
1

Some Security Results of the RC4+ Stream Cipher
Subhadeep Banik and Sonu Jha

Abstract—RC4+ stream cipher was proposed by Maitra et. al.
at Indocrypt 2008. It was claimed by the authors that this new
stream cipher is designed to overcome all the weaknesses reported
on the alleged RC4 stream cipher. In the design specifications of
RC4+, the authors make use of an 8-bit design parameter called
pad which is fixed to the value 0xAA. The first Distinguishing
Attack on RC4+ based on the bias of its first output byte was
shown by Banik et. al. in Indocrypt 2013. In this paper, it was
also mentioned that the distinguishing attack would still hold if
the pad used in RC4+ is fixed to any even 8-bit constant other
than 0xAA. Therefore, the question that arises is whether the
design of RC4+ can be protected by fixing the pad parameter to
some constant odd value. In this paper, we try to answer this very
question. We show that the design is still vulnerable by mounting
a distinguishing attack even if the pad is fixed to some constant
8-bit odd value. Surprisingly we find that if the value of the pad
is made equal to 0x03, the design provides maximum resistance
to distinguishing attacks. Lastly we return to the original cipher
i.e. in which pad is set to 0xAA and unearth another bias in the
second output byte of the cipher, thereby showing that practical
implementations of this cipher should discard the use of the first
two output bytes for encryption.

Index Terms—Distinguishing Attacks, RC4, RC4+, Stream
Ciphers.

I. INTRODUCTION

THE alleged RC4 stream cipher is the most widely used
software stream cipher in different popular protocols.

Apart from its popularity in the commercial uses, it has
also become one of the most involved topics of research
for cryptologists. RC4 only requires byte manipulations and
hence it is ideal for software implementation. Its simplistic
design allows faster encryption in software. Several years of
thorough research on the cryptanalysis of the alleged RC4
showed many vulnerabilities and shortcomings of this stream
cipher. In [3], a practical attack on broadcast RC4 was also
demonstrated which was enough to compromise the security
of many popular protocols which used the RC4 encryption
scheme. As a result, many researchers tried to focus on
designing RC4 like stream ciphers with introducing additional
security layers to minimize the reported shortcomings of RC4.
Many stream ciphers have been proposed by researchers to
fulfill the objective. RC4A [6], GGHN [5], VMPC [7], etc. are
such proposed stream ciphers to name a few. Nevertheless, all
of the above mentioned stream ciphers have had some reports
of distinguishing attacks [8]–[10] against them. In [1], a new
stream cipher named RC4+ was introduced. It is a modified
version of RC4 with a complex 3-phase key schedule and
a more complex output function. The RC4+ stream cipher
was primarily designed to over come the weaknesses and

S. Banik is Post-Doctoral fellow at DTU Compute, Technical University of
Denmark, Lyngby, Denmark. email: subb@dtu.dk

S. Jha is Research Trainee from Kolkata, India. email:
jhasonu1987@yahoo.com

shortcomings of RC4 stream cipher. The authors claimed that
while being marginally slower than RC4 in software, the
RC4+ stream cipher would wipe out all the weaknesses like
distinguishing [3] and state recovery attacks [4] on the RC4
stream cipher. The physical structure of the RC4+ stream
cipher is same as RC4. The first layer of Key Scheduling
Algorithm(KSA) (given in Table I) of the RC4+ stream cipher
is similar to KSA of RC4. The second and third layer is
described in Table II. However the Pseudo-Random Keystream
Generation Algorithm(PRGA) (given in Table III) of RC4+
differs from the PRGA phase of RC4. A detailed description
of the RC4+ stream cipher is given in Section II.

