mid-size random vector t∗ ∈ Rn and publish the two
vectors s = [g−1s∗ × T−10 ]q and t = [Tk × t∗]q. It is easy to see that this provides the functionality
of a graded-encoding scheme, where a level-[k] encoding A[k] can be tested for zero by checking that∥∥∥∥[s×A[k] × t

]
q

∥∥∥∥� q.

On the other hand, it seems hard to obtain a native GGH-encoding of zero even if we are given
matrices A{i} that encode zero, so we could naively hope that the zeroizing attacks from [GGH13a]
do not apply.

Where are the zi's? Note that the denominators zi of the native GGH encoding are absent
from the description above, since they are absorbed into the matrices Ti. One can instead use
A{i} =

[
z−1i · Ti−1 ×A∗ × T

−1
i

]
q
. and multiply s by z =

∏
i zi, and everything else in this section

would remain unchanged (except the notations which would become a little more cumbersome by
the need to specify all these zi's). Indeed it is easy to see that this does not change the scheme
at all. Similarly, the h element from GGH is implicitly de�ned as h = 〈t∗, s∗〉, which is indeed a
mid-size element.

3.2 The Updated Weak-DL Attack

Unfortunately, we show that the counter-measures from above are insu�cient to thwart a �weak-
discrete-logarithm� attack in the setting above. Speci�cally, assume that we are given the following
encoding matrices:

◦ Many level-{1} encoding of zero, A
{1}
j =

[
T0 ×A∗j × T

−1
1

]
q
, j = 1, 2, . . ., s.t. s∗A∗j = 0

(mod gR).

◦ Many level-{2} encoding of zero, B
{2}
j =

[
T1 ×B∗j × T

−1
2

]
q
, j = 1, 2, . . ., s.t. s∗B∗j = 0

(mod gR).

5



◦ A level-{2} encoding of one, C{2} =
[
T1 × C∗ × T−12

]
q
s.t. s∗C∗j = s∗ (mod gR).

◦ A level-{2} encoding of an unknown element, D{2} =
[
T1 ×D∗ × T−12

]
q
s.t. s∗D∗j = δs∗

(mod gR) for some small scalar δ ∈ R.

◦ For S = {3, . . . , k}, many level-S encoding of nonzero elements, ESj =
[
T2 × E∗j × T

−1
k

]
q
,

j = 1, 2, . . ., s.t. s∗E∗j = εjs
∗ (mod gR) for small scalars εj ∈ R, εj /∈ gR.

We now show an attack that recovers the coset δ + gR.

3.3 The Attack

Observe that since the A
{1}
j 's are encoding of zero then they cancel the term g−1 in the vector s.

Hence there exist small vectors uj ∈ Rn such that we have the equality s∗A∗j = g · uj in R, and
therefore

[
s×A{1}j × T1

]
q
= s∗A∗j/g = uj . Let us also denote below vj =

[
T2 × ESj × t

]
q
and

notice that vj is the small vector vj = E∗j t
∗ (equality in R). Then for all j1, j2, j3 we get

wj1,j2,j3 =:
[
s×A{1}j1 ×B

{2}
j2
× ESj2 × t

]
q

= uj1B
∗
j2vj3

xj1,j3 =:
[
s×A{1}j1 × C

{2} × ESj2 × t
]
q

= uj1C
∗vj3

yj1,j3 =:
[
s×A{1}j1 ×D

{2} × ESj2 × t
]
q

= uj1D
∗vj3 .

with equalities over R.

Let us now denote by U the n× n matrix over R with the uj 's as rows and by V the n× n matrix
with the vj 's as columns, and also de�ne the n× n matrices W1,W2, . . ., X, and Y via:

Wj [j1, j3] = wj1,j,j3 , X[j1, j3] = xj1,j3 , and Y [j1, j3] = yj1,j3 .

Then by de�nition we have

Wj = U ×B∗j × V, X = U × C∗ × V, and Y = U ×D∗ × V,

again with equalities over R. Computing the determinant of all these matrices and taking the GCD,
we get w.h.p. the determinant of U × V , and by dividing it out we get the determinant of all the
B∗j 's. Since s

∗ ×B∗j ∈ gR for all j, then det(B∗j ) is divisible by g for all j. Hence w.h.p. the scalars
det(B∗j ) span the ideal gR, so we can compute this ideal and its order, let us denote this order by p
and we assume that p is a prime integer.

Next, we consider the univariate matrix polynomial M(z) = z ·X − Y = U × (z · C∗ −D∗) × V .
This is a matrix with linear polynomials (over R) in all its entries, and note that evaluating this
matrix polynomial at z = δ would give us a matrix M(δ) such that s∗ ×M(δ) = 0 (mod gR) and
therefore det(M(δ)) = 0 (mod gR).

Since M(z) has linear polynomials (over R) in all its entries, then its determinant is a degree-
n polynomial over R, and let us denote this polynomial by P (x) := det(M(x)). Knowing the

6



ideal gR and its order p, we can reduce all the coe�cients of P (X) modulo gR, using Zp as
the canonical representation of gR. This yields a degree-n polynomial Q(X) over Zp such that
Q(X) = P (X) (mod gR). By the above we know that P (δ) = 0 (mod gR), which means that if δ∗

is the representative of δ in Zq then Q(δ∗) = 0 (mod p). We can therefore factor the polynomial Q
over Zp, and recover δ∗ as one of its roots, which would give us the coset δ∗ + gR = δ + gR.

3.4 Comments

We note that the attack above can of course be mounted to recover the coset of any encoding, not
just at level-{2}. Also if the matrix C was an encoding of an arbitrary non-zero element γ (rather
than an encoding of 1) then the only di�erence would be that we would recover the coset up to
multiplication by the �xed factor γ mod p. We also note that the zero-encoding Aj need not be at
level-{1}, this was only done to simplify the notations.

4 A Re�ned Generic Model

The attacks that we sketched above point to the inadequacy of the generic graded-encoding model
as used in recent work. Indeed these attacks are highly algebraic and yet they are not captured by
that generic model. The main di�erence is that in the generic graded-encoding model the zero-test
returns just a 0/1 bit, whereas in the GGH/CLT schemes this test returns a full ring element.

We therefore propose to augment this generic model as follows: In addition to the standard interfaces
in the graded-encoding model (with some plaintext space R′ = R/gR, which we assume is a �eld),
we will now also have a black-box-�eld over the same space, except that we cannot directly obtain
handles to this black-box �eld. Instead, the zero-test would serve as a translation device, letting us
move things from the graded-encoding oracle to the black-box-�eld oracle.

In more detail, we would have the usual oracles to sample/encode elements in the graded-encoding
scheme and to add and multiply them with the usual semantics. However, with each encoded element
the graded-encoding oracle will also associate a �random element of R� from the appropriate coset.
Namely, with each encoded value α the oracle will also have an associated rα ∈ R and the intended
semantics is that we use α + g · rα to represent the coset α + gR. The oracle keeps track of the
representatives via the addition and multiplication operations of the graded-encoding scheme, by
adding and multiplying the representatives in the ring R.

Then, if the zero-test is called on an encoding of zero with representative g · r ∈ R, then in addition
to the bit 1 the oracle will also give us a handle to an encoding of r + gR in the black-box �eld.
Namely, if we call it on an element which is divisible by g then it will divide by g and move it to
the black-box �eld.

7



References

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive,
Report 2014/906, 2014. http://eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in

Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in

Computer Science, pages 476�493. Springer, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology

- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-

plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1�17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40�49. IEEE Computer Society,
2013.

8


