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Abstract. Template attacks and stochastic models are among the most
powerful side-channel attacks. However, they can be computationally
expensive when processing a large number of samples. Various compres-
sion techniques have been used very successfully to reduce the data di-
mensionality prior to applying template attacks, most notably Principal
Component Analysis (PCA) and Fisher’s Linear Discriminant Analysis
(LDA). These make the attacks more efficient computationally and help
the profiling phase to converge faster. We show how these ideas can also
be applied to implement stochastic models more efficiently, and we also
show that they can be applied and evaluated even for more than eight
unknown data bits at once.

Keywords: side-channel attacks · template attack · stochastic model
· PCA · LDA

1 Introduction

The most powerful side-channel attacks for inferring secret data (passwords,
cryptographic keys, etc.) processed inside tamper-resistant hardware use pro-
filing. An attacker first characterizes the signals leaking out of a device while
it processes known data values, thereby measuring their probabilistic relation-
ship with the resulting unintended power-supply or electromagnetic emissions
(profiling phase). The attacker can then use this leakage model to determine
the maximum-likelihood data values from the signals leaking out of an identical
device that processes unknown data (attack phase).

Two such profiling techniques have been described in the literature: the “tem-
plate attack” [1] and the “stochastic model” [2]. Template attacks are very gen-
eral in that they use all available information from the side-channel traces to form
a probabilistic model for each possible data value (Section 2.1). In contrast, the
stochastic method models the leakage through a small number of functions of a
data word (e.g. the value of each bit), resulting in fewer parameters to estimate,
thereby trading generality of the model for efficiency of profiling (Section 2.2).

One of the main difficulties with implementing these attacks is dealing with
a large number of leakage variables, such as oscilloscope traces with thousands
of samples. Several compression techniques have been proposed to reduce the
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dimensionality of leakage traces, while preserving most of the side-channel in-
formation (Section 3). Particularly successful were the application of Princi-
pal Component Analysis (PCA) [3] and Fisher’s Linear Discriminant Analysis
(LDA) [7] to this end. Last year [12], we presented very efficient ways of imple-
menting template attacks with both, and demonstrated in a detailed comparison
that those are the most efficient techniques proposed so far.

The question arises, whether similar benefits can be achieved with the stochas-
tic methods [7]. In this paper, we show how to do so, in particular how to adapt
the PCA and LDA methods to stochastic models (Section 4). We propose four
efficient ways for estimating the PCA and LDA parameters, to preserve the
overall efficiency of the stochastic method.

We then use the Grizzly dataset [12], which provides real data from an un-
protected 8-bit microcontroller, to evaluate all our methods for implementing
stochastic models, and we also compare them with template attacks (Section 5).
The results show that our methods provide indeed very efficient implementations
of stochastic models, while preserving their profiling efficiency.

Finally, we demonstrate how to profile and evaluate stochastic models simul-
taneously for more than eight bits (Section 6), and we show that our applications
of LDA and PCA are particularly helpful in this context.

2 Profiled Attacks

In a profiled attack (template or stochastic model), we need physical access to
a pair of identical devices, which we refer to as the profiling and the attacked
device. We wish to infer some secret value k? ∈ S, processed by the attacked
device at some point. For an 8-bit microcontroller, S = {0, . . . , 255} might be
the set of possible byte values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value k? is manipulated and we are able to record signal traces (e.g.,
supply current or electro-magnetic waveforms) around these moments. We refer
to these traces as “raw” leakage vectors, which we write as xr′ = [x1, . . . , xmr ],
where xj ∈ R (1 ≤ j ≤ mr) is a sample at time index j.1

2.1 Template Attacks

During the profiling phase we record np leakage vectors xr
ki ∈ Rmr

(1 ≤ i ≤ np)
from the profiling device for each possible value k ∈ S, and combine these as
row vectors xr

ki
′ in the leakage matrix Xr

k ∈ Rnp×mr

.
Typically, the raw leakage vectors xr

ki provided by the data acquisition device
contain a large number mr of samples (random variables), due to high sampling
rates used. Therefore, we might compress them before further processing, as
explained in Section 3. We refer to such compressed leakage vectors as xki ∈ Rm

and combine all of these as rows into the compressed leakage matrix Xk ∈
Rnp×m . (Without a compression step, we would have Xk = Xr

k and m = mr.)

1 Throughout this paper x′ is the transpose of x.
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Using Xk we can compute the template parameters x̄k ∈ Rm and Sk ∈
Rm×m for each possible value k ∈ S as

x̄k = 1
np

np∑
i=1

xki, Sk = 1
np−1

np∑
i=1

(xki − x̄k)(xki − x̄k)
′

=
1

np − 1
X̃k

′
X̃k, (1)

x̄k is the sample mean, Sk is the sample covariance matrix and X̃k is the leakage
matrix Xk with x̄k subtracted from each row.

In the attack phase, we try to infer the secret value k? ∈ S processed by
the attacked device. We obtain na leakage vectors xi ∈ Rm from the attacked
device, using the same recording technique and compression method as in the
profiling phase, resulting in the leakage matrix Xk? ∈ Rna×m . Then, for each
k ∈ S, we compute a discriminant score d(k | Xk?), and try all k ∈ S on the
attacked device, in order of decreasing score (optimised brute-force search, e.g.
for a password or cryptographic key), until we find the correct k?. If the leakage
vectors xi can be modeled well by a multivariate normal distribution, which is
generally the case and what we also observed in our experiments, then the classic
approach is to use a discriminant based on the probability density function (pdf)
of this distribution:

djoint
PDF(k | Xk?) =

∏
xi∈Xk?