TABLE I
INITIALIZATION AND KSA LAYER 1 SCRAMBLING

procedure INITIALIZE(S)
i← 0;
while i 6= N do

S[i]← i;
i← i+ 1;

end while
j ← 0;

end procedure

procedure SCRAMBLING(S,K)
i← 0;
while i 6= N do

j ← (j + S[i] +K[i]);
SWAP(S[i], S[j]);
i← i+ 1;

end while
end procedure

A. Existing attacks on RC4+

In [2], a distinguishing attack on RC4+ was shown, where
the authors proved that the first output byte produced by RC4+
stream cipher is negatively biased towards 1. The probability
of the first output byte being equal to 1 is around 1

N −
1

2N2 .
Based on this observation, they mounted a distinguishing
attack on RC4+ which required around 226 output keystreams
produced by PRGA of the RC4+ stream cipher. In the same
paper, the authors also mounted a differential fault attack on
RC4+.

B. Our Contribution and Organization of the Paper

The distinguishing attack on RC4+ mentioned in [2] holds
also when even pads other than the proposed pad 0xAA
are used in the PRGA. This fact was mentioned explicitly
in [2]. However, the question, “Can the design resist the
distinguishing attack if the design parameter(pad) is fixed to
some 8-bit odd value?”, still remains unanswered. In other
words, can the design be fixed by simply replacing the even
pad with an odd one? In this paper we mount a distinguishing
attack on RC4+ in case when odd pads are used in the PRGA.
In Section III, we will show that the first output byte produced
by RC4+ in case of odd pads (except a special case of pad
being equal to 0x03) is positively biased towards 1. The
probability of the first output byte being equal to 1 is around
1
N + 1

2N2 . The required amount of output keystreams produced

2

by RC4+ to mount the attack in case of odd pads are also 226.
In Section IV we will discuss why it is not possible to find a
distinguisher in the special case when the pad used in PRGA
is equal to 0x03 in the similar attack scenario used in case of
other odd pads. In addition, we will introduce another attack
scenario in which it is possible to find a distinguisher bias in
case of pad 0x03. In Section V we will discuss a bias present
in the second output byte of the original version of RC4+. In
fact, we will prove that the second output byte Z2 is positively
biased towards 0 and the probability of Z2 being equal to 0
is 1

N + 1
N3 . We will conclude our paper in Section VI.

TABLE II
IV AND ZIG-ZAG SCRAMBLING

procedure MIX IV(S,K, V)
i← N

2
− 1;

while i 6= 0 do
j ← (j+S[i])⊕ (K[i]+
V [i]);
SWAP(S[i], S[j]);
i← i− 1;

end while
i← N

2
;

while i 6= N do
j ← (j+S[i])⊕ (K[i]+
V [i]);
SWAP(S[i], S[j]);
i← i+ 1;

end while
end procedure

procedure ZIG-ZAG(S,K)
y ← 0;
while y 6= N do

if y ≡ 0 mod 2 then
i = y

2
;

else
N
2
− y+1

2
;

end if
j ← (j + S[i] +K[i]);
SWAP(S[i], S[j]);
y ← y + 1;

end while
end procedure

II. DESCRIPTION OF THE RC4+ STREAM CIPHER

As in case of RC4, RC4+ too consists of a permutation
S of N = 256 elements. The elements of S comes from
the integer ring Z256. It also consists of two index pointers i
and j. Each of these pointers has the size of 1 byte. RC4+
has a three-layer key scheduling algorithm. The initialization
part and the basic scrambling in the first layer is similar to
the KSA of RC4. Table I describes the initialization and first
layer basic scrambling in KSA where S is initialized to the
identity permutation and mixed with the Secret Key K of size
l bytes where typically l = 16. All the addition operations
are performed in Z256 and ⊕ denotes the bitwise XOR. In the
second layer of KSA, the permutation S is further scrambled
using an IV of size l bytes. Finally in the third layer, a zig-zag
scrambling is performed on the permutation S. The description
of second and third layer of KSA is given in Table II. The array
V used in the table is of length N and is defined as