1√
(2π)m |Sk|

exp

(
−1

2
(xi − x̄k)

′
S−1
k (xi − x̄k)

)
. (2)

However, if the actual covariance Σ is independent of k, we can use a pooled
sample covariance matrix [10,12]

Spooled =
1

|S|(np − 1)

∑
k∈S

np∑
i=1

(xki − x̄k)(xki − x̄k)
′
, (3)

to better estimate Σ, and then use the discriminant score [6,12]

djoint
LINEAR(k | Xk?) = x̄′kS−1

pooled

( ∑
xi∈Xk?

xi

)
− na

2
x̄′kS−1

pooledx̄k, (4)

which avoids numerical pitfalls and is very efficient, being linear in xi. Through-
out our experiments, described in the following sections, we observed that the
covariances Sk are indeed similar. Particular implementations that cause the
covariances Sk to be significantly different are outside the scope of this paper.

2.2 Stochastic Models

Stochastic models were introduced by Schindler et al. [2] as another kind of
profiled attack, where the profiling phase can be more efficient than for template
attacks. Here, we assume that each sample xj (1 ≤ j ≤ m) of a leakage trace xi
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is modeled as a combination of a deterministic part δj(k), which takes as input
a value k, and a random part ρj , which models the noise:2

xj = δj(k) + ρj . (5)

This model can be used to attack any target k, similarly to the template attacks
in the previous section.

The deterministic function δj(k) is modeled as a linear combination of base
functions gjb : S → R, with

δj(k) =

u−1∑
b=0

βjb · gjb(k), (6)

where βjb ∈ R. The essential idea behind stochastic models is to find a good
set of base functions that matches well the leakage of the values k. A common
and generally good option for 8-bit architectures is to use the set of u = 9 base
functions known as F9, for which gj0(k) = 1 and gjb(k) = bitb(k). We used F9

successfully in our 8-bit experiments (Section 5), but in some cases, including
XORs between bits [2,4], can improve results (Section 6).

During profiling, instead of acquiring np leakage traces xr
ki for each candidate

k and then use (1,3) to compute the mean vectors x̄k and covariance Spooled

needed for template attacks, we only use a total of N leakage traces xr
i ∈ Rmr

from a uniform distribution of the values k ∈ S. As with template attacks, we
generally compress these leakage traces to obtain the compressed traces xi ∈ Rm

(m � mr, see Section 4). Then, we combine all these leakage traces into the
leakage matrix X ∈ RN×m and let ki represent the value of k corresponding to
the trace xi. Next, for each sample index j ∈ {1, . . . ,m} we build the matrix

Fj =


gj0(k1) gj1(k1) . . . gju−1(k1)
gj0(k2) gj1(k2) . . . gju−1(k2)

...
...

. . .
...

gj0(kN ) gj1(kN ) . . . gju−1(kN )

 (7)

and use the stochastic model

colj(X) = dj + rj = Fjvj + rj , (8)

2 The original description [2] used a deterministic function δj(di, k) with two param-
eters, to capture any combination of a plaintext value di and key value k in an
encryption algorithm, and then used a mapping function that reduced this combi-
nation into a value to be modeled by the set of base functions gjb. However, the
most common mapping is the XOR between di and k [2,8] or the XOR between
these and a mask value [5]. Therefore, in most cases, a single value (e.g., the XOR
result) is modeled by the base functions. If we want to target several values (e.g. for
masking [2,5] one might use base functions that depend on both a mask y and the
XOR between this mask, a plaintext and a key), we simply concatenate the bits of
these values (e.g., k = [bits mask|bits XOR]).
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where colj(X) contains the leakage samples xj of all traces xi ∈ X, vj
′ =

[βj0, . . . , βju−1], rj
′ = [ρ1

j , . . . , ρ
N
j ], and dj

′ = [δj(k
1), . . . , δj(k

N )]. To find the

vector of coefficients vj , we try to minimize the distance ‖colj(X) − Fjvj‖2,
leading to the solution

vj = (Fj
′Fj)

−1
Fj
′colj(X). (9)

Note that the matrix inversion in (9) requires rank(Fj) = u [12], that is Fj must
have u independent rows and columns.

In practice, we may use the same set of base functions (e.g. F9) for all samples
j (or at least for a subset of all samples). In this case, we can drop the subscript
j from (7) and use the same F for all samples j, turning (8) into X = FV + R,
allowing us to compute all the coefficients at once as

V = [v1, . . . ,vm] = (F′F)
−1

F′X, (10)

which is computationally more efficient. The coefficient vectors vj , computed
with either (9) or (10), can be used with (6) to compute the deterministic part
δj(k) of a sample xj for any value k. Note that this deterministic part is as-
sumed to be noise-free, since the noise is captured by the term ρj . Therefore, as
mentioned also by Gierlichs et al. [4], we can use the values δj(k) to compute
the stochastic mean vectors x̂k ∈ Rm as

x̂′k = [δ1(k), . . . , δm(k)]. (11)

While these correspond to the template mean vectors x̄k from (1), they depend
very much on the choice of base functions.

In order to also use the noise information, we need to compute a covariance
matrix Ŝ ∈ Rm×m , similar to the pooled covariance Spooled from (3). The avail-
able N traces that were used to estimate the coefficients vj are good for this
purpose3, since in (5) the deterministic part δj(k) approximates the noise-free
part, common to all the N traces. Therefore, the noise vector z ∈ Rm specific
to each trace xi can be computed as

zi
′ = [ρi1, . . . , ρ

i
m ], ρij = xij − δj(ki). (12)

These vectors can then be used to compute the noise matrix

Z =

 z1
′

...
zN
′

 =

 ρ
1
1 . . . ρ1

m
...

. . .
...

ρN1 . . . ρNm

 , (13)

3 Schindler et al. [2], as well as following publications [5,8], suggest to use an additional
disjoint training set of N2 traces to compute the covariance matrix Ŝ. However, this
requirement was never clearly motivated. In Appendix A, we show that using all the
N traces results in better estimates of both the mean vectors x̂k and covariance Ŝ.
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and finally, we can estimate the covariance matrix as

Ŝ =
1

N − 1

N∑
i=1

zizi
′ =

1

N − 1
Z′Z. (14)

In the attack step, we proceed as in template attacks, using the linear dis-
criminant from (4), but replacing the template mean vectors x̄k with the vectors

x̂k from (11), and the pooled covariance Spooled with the covariance Ŝ from (14).

3 Compression Methods for Template Attacks

As mentioned earlier, during a profiled attack we should first compress the leak-
age traces xr

i ∈ Rmr

into xi ∈ Rm (m � mr), in order to reduce the number
of variables involved while at the same time keeping as much information as
possible. It turns out that the choice of compression method is an essential step
for the success of profiled attacks. The first proposed methods [1] relied on se-
lecting some samples that maximise the data-dependent signal, but this can be
error-prone. Later, Principal Component Analysis (PCA) [3] and Fisher’s Linear
Discriminant Analysis (LDA) [7] helped to maximise the information used in the
attack step with a very small number m of samples. Last year [12], we provided
a detailed analysis of these compression methods in the context of template at-
tacks, and showed that LDA can provide a significantly better attack than the
sample selection methods. Below we briefly describe these methods in the con-
text of template attacks, and in Section 4 we show how to adapt them efficiently
for use with stochastic models.

3.1 Sample Selection

For the sample selection method we first compute a signal strength estimate sj
for each sample j (1 ≤ j ≤ mr), and then select some of the samples having
the largest sj . We used either one sample per clock (1ppc) or 20 samples per
clock (20ppc) among the 5% samples having the highest sj . Common estimates
sj are the difference of means (DOM) [1] (which can also be computed using
the absolute difference [12], as we do in this paper), the Signal to Noise Ratio
(SNR) [9] and the sum of squared pairwise t-differences (SOST) [4].

3.2 PCA

For PCA, we define the sample between groups matrix

B =
∑
k∈S

(x̄r
k − x̄r)(x̄r

k − x̄r)
′ ∈ Rmr×mr

, (15)

where x̄r
k = 1

np

∑np

i=1 xr
ki are the mean vectors over the raw traces xr

ki and

x̄r = 1
|S|
∑

k∈S x̄r
k. Then, we obtain the first m eigenvectors [u1, . . . ,um] =
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Um ∈ Rmr×m of B, which contain most of the information about the means,
i.e. that can be used to separate well the mean vectors x̄r

k. For this purpose,
we can use the Singular Value Decomposition (SVD) B = UDU′, where D is
a diagonal matrix having the eigenvalues (corresponding to U) on its diagonal,
and retain only the first m columns of U.4 We can use visual inspection of
the eigenvalues [3], the cumulative percentage of variance [12], or we can also
consider the DC contribution of each of the eigenvectors uj [13], to select the
best value m. Finally, we can compute the projected leakage matrix

Xk = Xr
kUm (16)

and obtain the PCA-based template parameters (x̄k, Spooled) using (1,3).

3.3 LDA

For LDA, we use the between groups matrix B and the pooled covariance
Spooled from (3), computed from the raw traces xr

i, and combine the eigen-
vectors aj ∈ Rmr

of S−1
pooledB into the matrix A = [a1, . . . ,am]. Then, we use

the diagonal matrix Q ∈ Rm×m , with Qjj = ( 1
aj

′Spooledaj
)

1
2 , to scale the matrix

of eigenvectors A and obtain Um = AQ. Finally, we use Um to project the raw
leakage matrices as Xk = Xr

kUm. Using this approach, the resulting covariance
matrix of the projected traces becomes the identity matrix, so we only need to
use the template mean vectors x̄k obtained from (1).

4 Compression Methods for Stochastic Models

4.1 Sample Selection

All the sample selection methods from Section 3 can be adapted for stochastic
models by using (11) and (14) to compute the stochastic mean vectors x̂k and

covariance matrix Ŝ, and then using these to obtain the desired signal-strength
estimate sj . In addition, Schindler et al. [2] proposed to use sj =

∑u−1
b=1 β

2
jb, i.e.

the norm of the data-dependent coefficients, which we refer to as bnorm in this
paper. We used this sample selection method with stochastic models.