V [i] =

 IV [N2 − 1− i] if N
2 − l ≤ i ≤

N
2 − 1

IV [i− N
2] if N

2 ≤ i ≤
N
2 + l − 1

0 otherwise

The PRGA routine of RC4+ has a slight deviation from the
simplistic PRGA structure of RC4. The designers proposed a
bit different PRGA in order to protect the cipher against the
strong second output bias showed in [3] and the permutation
recovery attack of [4]. To protect the cipher design against
the well known aforementioned attacks, the designers choose

to make the output keystream byte functions of a few other
locations of the permutation array S. Table III provides the
exact details of the PRGA routine of RC4+ where � and
� represents the left and right bitwise shifts respectively. The
term p denotes the design parameter which can take the values
from {0, 1, · · · , 255}. Note that the pad p used in the PRGA
by the designers of the RC4+ encryption scheme is 0xAA.

TABLE III
RC4+ PRGA ROUTINE

procedure GENERATE KEYSTREAM(PERMUTATION S)
i← 0;j ← 0;
while Keystream is required do

i← i+ 1;
j ← j + S[i];
SWAP(S[i], S[j]);

t← S[i] + S[j];
t′ ← (S[i� 3⊕ j � 5] + S[i� 5⊕ j � 3])⊕ p;
t′′ ← j + S[j];

Zi = (S[t] + S[t′])⊕ S[t′′];
end while

end procedure

III. DESCRIPTION OF BIAS FOR ODD PADS p 6= 0X03

In this section we will show that RC4+ is not secure even
if the design parameter p is changed to any fixed 8-bit odd
constant except 0x03. We will show that the first output byte
Z1 is still biased positively towards 1. With the help of the
following theorems, we will prove that Pr(Z1 = 1) = 1

N +
1

2N2 . Let S0 denote the initial state of the PRGA of RC4+.

Theorem 1. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Furthermore, let the pad used in the PRGA
is fixed to some odd constant denoted by p where p 6= 0x03.
If S0[1] = 1 and S0[2] is even, then the first output byte Z1

can take the value 1 for exactly two values of S0[32].

Proof: According to the description of the PRGA given
in Table III, initially i = j = 0. After the increment operations
take place, the new i, j values change as i = 0 + 1 = 1 and
j = 0 + S0[i] = 0 + 1 = 1. Since both the indices i and j
are equal after the increment operations, the following swap
operation doesn’t bring any change to the array S0. Now the
calculation for t, t′ and t′′ are done as follows.

t = S0[i] + S0[j] = S0[1] + S0[1] = 2. (1)

t′ = (S0[i� 3⊕ j � 5] + S0[i� 5⊕ j � 3])⊕ p.
= (S0[1� 3⊕ 1� 5] + S0[1� 5⊕ 1� 3])⊕ p.
= 2 · S0[32]⊕ p.

(2)

t′′ = j + S0[j] = 1 + S0[1] = 2. (3)

Finally we have

Z1 = (S0[2] + S0[t
′])⊕ S0[2]. (4)

3

Let E256 be the set of even numbers in Z256. Consider
the function f : E256 × Z256 → Z256 defined as f(x, y) =
(x + y) ⊕ x. By constructing a truth table for f it can be
easily verified that f = 1 if and only if y = 1. This tells
us that for Z1 to be equal to 1, we must have S0[t

′] = 1,
and since S0[1] has already been fixed to 1, this requires that
t′ = 1.

Since p 6= 0x03 is an odd 8-bit constant, let p = 2k + 1,
where k ∈ Z256 \{0x01}. Since S0 is a permutation on Z256,
and coupled with the fact that S0[1] = 1 and S0[2] is even, it
can be deduced that S0[32] can take total of 254 values out
of which 127 are odd and 127 are even. We need

t′ = 2 · S0[32]⊕ (2k + 1) = 1⇔ 2 · S0[32] = (2k + 1)⊕ 1

⇔ 2 · S0[32] = 2k
(5)

Thus it can be seen that for the two values of S0[32] equal
to k and 128+k, t′ evaluates to 1. Hence it follows that Z1 can
take the value 1 for exactly two values of S0[32]. Since Z1 = 1
for 2 out of 254 values S0[32] can take, Pr[Z1 = 1|E] = 2

254 ≈
2
N , where the event E denotes the event “S0[1] = 1 and S0[2]
is even”.