4.2 PCA and LDA

Using PCA, and in particular LDA, significantly improved the application of
template attacks, and Standaert et al. [7] mentioned that “Combining data di-
mensionality reduction techniques with stochastic models is a scope for further
research.” However, until now, the sole published attempt to apply PCA to
stochastic models, by Heuser et al. [11], is inefficient. As we have shown earlier,

4 Archambeau et al. [3] show an alternative method for obtaining the matrix U, that
can be more efficient when mr > |S|. This is generally the case, when attacking an
8-bit target, but may not hold when k is a 16-bit target, as in Section 6.

7



for template attacks, the goal of PCA is to find the eigenvectors uj such that
the projection in (16) maximises the distance between the compressed traces
corresponding to different values k. Instead of using the eigenvectors of B (“su-
pervised approach”), Heuser et al. [11] used those of the raw covariance matrix

Ŝr, computed as in (14), to project the leakage traces. While this removes the
correlation between leakage samples, it does not maximise the discrimination
between means, since the matrix Ŝr contains no information about the different
raw mean vectors x̂r

k, obtained from (11), thereby forming an “unsupervised

approach”. We suspect that the lack of ‘mean’ information in Ŝr is also the rea-
son why only the first eigenvalue was significant in the results of Heuser et al.,
which lead them to use a univariate attack. We verified that, for the Grizzly
dataset [12], this unsupervised PCA method provides no useful attack (i.e. the
guessing entropy did not decrease).

We now provide four efficient methods for implementing PCA and LDA with
stochastic models. All these methods work in three main steps. In the first step,
for which we offer two methods (labelled “S” and “T” below), we compute the
matrix B̂, as an approximation of the between groups matrix B from (15), and

the raw covariance matrix Ŝ
r

(only needed for LDA). Next, we use either PCA
or LDA to obtain the matrix of eigenvectors Um, and use that to compress the
raw leakage matrix Xr ∈ RN×mr

into X ∈ RN×m . Finally, for the third step, we
use the stochastic model, on the compressed (projected) traces, to model each
sample xj of a compressed trace xi = [x1, . . . , xm] ∈ X.

Note that the “S” methods apply the stochastic method twice, once on raw
traces and once on compressed traces, placing the PCA or LDA compression
algorithm into a stochastic model sandwich. The general method is shown in
Figure 1, Algorithm A.

S-PCA Our first PCA method for stochastic models (named S-PCA) relies on
the stochastic model from Section 2.2, to build the mean vectors x̂r

k of the raw

traces. In the first step, we use these vectors to compute B̂ (see Algorithm B),
and in the second step, we obtain Um as the eigenvectors of B̂ (see Section 3.2).

T-PCA Our second PCA method for stochastic models (T-PCA) is based on
the observation that the matrix B in (15) may be approximated from a subset
Ss ⊂ S of values k. Therefore, in the first step, we obtain raw traces for the
subset Ss, and we use the resulting leakage matrices Xr

k to compute the matrix

B̂ (see Algorithm C). In the second step, we obtain Um as the eigenvectors of B̂.
Note that for this method (as well as for T-LDA, described next), we need two
sets of raw traces: (a) the N traces in Xr (used in step 2 and then, compressed,
in step 3), and (b) the |Ss| · np traces for the matrices Xr

k (k ∈ Ss).

S-LDA and T-LDA We also propose two methods for using LDA with stochas-
tic models: S-LDA and T-LDA. These are very similar to their PCA counter-
parts, with S-LDA using Algorithm B, and T-LDA using Algorithm C, to com-
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Require: Xr ∈ RN×mr

Step 1:
1: Obtain the matrix B̂ (Algorithm B or C),

and the matrix Ŝ
r

(Algorithm D or E, LDA only)
Step 2:
2: Obtain the matrix Um from B̂ (PCA)

or Ŝr
−1

B (LDA)
3: X← XrUm, X ∈ RN×m

Step 3:
4: Compute F (same for all samples) . See (7)
5: V = [v1, . . . ,vm]← (F′F)

−1
F′X

where vj
′ = [βj0, . . . , βju−1]

6: for all k ∈ S do

7: x̂′k = [δ1(k), . . . , δm(k)], δj(k)←
u−1∑
b=0

βjb · gjb(k)

8: end for
9: for i← 1, . . . , N do

10: zi
′ = [ρi1, . . . , ρ

i
m ], ρij ← xij − δj(ki)

11: end for
12: Z′ = [z1, . . . , zN ]
13: Ŝ ← 1

N−1
Z′Z

14: Use (x̂k, Ŝ) in the attack step

Require: Xr ∈ RN×mr

1: Compute F (same for all samples) . See (7)
2: Vr = [v1, . . . ,vmr ]← (F′F)

−1
F′Xr

where vj
′ = [βj0, . . . , βju−1]

3: for all k ∈ S do

4: x̂r′
k = [δ1(k), . . . , δmr(k)], δj(k)←

u−1∑
b=0

βjb · gjb(k)

5: end for
6: x̂r ← 1

|S|
∑

k∈S x̂
r
k

7: B̂←
∑
k∈S

(x̂r
k − x̂r)(x̂r

k − x̂r)′

Require: Xr
k ∈ Rnp×mr

, ∀k ∈ Ss
1: for all k ∈ Ss do
2: x̄r

k ← 1
np

∑np

i=1 x
r
ki

3: end for
4: x̄r ← 1

|Ss|
∑

k∈Ss x̄
r
k

5: B̂←
∑
k∈Ss

(x̄r
k − x̄r)(x̄r

k − x̄r)′

Require: Xr ∈ RN×mr

1: Compute F (same for all samples) . See (7)
2: Vr = [v1, . . . ,vmr ]← (F′F)