Theorem 2. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Furthermore, let the pad used in the PRGA
is fixed to some odd constant denoted by p where p 6= 3. The
probability that Z1 = 1 is given as Pr[Z1 = 1] = 1

N + 1
2N2 .

Proof: Let the event E denote: “S0[1] = 1 and S0[2] is
even”. Then we have Pr[E] =

N
2 ·(N−2)!

N ! ≈ 1
2N . From Theorem

1, we have Pr[Z1 = 1|E] ≈ 2
N . We have Pr[Z1 = 1|Ec] =

1
N (verified experimentally on 220 random permutations) by
following the standard randomness assumptions. Therefore the
final probability comes down to

Pr[Z1 = 1] = Pr[Z1 = 1|E] · Pr[E]

+Pr[Z1 = 1|Ec] · Pr[Ec]

=
2

N
· 1

2N
+

1

N
· (1− 1

2N
)

=
1

N
+

1

2N2
.

(6)

The following Theorem 3 from [3] indicates the number of
output samples required to reliably distinguish two distribu-
tions X and Y . It is stated as follows.

Theorem 3. X and Y being two distributions, if the proba-
bility of occurrence of the event υ in the distributions X and
Y is p1 and p1(1+p2) respectively, then for small p1 and p2,
O(1

p1·p2
2
) samples are sufficient for distinguishing X from Y

with a constant probability of success.

Distinguishing RC4+ from Random Sources: Using Theo-
rem 3, let X be the probability distribution of Z1 in an ideal
random stream, and Y be the probability distribution of Z1 in

the streams produced by RC4+. Let the event υ denote Z1 = 1.
The probability of occurrence of the event υ in the distribution
X is 1

N and in Y is 1
N + 1

2N2 = 1
N (1 + 1

2N). Then we
have p1 = 1

N and p2 = 1
2N . Therefore the number of output

samples required to reliably distinguish the two distributions
is about 1

p1·p2
2
= N · 22 ·N2 = 226.

IV. DESCRIPTION OF THE BIAS WHEN PAD IS 0X03

In this section we analyze the security of the RC4+ stream
cipher if the pad used as the design parameter is fixed to
p = 0x03. The following Theorem 4 shows that first output
byte Z1 of RC4+ is not biased towards 1 for the event E
described in Theorems 1 and 2 in case when the pad used as
the design parameter of RC4+ is set to 0x03.

Theorem 4. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Furthermore, let the pad p used in the PRGA
is fixed to p = 0x03. If the event E denotes S0[1] = 1 and
S0[2] is even, then

1) The first output byte Z1 can take the value 1 for only
one value of S0[32].

2) The probability that Z1 = 1 is Pr[Z1 = 1] = 1
N .

Proof:
1) According to Theorem 1,

t′ = 2 · S0[32]⊕ 0x03 = 1. (7)

This can hold for S0[32] = 1 and S0[32] = 129. Since
S0 is injective, S0[32] 6= 1. This implies that t′ = 1
only if S0[32] = 129.

2) The final probability of Z1 being equal to 1 is given as
follows

Pr[Z1 = 1] = Pr[Z1 = 1|E] · Pr[E]

+Pr[Z1 = 1|Ec] · Pr[Ec]

=
1

N
· 1

2N
+

1

N
· (1− 1

2N
)

=
1

N
.

(8)

In Theorem 4 we showed that the first output byte Z1 of
RC4+ is not biased towards 1 when pad p = 0x03. For all the
other odd pads p other than 0x03, we proved with the help
of Theorems 1 and 2, that the first output byte Z1 is positively
biased. However, Z1 remains free of any biases in case of pad
being equal to 0x03. This provides us with the motivation
to investigate biases in the subsequent output bytes. With the
help of the following theorems we will show that the second
output byte Z2 is negatively biased towards 0 and 2 for pad
p = 0x03.