−1
F′Xr

where vj
′ = [βj0, . . . , βju−1]

3: for i← 1, . . . , N do
4: zi

′ = [ρi1, . . . , ρ
i
mr ], ρij ← xij − δj(ki),

δj(k
i)←

∑u−1
b=0 βjb · gjb(k

i)
5: end for
6: Z′ = [z1, . . . , zN ]
7: Ŝ

r ← 1
N−1

Z′Z

Require: Xr
k ∈ Rnp×mr

, ∀k ∈ Ss
1: for all k ∈ Ss do
2: x̄r

k ← 1
np

∑np

i=1 x
r
ki

3: end for

4: Ŝ
r ← 1

(np−1)|Ss|

∑
k∈Ss

np∑
i=1

(xr
ki − x̄r

k)(xr
ki − x̄r

k)′

Algorithm A: generic for all PCA/LDA methods Algorithm B: compute B̂ for S-PCA/S-LDA

Algorithm C: compute B̂ for T-PCA/T-LDA

Algorithm D: compute Ŝr for S-LDA

Algorithm E: compute Ŝr for T-LDA

Fig. 1. Algorithms needed to implement PCA and LDA with stochastic models.

pute B̂. The main difference is that, besides the matrix B̂, we also need to com-
pute the covariance matrix Ŝr ∈ Rmr×mr

of the raw traces. Then, we can obtain

Um from the eigenvectors of Ŝr
−1

B̂, as explained in Section 3.3. Algorithms D
and E show how to obtain Ŝr for S-LDA and T-LDA, respectively.

In Figure 2, we show the first four PCA eigenvectors of the Grizzly dataset
for template PCA, S-PCA, T-PCA with different random subsets Ss, and the
unsupervised PCA, along with the coefficients βjb. For the unsupervised PCA,
it is clear that the eigenvectors fail to provide useful information. For the other
methods, the first two eigenvectors are very similar. This suggests that S-PCA
and T-PCA can produce eigenvectors similar to those from template attacks.
Note that for S-PCA and S-LDA we can only obtain a maximum of u eigenvectors
corresponding to non-zero eigenvalues, because that is the maximum number of
independent vectors used in the computation of B̂ (see Algorithm B).

5 Evaluation on 8-bit data

We use the Grizzly dataset [12] to compare the template attacks (TA) with
stochastic models (SM). The Grizzly dataset contains np = 3072 raw traces xr

ki

9



0 500 1000 1500 2000 2500
Sample index

 

 
1
2
3
4

0 500 1000 1500 2000 2500
Sample index

 

 
1
2
3
4

0 500 1000 1500 2000 2500
Sample index

 

 
1
2
3
4

0 500 1000 1500 2000 2500
Sample index

 

 
1
2
3
4

0 500 1000 1500 2000 2500
Sample index

 

 
1
2
3
4

0 500 1000 1500 2000 2500
−500

0

500

1000

1500

2000

Sample index
C

oe
ffi

ci
en

t v
al

ue
s

 

 
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
bit 8

1120 1140 1160

templates PCA S-PCA

T-PCA, |Ss| = 18 T-PCA, |Ss| = 9

unsupervised PCA

coefficients βjb of F9

Fig. 2. Normalized eigenvectors for different PCA methods, along with coefficients βjb
of F9 computed via (10).

for each 0 ≤ k ≤ 255 (786432 traces in total), which we randomly divide into a
training set and an attack set. Each raw trace xr

ki has mr = 2500 samples, corre-
sponding to the current consumption of several consecutive LOAD instructions
executed by the unprotected 8-bit Atmel XMEGA 256 A3U microcontroller. A
single instruction loads the value k, while the other instructions load the constant
value 0. Note that the value k affects the traces over several clock cycles.

5.1 Guessing Entropy

To evaluate the overall practical success of a profiled attack we use the guessing
entropy, following our definition in [12], which estimates the (logarithmic) aver-
age cost of an optimised brute-force search. The guessing entropy approximates
the expected number of bits of uncertainty remaining about the target value k?,
by averaging the results of the attack over all k? ∈ S. The lower the guessing
entropy, the more successful the attack has been and the less effort remains to
search for the correct k?. For all the results shown in this paper, we compute the
guessing entropy (g) on 10 random selections of traces Xk? and plot the average
guessing entropy over these 10 iterations.

5.2 Results on 8-bit data

In Figure 3, we show the results of SM using our PCA/LDA methods, along
with TA using PCA/LDA for m = 4. For TA, we used np = 1000 traces per
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value k during profiling, while for SM we used different N and subsets Ss. We
also show the results for SM and TA using 1ppc (m = 10) and 20ppc (m = 80),
computed using the absolute difference of means [12].

From these figures, we can observe several things. Firstly, it is clear that all
the SM methods provide a guessing entropy equal to or better than their TA
equivalent, even when supplied with a much smaller amount of training data.
Therefore, our results confirm the observations of Standaert et al. [8], that SM
can be at least one order of magnitude more efficient than TA. Theoretically,
given enough training data, SM cannot perform better than TA. However, with
a limited number of profiling traces, SM may outperform TA when the leakage
is modeled well by the chosen base functions. With 256 × 1000 profiling traces
from the Grizzly dataset, SM reaches nearly 0-bit guessing entropy with 1000
attack traces, whereas TA does not (Fig. 3, bottom right). Furthermore, if we
want to use profiled attacks against data having more than 8 bits, as we show
in the next section, the SM may be the only practical choice.

Secondly, we can observe that both S-PCA and T-PCA reach the TA bound-
ary quicker than S-LDA and T-LDA. We believe this to be the case because
the PCA methods only depend on B̂ (the approximation of B), while the LDA

methods depend on both B̂ and Ŝr.
Thirdly, we observe that, for large na, the T-PCA, T-LDA, S-PCA, S-LDA,

and 20ppc methods provide similar results, but for small na, the best results are
obtained by LDA. In particular, note that, using T-LDA and S-LDA, we can
reach 4.1 bits of entropy when na = 1, while this limit is unreachable for 1ppc
(5.7 bits), 20ppc (4.5 bits) or PCA (4.7 bits).

From the TA, we knew that PCA and LDA are the most efficient compres-
sion methods. Now, we have seen that our PCA/LDA implementations for SM
can achieve the same performance. On the other hand, the SM provide more
efficient profiling than TA and, moreover, the SM may be the only viable solu-
tion to implement profiled attacks against more than 8-bit targets. Therefore,
our proposed methods (S-PCA, S-LDA, T-PCA and T-LDA) combine the best
compression methods (PCA, LDA) with the most efficient profiled attack (SM).

6 Profiled attacks on 16-bit data and more

So far, most publications on profiled attacks have focused on 8-bit attacks. The
possibility of attacking 16 bits was mentioned in passing [11], but we are not
aware of any public description of the challenges involved in attacking 16-bit
data. Therefore, we now consider and demonstrate a profiled 16-bit attack.

6.1 Considerations for the attacker

It is not feasible to mount a template attack on much more than 8 bits, as we need
to obtain leakage traces for each value k to compute and store the mean vectors
x̄k. However, for the stochastic model, all we need is a selection of traces from
a random subset of values k, to estimate the coefficient vectors vj , from which

11
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TA PCA vs SM T-PCA (N = 16000)

TA LDA vs SM T-LDA (N = 16000)

TA PCA vs SM S-PCA

TA LDA vs SM S-LDA

TA vs SM, 1ppc

TA vs SM, 20ppc

|Ss| N(×1000) N(×1000)

Fig. 3. Comparing TA with SM using PCA, LDA, 1ppc and 20ppc with different N
and na. For TA we used np = 1000.

we can derive any desired stochastic mean vector x̂k. The remaining limitation
is that, in the attack phase, we still need to compute the discriminant dLINEAR

from (4) over all possible values k. While doing so for |S| = 232 candidate values
is no problem with normal PCs, attempting to do this for 264 candidates would
certainly require special hardware.

6.2 Considerations for evaluation laboratories

Even if stochastic methods are practical given a single attack trace xi, a prob-
lem that remains, in particular for evaluation labs, is computing the guessing
entropy [12], which requires to store na traces for each value k? ∈ S and run the
attack on each of these. This is not practical for values having 16 bits or more.
However, one practical solution is to run the attack merely over a subset Ss of
the target values k? and estimate the expected value of the guessing entropy
over these. We refer to this measure as the sampled guessing entropy (SGE).

6.3 Efficient attacks and evaluations on more than 8-bit

The complexity of dLINEAR is O(m2 + na · m). However, that implies the use
of a covariance in (4). But with LDA, we no longer use a covariance matrix
(see Section 3), so the complexity of dLINEAR reduces to O(m + na · m) =
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O(na ·m). Then, an attacker who simply wants to find the most likely k, requires
a computation of complexity O(|S| · na ·m) when using LDA (since we need to
compute dLINEAR for each k ∈ S), and O(|S|(m2 + na ·m)) when using PCA
or sample selection. If na is of a lower order than m, then the use of LDA will
provide a computational advantage to an attacker. Also, both PCA and LDA will
typically work with an m much smaller than that required for sample selection.
In our experiments, on the Grizzly dataset, we used m = 4 for PCA and LDA,
while for 20ppc we use m = 80 (sample selection benefits from using many
samples per clock [12]). In the extreme case na = 1, an attack using LDA will be
1600 times faster than using 20ppc, and PCA will be be 400 times faster than
20ppc. For larger traces, covering many clock cycles (e.g. for a cryptographic
algorithm), we expect this difference to increase. Therefore, our PCA and LDA
implementations for SM can offer great computational advantage.5

An evaluator who wants to compute the SGE will run the attack for each
k? ∈ Ss. Therefore, the complexity of the evaluation is O(|Ss| · |S| · na ·m) for
LDA and O(|Ss| · |S| · (m2 + na ·m)) for PCA or sample selection. However, we

can optimise the computation of the SGE by precomputing yk = x̂′kŜ
−1
, and

zk = yk
′x̂k, which require a computation of O(|S|m2). With these values, the

discriminant dLINEAR can be computed as

dfast
LINEAR(k | Xk?) = yk

′
( ∑

xi∈Xk?

xi

)
− na

2
zk, (17)

which has complexity O(na ·m). Therefore, the evaluation of the partial guessing
entropy can be done with complexity O(|S|m2 + |Ss| · |S| ·na ·m). For PCA, the
value m may be comparable to or smaller than |Ss| and therefore an evaluation
using dfast

LINEAR will run as fast as an evaluation using LDA. However, if we need
to use a sample selection method with very large m, then the evaluation will be
considerably slower. Remember also that, while 1ppc with low m may be as fast
as LDA in this case, we confirmed in Figure 3 that both PCA and LDA provide
better results than 1ppc.