Theorem 5. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Let the pad used in the PRGA is fixed to
p = 0x03. If S0[1] = 0 and S0[2] = 2, then the second
output byte Z2 can never take the value 0. Furthermore, if
S0[4] ≡ 0 mod 4 or S0[4] ≡ 1 mod 4, then Z2 can never
take the value 2.

4

Proof: We refer to the PRGA routine shown in Table III
of RC4+. The index bytes i and j are set to 0 initially. Suppose
S0[0] = e, where e is any value other than 0 and 2. In the first
round of PRGA routine, i and j are incremented as follows

i = 0 + 1 = 1. (9)

j = 0 + S0[i] = 0 + S0[1] = 0 + 0 = 0. (10)

The swap operation of the PRGA makes S0[0] = 0, S0[1] =
e and S0[2] = 2. In the second round of PRGA, the index
values i and j change as follows,

i = 1 + 1 = 2. (11)

j = 0 + S0[2] = 0 + 2 = 2. (12)

Now the subsequent swap operation doesn’t change the
values of S0[0], S0[1] and S0[2]. In the next operations, t,
t′ and t′′ are updated as follows

t = S0[i] + S0[j] = 2 · S0[2] = 4. (13)

t′ = (S0[i� 3⊕ j � 5] + S0[i� 5⊕ j � 3])⊕ 0x03.

= (S0[2� 3⊕ 2� 5] + S0[2� 5⊕ 2� 3])⊕ 0x03.

= 2 · S0[64]⊕ 0x03.
(14)

t′′ = j + S0[j] = 2 + 2 = 4. (15)

Now we have

Z2 = (S0[4] + S0[t
′])⊕ S0[4]. (16)

Suppose Z2 = 0, then

(S0[4] + S0[t
′])⊕ S0[4] = 0 =⇒ S0[t

′] = 0. (17)

Since S0 is a permutation, hence injective, we have S0[t
′] =

S0[0] = 0. This implies t′ = 0. Therefore

2 · S0[64]⊕ 0x03 = 0. (18)

Now in the above equation, the L.H.S. can never be 0. This
gives rise to a contradiction. Hence Z2 can never take the
value 0.

Now suppose Z2 = 2, then

(S0[4] + S0[t
′])⊕ S0[4] = 2. (19)

Furthermore, assume S0[4] ≡ 0 mod 4 or S0[4] ≡ 1 mod 4,
then,

S0[4] + S0[t
′] = S0[4] + 2 =⇒ S0[t

′] = 2. (20)

Since S0[2] = 2, S0[t
′] = S0[2] = 2. It implies t′ = 2.

Therefore,
2 · S0[64]⊕ 0x03 = 2. (21)

In the above equation, L.H.S. can never be 2. Hence a
contradiction and Z2 can never take the value 2.

Theorem 6. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Then following the results of Theorem 5, the

probabilities of Z2 = 0 and Z2 = 2 are given as 1
N −

1
N3 and

1
N −

1
2N3 .

Proof: Let E1 denote the event “S0[1] = 0 and S0[2] =
2”. The probability of event E1 can be given as Pr[E1] =
(N−2)!

N ! ≈ 1
N2 . From Theorem 5, we have Pr[Z2 = 0|E1] = 0.

By standard randomness assumptions, the probability Pr[Z2 =
0|Ec

1] = 1
N (verified by computer experiments using 220

random keys). Therefore the final probability is given as

Pr[Z2 = 0] = Pr[Z2 = 0|E1] · Pr[E1]

+Pr[Z2 = 0|Ec
1] · Pr[Ec

1]

= 0 · 1

N2
+

1

N
· (1− 1

N2
)

=
1

N
− 1

N3
.