These considerations show that the choice of compression method depends
also on who will need to use it: an attacker who only wants the correct k?, or an
evaluator who wants to know the average attack cost. In both cases, our LDA
and PCA methods will help.

6.4 Results on 16-bit data

In order to verify that an attack on 16-bit data is feasible, and to obtain an esti-
mate on the actual run time, we used the same device as in the Grizzly dataset:
an Atmel XMEGA 256 A3U, with similar data acquisition setup for current
traces. In order to obtain 16-bit data, we varied the 8-bit values processed by

5 We also note that, for SM with sample selection, we should use bnorm (see Section
4.1), as that is more computationally efficient than the other methods for estimating
the signal-strength estimate sj .
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two consecutive LOAD instructions, thus obtaining leakage traces that depend
on 16-bit values. Using this scenario, we cannot evaluate the limit of SM on
a 16-bit parallel bus, but we can evaluate the feasibility of profiled attacks on
more than 8 bits of data. For this dataset, which we call Panda, we acquired
np = 200 traces for each of the 216 = 65536 values k ∈ S (N = 13 107 200 traces
in total). Each trace has mr = 500 samples, recorded with 125 MS/s using the
HIRES mode of our Tektronix TDS 7054 oscilloscope (which provides ≈ 10.5
bits per sample by averaging 40 consecutive 8-bit samples acquired internally at
5 GS/s), and contained data over 5 LOAD instructions, of which two contained
our target data and the other three processed the constant value 0. We split
this data into two sets, for profiling and attack. In addition we also acquired
np = 1000 traces for a selection of |Ss| = 512 random values k (512000 traces in

total), which we used for the estimation of B̂ and Ŝ
r

with T-PCA and T-LDA.
For the implementation of the SM we simply extended the set of base functions
to include the individual contributions of all the 16 bits of the values k, resulting
in the set F17. The contribution of each base function is shown in Fig. 6.

In Figure 4, we show our results for the full 16-bit attack. For our SM versions
of PCA and LDA we used m = 10. With most methods, the guessing entropy
converges after only about N = 1000 × 24 = 16000 traces, which confirms the
efficiency of stochastic models. S-LDA reduces the guessing entropy below 4 bits
when using na = 100 traces, which means that, in this case, we can find the
correct k? in a brute-force search attack with at most 16 trials, on average.
S-PCA, S-LDA and T-PCA are better than 20ppc, but T-LDA is not. Both S-
PCA and S-LDA are better than T-PCA and T-LDA, which suggests that the
subset of |Ss| = 512 values we used for the estimation of the T-PCA/T-LDA

parameters B̂ and Ŝ
r

was not enough to reach the full potential of PCA and
LDA. Therefore, for attacks on more than 8 bits the methods S-PCA and S-
LDA may be the best option, as they can use all the available N traces with the
stochastic model for both the modeling of the compressed mean vectors x̂k (step
3 in Algorithm A), as well as for the modeling of all the raw vectors x̂r

k (lines
3–5 in Algorithm B). This in turn can result in a better estimation of the matrix
B̂ (step 1 in Algorithm A), than what can be achieved with a small subset of
real vectors x̄r

k for the T-PCA and T-LDA methods.

In the bottom-right of Figure 4, we also show the results when performing
the SM attack separately, for each of the two bytes of our target value (i.e.
during profiling we only consider one byte known, while the varying value of
the other represents noise). We computed the results by adding the guessing
entropy from each 8-bit attack. This figure shows that, in our particular scenario,
performing two 8-bit attacks (each with F9) provided better results than any
of the 16-bit attacks with F17. This could potentially be due to several factors.
Firstly, by attacking only 8 bits, there are fewer parameters to be estimated
during the attack (e.g. the SM coefficients). Secondly, the signal-to-noise ratio
in the acquisition setup might have been too low to provide sufficient separation
between the |S| = 216 classes to be distinguished by our classifier. Finally, the
base function set F17 may simply not have adequately modeled the leakage.
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Fig. 4. Results on full 16-bit attack for pipelined data, with S-PCA, S-LDA, 20ppc,
T-PCA, T-LDA, and results from S-LDA on 8 bits at a time, using different N and
na. We tried N = 1000 · 2x, where x is the value shown in the logarithmic x-axis. For
T-PCA and T-LDA, we used |Ss| = 512.

The latter turned out to be the main factor, which was easily fixed. Our
16-bit target value k = [k1|k2] is composed of two 8-bit halves (k1 and k2),
which are processed consecutively in the XMEGA CPU. If these two values pass
through the same parts of the circuit, their XOR difference is likely to affect
part of the leakage traces. Therefore, we also evaluated an attack where the
stochastic model included the XOR between the bits of k1 and k2, resulting in
the set F17x (see Fig. 6). Figure 5 shows the results of our SM attacks using S-
PCA (left) and S-LDA (right) with F17x. We see that, using F17x, both S-PCA
and S-LDA perform better than with F17. Also, in this case S-LDA reduces the
guessing entropy to about one bit, which is far better than any of the other
results, including the attack on k1 and k2 separately. Therefore, a 16-bit attack
can perform better than two 8-bit attacks, if a model is used that also takes into
consideration differences between the bits, as we did in F17x.

In Table 1, we show the execution times for the main steps of an evaluation
using S-PCA. This table shows that SM attacks are feasible, at least compu-
tationally, on 16-bit data. All the steps can be extended for 32-bit data and
more. The only steps that depend on the number of bits are the computation
of the raw vectors x̂r

k and the computation of the compressed vectors x̂k for all
k ∈ S, and the computation of the SGE. These steps depend linearly on k, so
a straight-forward extension to 32-bit may require 65536 times more time. That
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Fig. 5. Results of SM attack using F17x with S-PCA (left) and S-LDA (right).

Table 1. Approximate time required for the main steps of an evaluation using S-PCA
on 16 bits with F17 and N = 64000

Step time

Obtaining V on raw data (Algorithm B, step 2) 40 s
Approximating raw mean vectors x̂r

k (Algorithm B, steps 3–5) 32 s
Computing PCA parameters (Algorithm A, step 2) 2 s
Obtaining V on compressed data (Algorithm A, step 5) 38 s
Obtaining x̂k for all k (Algorithm A, steps 6–8) 28 s

Obtaining Ŝ (Algorithm A, steps 9–13) 33 s
Compute SGE using |Ss| = 256 with m of the same order as na 210 s

means that, for an attacker who only wants to find what the most likely target
k? is, the attacks would take 24 days for the computation of the raw vectors x̂r

k,
21 days for the computation of the compressed vectors x̂k and 15 hours for the
attack step. However, it seems that for an evaluator it would be impractical to
compute the SGE on 32-bit data for large |Ss|.

7 Conclusions

In this paper, we have shown how to implement the PCA and LDA compression
methods, which have so successfully boosted the performance of template attacks
in the past, also for stochastic models. As both techniques implement coordinate
transforms based on singular-value decomposition of covariance matrices, there
were two opportunities to apply a stochastic model: first before the compression
step, on raw traces, to aid estimating the matrices required by the compression
method, and secondly, on the compressed traces that they output, to better
estimate the mean vectors for each data value. In addition, we investigated a
variant in which the matrices for the compression step are instead estimated
directly, as in the template attacks, but using only a subset of all possible data
values, which also boosts the performance of the profiling phase.
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Fig. 6. Contribution of coefficients βjb in F17 (bits 1 to 16) and F17x (F17 enhanced
with XOR between bits of 8-bit halves) for the Panda dataset. Pipelining causes leakage
of the two 8-bit halves to overlap (e.g. around sample 300). Their consecutive processing
also leaks their XOR value (e.g. around sample 430).

We have shown that, for 8-bit attacks, our PCA and LDA methods for
stochastic models can obtain the same or even better results than their respec-
tive implementations on template attacks. Combining the compression efficiency
of PCA and LDA with the profiling efficiency of stochastic models allows us to
extract the most out of profiled attacks. Moreover, we have shown that, from a
computational perspective, LDA can provide a significant advantage to an at-
tacker, which for our experiments may result in an attack step that is 1600 times
faster than using sample selection. For an evaluator, both LDA and PCA will
be very helpful in obtaining efficient evaluations of profiled attacks.

We also performed an evaluation on 16-bit data, which allowed us to con-
firm that: (a) our PCA and LDA implementations provide good results, and
(b) stochastic attacks are feasible, at least computationally, on 16-bit data. Ex-
trapolating the run-time of our evaluation, even an attack on 32 bits appears
computationally feasible (requiring in the order of 45 days for the profiling step
and 15 hours for the attack step on our PC).

Our results also showed that two separate 8-bit attacks performed better
than a 16-bit attack, which could be attributed to several factors, such as fewer
parameters to be estimated, or a limitation in the acquisition setup and attack
method to distinguish a 16-bit value. However, when adding the contribution of
the XOR between the two 8-bit halves of our target value to the 16-bit model,
we obtained better results. This showed that simply expanding the attack to
16 bits is not guaranteed to improve the results, because the larger number of
parameters that need to be estimated reduced the accuracy achievable with a
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given set of traces, and in such situations, an attack targeting two 8-bit halves
separately can actually perform better. A 16-bit attack, however, can perform
better if a more informative model is used, such as taking into consideration
differences between the bits, as we did in F17x, in which case the attack could
outperform the individual 8-bit attacks.

Data and Code Availability: In the interest of reproducible research we make
available our data and related MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/
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A Using one set N vs two sets N1 and N2

In Section 2.2, we mentioned that using different sets of traces (N1 and N2),
one for estimating the stochastic mean vectors x̂k, and one for estimating the
covariance matrix Ŝ, is not necessarily the best option. As we show in Figure 7,
we found that using all the N = N1 + N2 traces to estimate both x̂k and Ŝ
provides better results (compare for example N1 = N2 = 500,1ppc with N =
1000,1ppc). Using the entire set of traces allows a better estimation of the mean
vectors, and our use of different sets during profiling and attack avoids the risk
of overfitting.
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Fig. 7. Results of stochastic model attacks using either (a) two different sets, having
N1 = N2 = N/2 traces, for the estimation of the stocastic mean vectors x̂k and
covariance Ŝ, or (b) a single set of N traces for the estimation of both x̂k and Ŝ.
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