(22)

Let E2 denote the event “S0[1] = 0, S0[2] = 2 and S0[4] ≡ 0

mod 4 or S0[4] ≡ 1 mod 4”. Then Pr[E2] =
(N

2 −1)·(N−3)!
N ! ≈

1
2N2 . From Theorem 5, we have Pr[Z2 = 2|E2] = 0.
The probability Pr[Z2 = 2|Ec

2] =
1
N (verified by computer

experiments using 220 random keys). Then

Pr[Z2 = 2] = Pr[Z2 = 2|E2] · Pr[E2]

+Pr[Z2 = 2|Ec
2] · Pr[Ec

2]

= 0 · 1

2N2
+

1

N
· (1− 1

2N2
)

=
1

N
− 1

2N3
.

(23)

Distinguishing RC4+ from Random Sources(pad 0x03):
Using Theorem 3, let X be the probability distribution of Z2 in
an ideal random stream, and Y be the probability distribution
of Z2 in the streams produced by RC4+. Let the events υ1 and
υ2 denote Z2 = 0 and Z2 = 2. The probability of occurrence
of the event υ1 in the distribution X is 1

N and in Y is 1
N −

1
N3 = 1

N (1 − 1
N2). Then we have p1 = 1

N and p2 = − 1
N2 .

Therefore the number of output samples required to reliably
distinguish the two distributions is about 1

p1·p2
2
= N · N4 =

N5 = 240. Similarly, the number of output samples required
to reliably distinguish the two distributions for the event υ2 is
242.

V. BIASES IN THE ORIGINAL CIPHER

Dropping the first output byte could easily settle down the
insecurity issue based on the attack mentioned in [2] on the
first output byte of RC4+. In this section we will prove that
the second output byte Z2 produced in the PRGA of RC4+ is
positively biased towards 0 when the pad used in the design
is 0xAA. The probability of Z2 being equal to 0 is 1

N + 1
N3 .

Theorem 7. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. Let the pad used in the PRGA is fixed to
p = 0xAA. If S0[1] = 0 and S0[2] = 2, then the second
output byte Z2 can take the value 0 for 2 values of S0[64].

Proof: In the first iteration of the PRGA given in Table
III, initially i = j = 0. Thereafter, the values of i and j are

5

updated as i = 0 + 1 = 1 and j = 0 + S0[i] = S0[1] = 0.
Let S0[0] = e, where e can be anything except 0 and 2. After
the following swap operation, S0[0] = 0 and S0[1] = e. In the
second round of the PRGA, i and j are updated as follows,

i = 1 + 1 = 2. (24)

j = 0 + S0[2] = 0 + 2 = 2. (25)

Therefore no swapping takes place in the subsequent swap
operation. In the next steps, t, t′ and t′′ are updated as follows,

t = S0[i] + S0[j] = 2 · S0[2] = 4. (26)

t′ = (S0[i� 3⊕ j � 5] + S0[i� 5⊕ j � 3])⊕ 0xAA.

= (S0[2� 3⊕ 2� 5] + S0[2� 5⊕ 2� 3])⊕ 0xAA.

= 2 · S0[64]⊕ 0xAA.
(27)

t′′ = j + S0[j] = 2 + 2 = 4. (28)

Now if Z2 = 0, then

(S0[4] + S0[t
′])⊕ S0[4] = 0 =⇒ S0[t

′] = 0. (29)

The injective property of the permutation S0 implies S0[t
′] =

S0[0] = 0. This implies t′ = 0. Therefore,

2 · S0[64]⊕ 0xAA = 0. (30)

It is evident in the above equation that for exactly 2 values of
S0[64], i.e. 85 and 213, t′ will evaluate to 0. Furthermore, if
the event “S0[1] = 0 and S0[2] = 2” is denoted by E1, then
Pr[Z2 = 0|E1] ≈ 2

N .

Theorem 8. Let S0 be a random permutation on the set
{0, 1, . . . , 255}. The probability of Z2 = 0 is given as 1

N + 1
N3 .

Proof: Let E1 denote the event “S0[1] = 0 and S0[2] =
2”. The probability of event E1 can be given as Pr[E1] =
(N−2)!

N ! ≈ 1
N2 . From Theorem 7, we have Pr[Z2 = 0|E1] =

2
N .

By standard randomness assumptions, the probability Pr[Z2 =
0|Ec

1] = 1
N (verified by computer experiments using 220

random keys). Therefore the final probability is given as

Pr[Z2 = 0] = Pr[Z2 = 0|E1] · Pr[E1]

+Pr[Z2 = 0|Ec
1] · Pr[Ec

1]

=
2

N
· 1

N2
+

1

N
· (1− 1

N2
)

=
1

N
+

1

N3
.

(31)

According to Theorem 3 and following the results of Theo-
rems 7 and 8, we conclude that around N ·(N2)2 = N5 = 240

output samples are sufficient to reliably mount a distinguishing
attack on RC4+ based on the bias present in the second output
byte Z2.

Based on the results shown in our paper and [2], it is evident
that in the practical implementations of RC4+, discarding

the use of the first and the second output bytes i.e. Z1 and
Z2, is necessary. Future works in this direction includes the
investigations of biases present in subsequent output bytes.
In the light of the results discussed in this paper, the pad
p = 0x03 seems to make the design most resistant to
distinguishing attacks. Therefore, based on the results and
scenarios presented by us, we think that the safest use of the
cipher is from the 3rd byte onwards with p = 0x03.

VI. CONCLUSION

In this paper we focus on the security of the stream cipher
RC4+ against distinguishing attacks based on the biases of
its output bytes. As the bias present in the first output byte
Z1 of this stream cipher proved in [2], we prove that the
second output byte Z2 is as well biased positively towards
0. In addition, we also analyze the security of the cipher if
odd pads are used as the design parameter other than the pad
0xAA used in the original cipher proposed in [1]. We show
that the cipher is still vulnerable to distinguishing attacks if
the pads are changed into an 8-bit constant odd value. In
our analysis, we find that the stream cipher RC4+ provides
maximum resistance to distinguishing attacks if the pad used
as the design parameter is made equal to 0x03.

REFERENCES

[1] S. Maitra and G. Paul. Analysis of RC4 and Proposal of Additional Layers
for Better Security Margin. In INDOCRYPT 2008, LNCS, Vol. 5365, pp.
27-39.

[2] S, Banik, S, Sarkar and R. Kacker. Security Analysis of RC4+ Stream
Cipher. In INDOCRYPT 2013, LNCS, Vol. 8250, pp. 297-307.

[3] I. Mantin and A. Shamir. A Practical Attack on Broadcast RC4. In FSE
2001, LNCS, Vol. 2355, pp. 152-164.

[4] A. Maximov and D. Khovratovich. New State Recovery Attack on RC4.
In CRYPTO 2008, LNCS, Vol. 5157, pp. 297-316.

[5] G. Gong, K.C. Gupta, M. Hell and Y.Nawaz. Towards a General RC4-like
Keystream Generator. In CISC 2005, LNCS, Vol. 3822, pp. 162-174.

[6] S. Paul and B. Preneel. A New Weakness in the RC4 Keystream Generator
and an Approach to Improve the Security of the Cipher. In FSE 2004,
LNCS, Vol. 3017, pp. 245-259.

[7] B. Zoltak. VMPC One-Way Function and Stream Cipher. In FSE 2004,
LNCS, Vol. 3017, pp. 210-225.

[8] A. Maximov. Two Linear Distinguishing Attacks on VMPC and RC4A
and Weakness of RC4 Family of Stream Ciphers. In FSE 2005, LNCS,
Vol. 3557, pp. 342-358.

[9] S. Paul and B. Preneel. On the (In)security of Stream Ciphers Based on
Arrays and Modular Addition. In ASIACRYPT 2006, LNCS, Vol. 4284,
pp. 69-83.

[10] Y. Tsunoo, T. Saito, H. Kubo, M. Shigeri, T. Suzaki and T. Kawabata.
The Most Efficient Distinguishing Attack on VMPC and RC4A. In SKEW
2005. Available at http://www.ecrypt.eu.org/stream/papers.html.

